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tation theoretic approaches towards the construction of exceptional
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1. Introduction

Traditionally, exceptional groups are considered as an esoteric sub-
ject, and their conventional constructions require serious familiarity with
representation theory of semi-simple Lie algebras and algebraic group
theory. However, they naturally arise in various branches of mathemat-
ics, each time when one has to invoke classification of the finite simple
groups, simple Lie groups, simple algebraic groups, or the like, each time
when one mentions non-associative algebras, exceptional geometries, etc.
In the last decades exceptional groups made their triumphal appearance
in physics, not only in string theory, but also in most classical subjects.
Each day there are more evidence, that the group E8 is responsible for
the Theory of Everything.

Moreover, a working knowledge of exceptional groups is fundamen-
tal even for a better understanding of classical groups. Jacques Tits
remarked that whenever we wish to really understand some phenome-
non for the group GL(n,K), we should come up with such a proof that
covers also the case of E8.

In this talk I will outline an elementary purely combinatorial approach
towards construction of the exceptional groups of types E6, E7, E8 and
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F4, and calculations therein, which should be accessible to an under-
graduate student. Also, I will sketch some recent applications of these
methods.

Essentially, we can think about these groups, as certain groups of
27× 27, 56× 56, 248× 248 and 27× 27 matrices (sic!), more or less in
the same way as we think about classical groups. With some technical
tools, and a little practice, you can do in exceptional groups everything
you can do in the classical ones.

Since all exceptional objects in mathematics are interrelated, and
form octonionic mathematics — the one, which Vladimir Arnold forgot
in his subdivision of mathematics into the real, the complex, and the
quaternionic ones! — the contents of this talk is of general mathematical
interest.

2. Elementary constructions of exceptional groups

In fact, first such elementary constructions were proposed by Dickson
(1901), Chevalley (1948), and Freudenthal (1952), and in characteristics
6= 2, 3 were widely used by the Belgian and the Dutch school (Tits,
Springer, Feldkamp, et al.), starting from 1950-ies. Later, they were
overshadowed by the general methods of the French school, and are far
less known, than they deserve.

However, recently, in the process of solution of some really challenging
problems, this subject came to light again. This applies to the study
of maximal subgroups (Aschbacher, Cohen, Cooperstein, and others),
classification of forms of simple groups over a non-closed field (Rost,
Garibaldi, an others), etc.

Recently, Lurje, Luzgarev and the author succeeded in removing re-
maining restrictions on characteristic in the minimal and adjoint repre-
sentation of exceptional groups, and define them by explicit equations
over Z. We describe the following constructions:
• Explicit combinatorial description of the elementary generators xα(ξ)

as matrices;
• Realisation of exceptional groups as isometry groups of cubic/quartic

forms, and explicit equations on matrix entries of their elements,
both of which can be fully appreciated by a 2nd year undergraduate
student. In this sense, the talk will be much more elementary
than the present exposition. I will try also to outline some further
related constructions and recent applications.

3. Basic notation

Let us fix basic notation. This notation is explained in [33, 49, 34],
where one can also find many further references.
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• Φ is a reduced irreducible root system.

• Fix an order on Φ, let Φ+, Φ− and Π = {α1, . . . , αl} are the sets of
positive, negative and fundamental roots, respectively.

• Let W = W (Φ) be the Weyl group of Φ.

• Let Q(Φ) be the root lattice of Φ, P (Φ) be the weight lattice of Φ
and P be any lattice such that Q(Φ) ≤ P ≤ P (Φ).

• R is a commutative ring with 1;

• G = GP (Φ, R) is the Chevalley group of type (Φ, P ) over R.

In most cases P does not play essential role and we simply write
G = G(Φ, R) for any Chevalley group of type Φ over R. However, when
the answer depends on P we usually write Gsc(Φ, R) for the simply
connected group, for which P = P (Φ) and Gad(Φ, R) for the adjoint
group, for which P = Q(Φ).

• T = T (Φ, R) is a split maximal torus of G.

• xα(ξ), where α ∈ Φ, ξ ∈ R, denote root unipotents G elementary
with respect to T .

• E(Φ, R) is the [absolute] elementary subgroup of G(Φ, R), generated
by all root unipotents xα(ξ), α ∈ Φ, ξ ∈ R.

4. Chevalley groups versus elementary subgroups

Many authors not familiar with algebraic groups or algebraic K-
theory do not distinguish Chevalley groups and their elementary sub-
groups. Actually, these groups are defined dually.

• Chevalley groups G(Φ, R) are [the groups of R-points of] algebraic
groups. In other words, G(Φ, R) is defined as

G(Φ, R) = HomZ(Z[G], R),

where Z[G] is the affine algebra of G. By definition G(Φ, R) consists of
solutions in R of certain algebraic equations.

• As opposed to that, elementary Chevalley groups E(Φ, R) are gen-
erated by elementary generators

E(Φ, R) =
〈
xα(ξ), α ∈ Φ, ξ ∈ R

〉
.

When R = K is a field, one knows relations among these elementary
generators, so that E(Φ, R) can be defined by generators and relations.
However, in general, the elementary generators are described by their
action in certain representations.

By the very construction of these groups E(Φ, R) ≤ G(Φ, R) but in
general E(Φ, R) can be strictly smaller than G(Φ, R) even for fields.
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5. Classical groups

Actually, classical Chevalley groups can be easily constructed as groups
of isometries of bilinear/quadratic forms. Recall identification of Cheval-
ley groups and elementary Chevalley groups for the classical cases. The
second column of the following table lists traditional notation of classi-
cal groups, according to types: Al the special linear group, Bl the odd
orthogonal group, Cl the symplectic group, and Dl the even orthogonal
group. These groups are defined by algebraic equations. Orthogonal
groups are not simply connected, the corresponding simply connected
groups are the spin groups. Orthogonal groups [and spin groups] in this
table are the split orthogonal groups. The last column lists the names
of their elementary subgroups.

Φ G(Φ, R) E(Φ, R)

Al SL(l + 1, R) E(l + 1, R)

Bl Spin(2l + 1, R) Epin(2l + 1, R)

SO(2l + 1, R) EO(2l + 1, R)

Cl Sp(2l, R) Ep(2l, R)

Dl Spin(2l, R) Epin(2l, R)

SO(2l, R) EO(2l, R)

6. Minimal modules

Our constructions rely on combinatorics and geometry of representa-
tion theory.
• $1, . . . , $l are the fundamental weights;
• P++(Φ) is the cone of dominant integral weights. Every weight

ω ∈ P++(Φ) is a non-negative integral linear combination of $1, . . . , $l.
• Let us fix a dominant weight ω ∈ P++(Φ) and let V = V (ω) be the

Weyl module of the group G with the highest weight ω.
• The corresponding representation G −→ GL(V ) will be denoted by

π = π(ω).
• By Λ(π) = Λ(ω) one denotes the set of weights of the representation

π with multiplicities.
• One can choose in V an admissible base vλ, λ ∈ Λ(ω), consisting of

weight vectors (i.e. vλ is in fact a vector of weight λ, when one considers
λ as a weight in the usual sense, without multiplicities), such that the
action of the root unipotents xα(ξ), α ∈ Φ, ξ ∈ R, is descrived by the
matrices, whose entries are polynomials in ξ with integer coefficients.
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We are mostly interested in minimal modules:
• microweight representations, such that Λ(ω) = W (Φ)ω is a single

Weyl orbit;
• short root representations, such that Λ(ω) is the union of the set Φs

of short roots, and |Φs ∩ Π| copies of zero weight 0α, α ∈ Φs ∩ Π. For
simply laced systems these are precisely the adjoint representations.

In the sequel we envisage elements of the Chevalley group G(Φ, R) as
matrices g = (gλµ), λ, µ ∈ Λ, with respect to the base vλ, λ ∈ Λ. In
other words, the columns of this matrix are the coordinate columns of
the vectors gvµ = π(g)vµ, µ ∈ Λ, with respect to the base vλ, λ ∈ Λ.
The µ-th column of the matrix g is denoted by g∗µ, while the λ-th row
of this matrix is denoted by gλ∗.

7. Weight diagrams

Weight diagrams were introduced by Dynkin and Vinberg in the 1950-
ies, but never made their way to the published works of the Moscow
school. Later they appeared in combinatorial context, and in various
problems of the theory of algebraic groups and Lie algebras. Later still,
in the work of Matsumoto and Stein [20, 28], they became a working
tool in the study of exceptional groups over rings and their K-theory.
From the present viewpoint, they are a special case of the crystal graphs
of Lusztig and Kashiwara.

We show that the weight diagrams in fact encode all information
about Lie algebras, and the correspodning groups: signs of structure
constants, action of elementary generators, defining equations, multilin-
ear invariants, . . . , and a lot more.

The weight diagram of a microweight/short root/adjoint representa-
tion π is a colour graph constructed as follows:
• It vertices correspond to Λ(π);
• Two non-zero weights λ, µ ∈ Λ(π) are joined by an arrow from µ to

λ, of colour i, if λ− µ = αi;
• The zero weight 0αi is joined to ±αi, by arrows of colour i.
One can find weight digrams of all minimal and adjoint modules in

[26]. The ones relevant for our constructions of exceptional groups are
weight diagrams (E6, $1), (E7, $7), (E6, $2), (E7, $1), (E8, $8), which
can be found also in [33, 34, 37].

A weight graph of a representation is defined similarly, only that now
colours correspond to all positive roots, rather than the just funda-
mental ones. Below, the distance d(λ, µ) between tow weight λ, µ ∈
Λ(π), always refers to their distance in the weight graph. In particular,
d(λ, µ) = 1 means that λ−µ is a root. Similarly, d(λ, µ) = 2 means that
λ− µ is the sum of two roots (but λ 6= µ and λ− µ /∈ Φ).
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8. Construction of E(Φ, R)

For simplicity, let us describe the technically easier case of microweight
representations. In this case, weight diagrams describe the action of
root unipotents xα(ξ) up to sign. Namely, let α =

∑
miαi be the linear

expansion of α with respect to the fundamental roots. Then it suffices to
find all pairs (λ, µ) of weights λ, µ ∈ Λ(π), joined [in positive direction]
by a path with m1 arrows of colour α1,. . . ,ml arrows of colour αl, in any
order. Then, by the formula xα(ξ)vλ = vλ + cλαξvλ+α, action of xα(ξ)
adds vλ to or or subtracts it from vµ.

Thus, the only remaining problem is to determine the signs of struc-
ture constants cλα. Various such algorithms were known for quite some
time, see references in [36, 37].

However, as observed in [34, 37], this can be done directly from the
weight diagram. The following result is a special case of results by
Lusztig and Kashiwara on crystal bases, but in [34] and [37] I gave two
entirely elementary proofs, on based on the theory of Lie algebras, and
another one purely combinatorial, based on the results of [21].

Theorem 1. Let (V, π) be a microweight representation. Then there
exists an admissible base vλ, λ ∈ Λ(π), such that cλα = +1 for all
fundamental and negative fundamental roots α.

Now we can describe an easy purely combinatorial algortihm to cal-
culate cλα inductively. Define the canonical string of a root α ∈ Φ+

as follows. The canonical string of a fundamental root αi is i. If the
height of α is ≥ 2 and αi is the smallest fundamental root such that
α−αi ∈ Φ, then the canonical string of α is obtained from the canonical
string of α − αi by appending i on the left. For example, the canon-
ical strings of the maximal roots of E6 and E7 are 24315423456 and
13425431654234567, respectively.

Now to calculate cλα we proceed as follows. Let i1 . . . ih, be the canon-
ical string of α. We search for a path in the negative direction starting
at λ1 = µ = λ + α which has labels i1, . . . , ih in the same order. Such a
path does not necessarily exist. If there is a bond labeled i1 hanging on
λ1 in the negative direction, we set λ2 = λ1−αi1 , otherwise we say that
i1 is nasty for λ and set λ2 = λ1. We proceed like this until we get to
the end of the canonical string. Let n = n(α, λ) be the number of labels
in the canonical string of α nasty for λ.

Theorem 2. Let vλ be an admissible base satisfying conclusion of The-
orem 1. Then for all α ∈ Φ+ and all λ ∈ ÃL(π) such that λ + α ∈ Λ(π)
one has cλα = (−1)n(α,λ).

Clearly, Theorems 1 and 2 allow to completely restore the elementary
generators of the group E(Φ, R) in a microweight representation V =
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V (ω) directly from the graph of that representation. The resulting tables
for (E6, $1) and (E7, $7) are reproduced in [47] and [44], respectively.

For adjoint representations, similar explicit formulas are classically
known, and in [37] we describe, how to read the signs directly from the
weight diagrams purely combinatorially, in the same style, as above.

Apart from that, weight diagrams encode, in a very compact manner
wealth of information on the groups E(Φ, R) and G(Φ, R), including, for
instance, explicit quadratic equations defining the highest weight orbit
of these representations, see [38, 16, 17].

In fact, the extended Chevalley group G(Φ, R) can be characterised
as the largest subgroup of GL(V ) consisting entirely of matrices, whose
first columns satisfy this system of quadrics. In absolutely irreducible
representations this group coincides with the normaliser of G(Φ, R) in
GL(V ). Within G(Φ, R) is then described by another algebraic equation.

9. Construction of G(Φ, R)

At the end of the preceding section we hinted to an algebraic descrip-
tion of the normaliser of the Chevalley group G(E6, R) in GL(27, R).
However, it does not answer the question, when does an individual ma-
trix g ∈ GL(27, R) belong to G(E6, R)?

Below Θ0 denotes the set of unordered triads {λ, µ, ν}, where d(λ, µ) =
(.λ, ν) = d(µ, ν) = 2. To fix signs, we pick up the standard [ordered ] triad

(λ0, µ0, ν0) =
(
234321

2 , 012221
1 , 000001

0

)
.

Clearly, a triad is completely determined by any two of its elements. In
other words, for any two weights λ, µ at distance 2 in the weight graph,
there exists a unique weight ν = λ ◦ µ such that (λ, µ, λ ◦ µ) forms a
triad. Thus, |Θ0| = 45.

Now the the cubic form Q on V ($1) is defined as follows. For a vector
x =

∑
xλvλ, set

Q(x) =
∑

sign(w)xλxµxν ,

where the sum is taken over {λ, µ, ν} ∈ Θ0, while w ∈ W (E6) is such
that w(λ0, µ0, ν0) = (λ, µ, ν).

Further, let us introduce the following notation for the polarisation of
a partial derivative of the cubic form Q:

fλ(x, y) = F (eλ, x, y) =
∑

sign(w)xµyλ◦µ,

where F denotes the complete polarisation of Q. Here, the sum is taken
over all weights ν such that d(λ, µ) = 2, and w ∈ W (E6) is chosen in
such a way, that w(λ0, µ0, ν0) = (λ, µ, λ ◦ µ). Clearly, this sign depends
only on λ and µ themselves, sign(w) = (−1)h(λ,µ,λ◦µ).
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Now, we are all set to state the main result of [43]. Its proof relies on
the main results of Michael Aschbacher [2] for fields, on a Lie algebra
calculation, and a lot of explicit fiddling with multilinear forms and
matrix entries. But the final result is as explicit and elementary as one
could expect, and can be taken as a definition of E6.

Theorem 3. For a matrix g ∈ GL(27, R) to belong to G(E6, R)) it is
necessary and sufficient that its entries satisfy the following equations.
• Equations on a pair of adjacent columns. For all λ, µ, ν ∈ Λ

such that d(µ, ν) ≤ 1, one has

fλ(g∗µ, g∗ν) = 0.

• Equations on two pairs of non-adjacent columns. For all
λ, µ, ν, ρ, σ, τ ∈ Λ such that d(µ, ν) = d(σ, τ) = 2, one has

(−1)h(µ◦ν,µ,ν)g′µ◦ν,λfρ(g∗σ, g∗τ ) = (−1)h(σ◦τ,σ,τ)g′σ◦τ,ρfλ(g∗µ, g∗ν).

In his Thesis, as part of description of overgroups of G(F4, R) in
G(E6, R), Alexander Luzgarev characterised G(F4, R) by further explicit
equations in G(E6, R), see [14].

Recently, Alexander Luzgarev and myself [45] have made final touches
to the proof of a similar result for [simply connected] Chevalley groups
of type E7. In this case explicit equations on entries of an element
g ∈ Gsc(E7, R) ≤ GL(56, R) can be stated in terms of [some] bilinear
and trilinear forms related to the four-linear invariants of Gsc(E7, R).

The remarkable new observation by Jacob Lurie and Luzgarev [13, 15],
which allowed to completely remove all traces of the condition 2 ∈ R∗,
is that one has to simultaneously consider 4 such four-linear invariants,
and these invariants themselves are not symmetric (but the space they
generate is!). Recall, that Michael Aschbacher and Bruce Cooperstein
[3, 4] used condition 2 ∈ R∗ in a very crucial way.

We cannot reproduce these invariants here, since they consist of 19768
monomials, see the construction in [15] and [44] but it would only take
a few more pages to reproduce their partial derivatives, and state an
explicit analogue of Theorem 3, and this is done in [45, 17].

Quite recently, Alexander Luzgarev and myself obtained similar re-
sults also for adjoint representations, and thus, in particular, described
G(E8, R) by explicit equations of the same sort as in Theorem 3 above.

10. Final remarks

As described in [19], these elementary constructions can be used to
provide extremely efficient ways to calculate in exceptional groups.
• A first such working geometric approach was decomposition of

unipotents, developped jointly by Alexei Stepanov, myself and Eugene
Plotkin [33, 49, 31, 34].



EXCEPTIONAL GROUPS 9

• For computer implementations, see [36, 47, 44].
• Recently, together with Mikhail Gavrilovich, Sergei Nikolenko, and

Alexander Luzgarev, we proposed another generation of geometric meth-
ods, the proof from the book ≈ A2-proof, which uses minimum
information about the group [41, 42, 48, 46].

Together with the works by Douglas Costa and Gordon Keller [5],
we put the last dots in the proof of structure theorems for exceptional
groups, initiated by Eiichi Abe, Kazuo Suzuki, Giovanni Taddei, Leonid
Vaserstein, and others. Combined with the papers based on localisa-
tion papers, by Anthony Bak, Roozbeh Hazrat, Victor Petrov, Alexei
Stepanov, the author, and Zuhong Zhang (see [1, 6, 7, 8, 9, 10, 11, 32, 29,
30] and references there), this allowed us to establish structure theorems
over arbitrary commutative rings, for all groups of rank ≥ 2, and many
further remarkable generalisations and refinements of these theorems.
• Quite recently, building on the geometric methods, I have shown

that they are even much more flexible and powerful, and that we can
easily calculate with several columns and rows of a matrix from an excep-
tional group in a minimal representation, see, in particular, [35, 39, 40].
• Finally, let us mention a very broad ongoing project currently car-

ried through by Anastasia Stavrova, Victor Petrov, Alexander Luzgarev
and Ekaterina Kulikova, whose ultimate goal is to generalise these re-
sults and methods to all isotropic reductive groups [22, 23, 18, 12, 27].

The bibliography lists some works which treat exceptional groups in
the spirit especially close to the the present talk, and some recent works
by myself, my students, and collaborators, where one can find thorough
description of the background, constructions of exceptional groups, var-
ious approaches to the proofs of structure theorems, and many further
applications.

This work is supported by the RFFI research projects 11-01-00756
(RGPU) and 12-01-00947 (POMI), by the State Financed research task
6.38.74.2011 at the Saint Petersburg State University “Structure theory
and geometry of algebraic groups and their applications in represen-
tation theory and algebraic K-theory” and by the Presidential Grant
6.10.61.2012 for the leading scientific schools.
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