(A) Independence and Lévy processes in quantum prob-
ability

Uwe Franz,
University of Franche-Comte,
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Abstract: Quantum probability describes the probabilistic foundations of quantum physics.
Many concepts from classical probability have their counterpart in quantum probability. In
these lectures we will study the notions of independence and independent increment pro-
cesses. One surprising feature of quantum probability is the existence of several different
notions of (stochastic) independence, as, e.g., tensor independence (which generalizes the
notion of stochastic independence in classical probability), freeness, Boolean independence,
or monotone independence. These lectures will give an introduction to the most common
notions of independence and their basic theory, including the description of their convolu-
tions and infinitely divisible measures. Then we will study the axiomatic approach due to
Speicher, Ben Ghorbal, Schiirmann, and Muraki, and the classification of the five universal
notions of independence. Finally, we will study the relations between these notions and the
theory of independent increment processes.

Lectures

e Lecture 1: Introduction to quantum probability, tensor independence, freeness, boolean
and monotone independence

e Lecture 2: Fourier and Cauchy transform, infinite divisibility and continous convolution
semigroups

e Lecture 3: Products of quantum probability spaces and of GNS representations, Fock
spaces and constructions of independent increment processes

e Lecture 4: Independence and universal products, the classification of universal products
of quantum probability spaces.

e Lecture 5 and 6: Relations between the universal products; dual groups, bialgebras,
and quantum groups; Lévy processes and independent increment processes on dual
groups, bialgebras, and quantum groups.



(B) Quantum Processes
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Abstract: This course will be on applications of the fundamental concepts of the classical
theory of dynamical systems to the study of endomorphisms of operator algebras. Classical
theory of continuous or measurable dynamics can be in a natural way extended to so-called
noncommutative dynamical systems, i.e. endomorphisms of respectively C*-algebras or von
Neumann algebras. In these series of lectures we present how the fundamental concepts
such as the topological entropy or ergodic-theoretical notions extend to the noncommutative
framework. A more specific plan is as follows:

Lectures

e Lectures 1-2: Basic setup of classical continuous and measurable dynamics; Gelfand
theorem and general ‘noncommutative mathematics’; automorphisms or endomor-
phisms of unital C*-algebras (respectively, von Neumann algebras) as quantum coun-
terparts of continuous (measurable) dynamical systems; some examples of noncommu-
tative dynamical systems.

e Lectures 3-4: Bowen’s approach to classical topological entropy via finite approxima-
tions; Voiculescu’s noncommutative topological entropy and its basic properties; the
computation of the Voiculescu entropy of the shift on the Cuntz algebra.

e Lectures 5-6: Almost uniform convergence as a counterpart of almost everywhere con-
vergence; Lance’s almost uniform ergodic theorem for automorphisms of von Neumann
algebras; noncommutative LP-spaces and recent generalisations of multiparameter er-
godic theorems of Tao.



(C) The Corona Problem

Brett D. Wick
School of Mathematics
Georgia Inst. of Technology, USA.

Motivations

The space H*(D) is the collection of bounded analytic functions on the unit disk D and has
been well-studied from the viewpoint of complex and harmonic analysis and the interaction
with operator theory. Under the norm || f||« := sup,ep |f(2)|, H*(D) is a complex Banach
algebra. With this Banach algebra, it is possible to ask questions that are a blend of analysis
and algebra.

One such important question is the Corona Problem. This problem can be phrased purely
as a function theoretic question. If one is given a finite collection of NV functions g; € H*(D),
such that

N
1> [gi(x)P>0*>0 VzeD,
j=1

then is it possible to find functions f; € H*>°(ID) such that

N N
> fi(2)gi(z) =1 VzeDand sup Y [f;(2)]* < C(6,N)?
j=1 z€eD =1

The collection of functions g; are typically called Corona Data and the collection f; is
called the Corona Solution. The condition that 1 > Z;VZI l9;(2)]? > 6% > 0 Vz € D is called
the Corona Condition. Using functional analysis, it is possible to change this problem into
an algebraic question about the maximal ideals of H>°(ID) and a topological question about
the density of the unit disk D in the maximal ideal space of H*(D).

The famous Carleson Corona Theorem, see [7], answered this question affirmatively. It
was then also shown to be true by T. Wolff, see the proof in [10], who used deep connections
with Carleson measures, solutions of the d-equation, and the duality of H' and BMO. For
modern treatments, see [10] and [12]. The tools and techniques Carleson implemented have
become an integral part of analysis and have served as an impetus for much research in
function theory, complex analysis, harmonic analysis, and operator theory for the past 50
years.

Overview of the Course

The course presented by Wick will focus on certain aspects of the Corona problem for
multiplier algebras of Besov—Sobolev spaces. The Besov—Sobolev spaces of functions are a
class of analytic functions that measure the smoothness of the function. The Besov-Sobolev
spaces B%(B,,) of analytic functions on the unit ball B,, in C" are the collection of functions
that are analytic on the unit ball and such that for any integer m > 0 and any 0 < 0 < 00



such that m + ¢ > & we have the following norm being finite:
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One can show that these spaces are independent of m and are reproducing kernel Hilbert
spaces, with obvious inner products. Moreover, there are natural generalizations of this norm
to the scale 1 < p < oo, [14].

We then will discuss the multiplier algebras of the Besov—Sobolev spaces. For the Besov—
Sobolev space B2(B,,), one defines the multiplier algebra M2(B,,) as the collection of analytic
functions ¢ that are pointwise multipliers of B%(B,). Namely, ¢f € B%(B,) for all f €
B2(B,,), and then norms M?(B,,) by

o HSOfHB2(Bn)
lelmz @, == sup T——e==
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These spaces of functions contain all the well-known and studied examples of analytic func-
tions, including the Dirichlet space, the Hardy space, and the Bergman space. For a certain
range of values of o, these spaces of functions have deep connections with operator theory.
When 0 < o < % the space of function the space B2?(B,) possess additional properties, and
has numerous connections with interpolation theory and other problems in complex function
theory, [1,2].
The ultimate goal of the course will be to discuss the background and ideas in the proof
of the Corona theorem for the multiplier algebras M2(B,,).

Theorem 0.1 (Costea, Sawyer, Wick [9]) Let 0 < o < 2

5. Suppose that gi,...,gn €
M2(B,,) satisfy

0<5<Z|g (2)?<1 VzeB,.

There are fi1,..., fx € M2(B,,) such that
() T3 fi(2)9i(2) =1 vz € By
(i) 2;11 | fillxzmn) < Cponios-

This theorem encompasses many extensions of L. Carleson’s famous proof for H>*(D), [7,8].
During the lectures, the following topics will be covered.

1. In the preliminary lectures, we will focus on the basic aspects of the Besov—Sobolev
spaces of analytic functions and their multiplier algebras, topics will include the Car-
leson measures and their geometric characterization. In particular, the well known
examples of the Hardy space H*(D) and H>(D) will be highlighted and contrasted
with the other spaces of functions. Topics from [3-5, 10, 12-14] will be covered.

2. Hlustrate the connections with operator theory and function theory when 0 < o < %
In particular some aspects of [1,6,11] will be discussed.
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3. Discuss the tools of the proof of the Corona problem; topics to include are the O-
problem on B,,, Charpentier solution operators for these equations, and estimates for
these operators. Topics will include results from [9] and the references therein.

There are numerous exercises that will be provided during the course so that the interested
student can learn the basics of the topics covered. These exercises will be designed so that
an interested student can go from a limited background in the area to a relatively deep
understanding of the material. Additionally, open problems and future directions of research
will be pointed out and highlighted during the course.
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