Module 2 (Dr. Diganta Borah)

Summary of lectures

- Lecture 1. Stereographic projection and distance function on the extended complex plane, Riemann sphere, Möbius transformations.
 - Lecture 2. Preservation of circles, Cross ratios, Mapping properties of Möbius transformations.
 - Lecture 3. Conformal maps and connection with holomorphy, harmonic functions.
- **Lecture 4.** Harmonic conjugates, existence and construction of harmonic conjugates on convex domains, mean value theorem, maximum principle, characterisation of harmonic functions.
- Lecture 5. Dirichlet problem on discs, Poisson kernel, Poisson integral formula, Geometric interpretation of Poisson integrals
- **Lecture 6.** Schwarz reflection principle, symmetric points with respect to a circle, reflection principle for circles.

Tutorial problems

- 1. For each of the following points in C, give the corresponding point of S^2 : 0, 1+i, 3+2i.
- 2. If $z, w \in \mathbf{C}$, prove that

$$d_{\infty}(z,w) = \frac{2|z-w|}{\sqrt{(|z|^2+1)(|w|^2+1)}}.$$

Conclude that $z \to w$ in **C** if and only if $z \to w$ on $\hat{\mathbf{C}}$.

3. If $z \in \mathbf{C}$, then prove that

$$d_{\infty}(z,\infty) = \frac{2}{\sqrt{1+|z|^2}}.$$

- 4. If $R \ge 0$, prove that the set $\{z \in \mathbf{C} : |z| > R\} \cup \{\infty\}$ is an open ball in the Riemann sphere with center ∞ . What is the radius of this ball?
- 5. Let Λ be a circle lying on S^2 (i.e., the intersection of a plane and S^2). If Λ contains the north pole, prove that its projection on \mathbb{C} is a straight line. Otherwise, Λ projects onto a circle in \mathbb{C} .
 - 6. If

$$f(z) = \frac{z+2}{z+3}$$
 and $g(z) = \frac{z}{z+1}$

find $f \circ g$, $g \circ f$ and $f^{-1} \circ g$.

- 7. Show that any Möbius transformation which maps the real axis into itself can be written with real coefficients.
 - 8. Prove that $Aut(\hat{\mathbf{C}}) \cong PGL(2, \mathbf{C})$.
 - 9. Prove that (z_0, z_1, z_2, z_3) is real if and only if z_0, \ldots, z_3 lie on a circle.
 - 10. Prove that cross ratios are invariant under Möbius transformations.

11. Let

$$f(z) = \frac{z - i}{z + i}.$$

Determine the image of real axis and the upper half plane

- 12. Find the Möbius transformation which maps 1+i, 2, 0 to $0, \infty, i-1$ respectively. Determine the image of the circle |z-1|=1 and the disc |z-1|<1.
 - 13. Fix a complex number ζ with $|\zeta| < 1$. Prove that

(a)
$$\left| \frac{z - \zeta}{1 - \overline{\zeta}z} \right| = 1 \text{ if } |z| = 1,$$
 (b) $\left| \frac{z - \zeta}{1 - \overline{\zeta}z} \right| < 1 \text{ if } |z| < 1.$

- 14. Find a formula for symmetric point with respect to a circle with center at a and radius r.
- 15. Find a formula for symmetric point with respect to the line ax + by + c = 0.
- 16. Prove that Möbius transformations preserve symmetric points.
- 17. Prove that any Möbius transformation which maps the open unit disc onto itself is of the form

$$e^{i\theta}\frac{z-\zeta}{1-\overline{\zeta}z}$$

for some $|\zeta| < 1$ and $\theta \in \mathbf{R}$.

- 18. Find all the Möbius transformation that fix the points 1 and -1. Is the group of those transformations abelian?
 - 19. Let α, β be real numbers such that $\beta \alpha < 2\pi$.
 - (a) Find the image of the horizontal strip $\{z : \alpha < \Im z < \beta\}$ under e^z .
 - (b) Find the image of the wedge $\{z : \alpha < \arg z < \beta\}$ under the $\log z$.
 - 20. Find a conformal map
 - (a) of the wedge $\{0 < \arg z < \beta\}, 0 < \beta \le 2\pi$, onto the upper half plane $\{\Im z > 0\}$.
 - (b) of the upper half plane $\{\Im z > 0\}$ onto the unit disc **D**.
 - (c) of the wedge $\{0 < \arg z < \beta\}, 0 < \beta \le 2\pi$ onto the unit disc **D**.
- 21. Let D be a domain in \mathbb{C} and $f: D \to \mathbb{C}$ be a C^1 function. Suppose the (real) Jacobian matrix of f does not vanish at any point of D. Also, suppose f maps orthogonal curves to orthogonal curves. Prove that either f or \overline{f} is complex differentiable on D.
- 22. Show that the Cayley transform $h_C: \mathbf{H} \to \mathbf{D}, z \to \frac{z-i}{z+i}$, where **H** is the upper half space and **D** is the unit disc, maps the first quadrant

$$Q_1 = \left\{ z \in \mathbf{H} : \Re z > 0 \right\}$$

bijectively onto $\{w \in \mathbf{D} : \Im w < 0\}.$

- 23. Supply complex differentiable, bijective and angle-preserving mappings of Q_1 onto $\mathbf{D} \setminus (-1,0]$ and onto \mathbf{D} .
 - 24. If f is a harmonic function on an open subset Ω of C, prove that $\partial f/\partial z$ is holomorphic on Ω .
- 25. If f is a nonvanishing holomorphic function on an open subset Ω of \mathbf{C} , prove that $\log |f|$ is harmonic on Ω .
- 26. Find where in the complex plane the following functions are harmonic and express them as real parts of holomorphic functions if possible.

(a)
$$xy + 3x^2y - y^3$$
 (b) $e^{x^2 - y^2}\cos(2xy)$ (c) $\frac{x}{x^2 + y^2}$, $(x, y) \neq 0$ (d) $\tan^{-1}\frac{y}{x}$, $x > 0$

27. Let $v(z) = \text{Im}(1/z^2)$ if $z \neq 0$ and v(0) = 0. Prove that v_{xx} and v_{yy} exist at all points in \mathbf{C} and satisfy

$$v_{xx} + v_{yy} = 0,$$

but v is not harmonic in \mathbf{C} .

- 28. Show that if h(z) is a harmonic function on a domain D such that zh(z) is also harmonic, then prove that h(z) is holomorphic on D.
 - 29. Show that if v is a harmonic conjugate of u, then u is also a harmonic conjugate of -v.
- 30. Give an example of a smooth function u(z) on the unit disc **D** which attains its maximum at an interior point.
 - 31. Prove that the series

$$P_r(\theta) = \sum_{k=-\infty}^{\infty} r^{|k|} e^{ik\theta}$$

converges uniformly if $re^{i\theta}$ lies on a compact subset of **D**.