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Introduction1.1

In his 1937 paper [86], Ernst Witt introduced a group structure – and even a ring
structure – on the set of isometry classes of anisotropic quadratic forms, over an
arbitrary field k. This object is now called the Witt group W(k) of k. Since then,
Witt’s construction has been generalized from fields to rings with involution, to
schemes, and to various types of categories with duality. For the sake of efficacy,
we review these constructions in a non-chronological order. Indeed, in Sect. 1.2,
we start with the now “classical framework” in its most general form, namely over
exact categories with duality. This folklore material is a basically straightforward
generalization of Knebusch’s scheme case [41], where the exact category was the
one of vector bundles. Nevertheless, this level of generality is hard to find in the
literature, like e.g. the “classical sublagrangian reduction” of Sect. 1.2.5. In Sect. 1.3,
we specialize this classicalmaterial to theevenmoreclassical examples listedabove:
schemes, rings, fields. We include some motivations for the use of Witt groups.

This chapter focusses on the theory of Witt groups in parallel to Quillen’s K-
theory and is not intended as a survey on quadratic forms. In particular, the
immense theory of quadratic forms over fields is only alluded to in Sect. 1.3.4; see
preferably the historical surveys of Pfister [66] and Scharlau [72]. Similarly, we do
not enter the arithmetic garden of quadratic forms: lattices, codes, sphere packings
and so on. In fact, even Witt-group-like objects have proliferated to such an extent
that everything could not be included here. However, in the intermediate Sect. 1.4,
we provide a very short guide to various sources for the connections between Witt
groups and other theories.

The second part of this chapter, starting in Sect. 1.5, is dedicated to the Witt
groups of triangulated categories with duality, and to the recent developments of
this theory. In Sect. 1.6, we survey the applications of triangular Witt groups to the
above described classical framework.

Usual Witt Groups: General Theory1.2

Duality and Symmetric Spaces1.2.1

1 Definition 1 A category with duality is a triple (C, ∗, ϖ) made of a category C and
an involutive endo-functor ∗ : Cop → C with given isomorphism

ϖ : IdC
�→ ∗ ◦ ∗

and subject to the condition below. Write as usual M∗ := ∗(M) for the dual of
an object M ∈ C and similarly for morphisms. Then M �→ M∗ is a functor and
ϖM : M

∼→(M∗)∗ is a natural isomorphism such that:

(ϖM)∗ ◦ ϖM∗ = idM∗ for any object M ∈ C.
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2Definition 2 A symmetric space in (C, ∗, ϖ) – or simply in C – consists of a pair
(P, ϕ) where P is an object of C and where ϕ : P

∼→P∗ is a symmetric isomorphism,
called the symmetric form of the space (P, ϕ). The symmetry of ϕ reads ϕ∗ ◦ϖP = ϕ,
i.e. ϕ∗ = ϕ when P is identified with P∗∗ via ϖP:

P
ϕ→ P∗

ϖP ↓=̃ ||
P∗∗ →

ϕ∗ P∗

Note that the notion of “symmetry” depends on the chosen identification ϖ of
objects of C with their double dual. This allows us to treat skew-symmetric forms
as symmetric forms in (C, ∗, −ϖ). Nevertheless, when clear from the context, we
drop ϖ from the notations and identify P∗∗ with P.

3Remark 3 We shall focus here on “non-degenerate” or “unimodular” forms, that
is, we almost always assume that ϕ is an isomorphism. In good cases, one can
consider the non-unimodular forms as being unimodular in a different category
(of morphisms). See Bayer-Fluckiger–Fainsilber [16].

4Definition 4 Two symmetric spaces (P, ϕ) and (Q, ψ) are called isometric if there
exists an isometry h : (P, ϕ)

∼→(Q, ψ), that is an isomorphism h : P
∼→Q in the

category C respecting the symmetric forms, i.e. h∗ψ h = ϕ.

5Definition 5 A morphism of categories with duality(
C, ∗C , ϖC

) → (
D , ∗D , ϖD

)
consists of a pair (F, η) where F : C → D is a functor and η : F ◦ ∗C �→ ∗D ◦ F
is an isomorphism respecting ϖ, i.e. for any object M of C, the following diagram
commutes:

F(M)
F
(
ϖC

M

)
→ F(M∗∗)

ϖD
F(M)↓ ↓ηM∗

F(M)∗∗ →
(ηM )∗

F(M∗)∗ ,

where (−)∗ is (−)∗C
or (−)∗D

depending on the context, in the obvious way.

6Definition 6 An additive category with duality is a category with duality (A, ∗, ϖ)
where A is additive and where ∗ is an additive functor,i.e. (A ⊕ B)∗ = A∗ ⊕ B∗ via
the natural morphism.
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7 Remark 7 The identification ϖ necessarily respects the additivity, i.e. ϖA⊕B =
ϖA ⊕ ϖB. This is a general fact for natural transformations between additive
functors. Similarly, we need not consider ϖ in the following:

8 Definition 8 A morphism of additive categories with duality is simply a morphism
of categories with duality (F, η) in the sense of Def. 5, such that the functor F is
additive.

Example 9. In an additive category with duality (A, ∗, ϖ), one can produce
symmetric spaces (P, ϕ) as follows. Take any object M ∈ A. Put

P := M ⊕ M∗ and

ϕ :=
( 0 idM∗

ϖM 0

)
: M ⊕ M∗︸ ︷︷ ︸

=P

�→ M∗ ⊕ M∗∗︸ ︷︷ ︸
=P∗

.

Note that the symmetry of ϕ uses the assumption (ϖM)∗ = (ϖM∗)−1. This space
(P, ϕ) is called the hyperbolic space (over M) and is denoted by H(M).

10 Definition 10 Let (A, ∗, ϖ) be an additive category with duality. Let (P, ϕ) and
(Q, ψ) be symmetric spaces. We define the orthogonal sum of these spaces as being
the symmetric space (P, ϕ) ⊥ (Q, ψ) :=

(
P ⊕ Q ,

( ϕ 0
0 ψ

))
.

11 Definition 11 Let (F, η) : (C, ∗C , ϖC) → (D , ∗D , ϖD) be a morphism of categories
with duality and let (P, ϕ) be a symmetric space in C. Then

F
(
P, ϕ

)
:=

(
F(P) , ηP ◦ F(ϕ)

)
is a symmetric space in D , called the image by F of the space (P, ϕ).

It is clear that two isometric symmetric spaces in C have isometric images by F.
If we assume moreover that F is a morphism of additive categories with duality, it
is also clear that the image of the orthogonal sum is isometric to the orthogonal
sum of the images; similarly, the image of the hyperbolic space H(M) over any
M ∈ C is then isometric to H

(
F(M)

)
.

Exact Categories with Duality1.2.2

12 Remark 12 The reader is referred to the original Quillen [68] or to the minimal
Keller [40, App. A] for the definition of an exact category. The basic example of
such a category is the one of vector bundles over a scheme. We denote by� and
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by� the admissible monomorphisms and epimorphisms, respectively. Note that
being exact (unlike additive) is not an intrinsic property. By a split exact category
we mean an additive category where the admissible exact sequences are exactly
the split ones. The basic example of the latter is the split exact category of finitely
generated projective modules over a ring.

13Definition 13 An exact category with duality is an additive category with duality
(E , ∗, ϖ) in the sense of Def. 6, where the category E is exact and such that the
functor ∗ is exact. So, E is an exact category, M �→ M∗ is a contravariant endo-
functor on E , ϖM : M

∼→M∗∗ is a natural isomorphism such that (ϖM)∗ = (ϖM∗)−1

and for any admissible exact sequence A
α� B

π� C, the following (necessarily
exact) sequence is admissible:

C∗ π∗
� B∗ α∗

� A∗

Example 14. The key example of an exact category with duality is the one of vector
bundles over a scheme with the usual duality, see Sect. 1.3.1 below.

Note also that any additive category with duality can be viewed as a (split) exact
category with duality.

15Definition 15 A morphism of exact categories with duality (F, η) is a morphism of
categories with duality (Def. 5) such that F is exact, i.e. F sends admissible short
exact sequences to admissible short exact sequences. Such a functor F is necessarily
additive.

Lagrangians and Metabolic Spaces 1.2.3

16Definition 16 Let (E , ∗, ϖ) be an exact category with duality (see Def. 13). Let (P, ϖ)
be a symmetric space in E . Let α : L � P be an admissible monomorphism. The
orthogonal in (P, ϕ) of the pair (L, α) is as usual

(L, α)⊥ := ker(α∗ϕ : P → L∗) .

Explicitly, consider an admissible exact sequence L
α� P

π� M and dualize it to
get the second line below:

.
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This describes (L, α)⊥ := ker(α∗ϕ) as the pair
(

M∗ , ϕ−1π∗ : M∗ � P
)
. We shall

write L⊥ instead of M∗ when the monomorphism α is understood.

17 Definition 17 An (admissible) sublagrangian of a symmetric space (P, ϕ) is an
admissible monomorphism α : L � P such that the following conditions are
satisfied:
(a) the form ϕ vanishes on L, that is α∗ϕ α = 0 : L → L∗ ,
(b) the induced monomorphism β : L → L⊥ is admissible; in the above notations

β is the unique morphism such that (ϕ−1π∗) ◦ β = α.

18 Remark 18 For condition (b), consider the diagram coming from above:

L
α� P

π� (L⊥)∗

β↓ �↓ϕ ↓β∗

L⊥ �
π∗ P∗ �

α∗ L∗ .

(1.1)

Since α∗ ◦ (ϕ α) = 0, there exists a unique β : L → L⊥ as claimed. Observe
that β∗ makes the right square commutative by symmetry (we drop the ϖ’s).
This β is automatically a monomorphism since α is, and β∗ is automatically an
epimorphism. Condition (b) only requires them to be admissible. However, in
many cases, it is in fact automatic, namely when the exact category E can be
embedded into some abelian category ι : E ↪→ A in such a way that a morphism q
in E is an admissible epimorphism in E if and only if ι(q) is an epimorphism in A.
This can always be achieved if E is semi-saturated, i.e. if any split epimorphism is
admissible, in particular if E is idempotent complete (see [79, App. A]). So, in real
life, condition (b) is often dropped.

19 Definition 19 An (admissible) lagrangian of a symmetric space (P, ϕ) is an admis-
sible sublagrangian (L, α) such that L = L⊥, i.e. a sublagrangian as in Def. 17 such
that the morphism β : L� L⊥ is an isomorphism.

Note that (L, α) is a lagrangian of the space (P, ϕ) if and only if the following is an
admissible exact sequence – compare diagram (1.1):

L
α� P

α∗ϕ
� L∗ . (1.2)

20 Definition 20 A symmetric space (P, ϕ) is called metabolic if it possesses an ad-
missible lagrangian, i.e. if there exists an exact sequence as above.
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Example 21. Assume that the exact sequence (1.2) is split exact. Such a metabolic
symmetric space is usually called split metabolic. A symmetric space

is split metabolic if and only if it is isometric to a space of the form(
L ⊕ L∗ ,

(
0 1

ϖL ξ

))
for some object L and some symmetric morphism ξ = ξ∗. In particular, any
hyperbolic space H(L) is split metabolic with ξ = 0. If we assume further that
2 is invertible in E (see Rem. 69), then any split metabolic space is isometric to
a hyperbolic space H(L) via the automorphism h of L ⊕ L∗ defined by:(

1 0

− 1
2 ξ 1︸ ︷︷ ︸
h∗

)
·
(

0 1

ϖL ξ

)
·
(

1 − 1
2 ξ

0 1︸ ︷︷ ︸
h

)
=

(
0 1

ϖL 0

)
·

Note that a symmetric space is split metabolic if and only if it is metabolic for
the split exact structure of the additive category E . See Ex. 39 below for an exact
sequence like (1.2) which does not split (when the category E is not split) and Ex. 38
for a split-metabolic space which is not hyperbolic (when 2 is not invertible).

Example 22. Let (A, ∗, ϖ) be an additive category with duality and let (P, ϕ) be
a symmetric space. Then the sequence

P
α:=

(
1
1

)
� P ⊕ P

(−ϕ ϕ)
� P∗

is split exact and the second morphism is equal to α∗ ◦ ( ϕ 0
0 −ϕ

)
. This proves that the

symmetric space (P, ϕ)⊥(P, −ϕ) is split metabolic in (A, ∗, ϖ) and hence in any
exact category.

23Remark 23 It is easy to prove that the only symmetric space structure on the zero
object is metabolic, that any symmetric space isometric to a metabolic one is also
metabolic, that the orthogonal sum of metabolic spaces is again metabolic and that
the image (see Def. 11) of a metabolic space by a morphism of exact categories with
duality is again metabolic. For the latter, the image of a lagrangian is a lagrangian
of the image.

The Witt Group of an Exact Category with Duality 1.2.4

We only consider additive categories which are essentially small, i.e. whose class of
isomorphism classes of objects is a set.



546 Paul Balmer

24 Definition 24 Let (A, ∗, ϖ) be an additive category with duality (6). Denote by
MW(A, ∗, ϖ) the set of isometry classes of symmetric spaces in A. The orthogonal
sum gives a structure of abelian monoid on MW(A, ∗, ϖ).

25 Definition 25 Let (E , ∗, ϖ) be an exact category with duality (13). Let NW(E , ∗, ϖ)
be the subset of MW(E , ∗, ϖ) of the classes of metabolic spaces. This defines
a submonoid of MW(E , ∗, ϖ) by Rem. 23.

26 Remark 26 Let (M, +) be an abelian monoid (i.e. “a group without inverses”)
and let N be a submonoid of M (i.e. 0 ∈ N and N + N ⊂ N). Consider the
equivalence relation: for m1, m2 ∈ M, define m1 ∼ m2 if there exists n1, n2 ∈ N
such that m1 + n1 = m2 + n2. Then the set of equivalence classes M|∼ inherits
a structure of abelian monoid via [m] + [m′] := [m + m′]. It is denoted by M|N.
Assume that for any element m ∈ M there is an element m′ ∈ M such that
m + m′ ∈ N, then M|N is an abelian group with −[m] = [m′]. It is then canonically
isomorphic to the quotient of the Grothendieck group of M by the subgroup
generated by N.

27 Definition 27: (Knebusch) Let (E , ∗, ϖ) be an exact category with duality. The
Witt group of E is the quotient of symmetric spaces modulo metabolic spaces, i.e.

W(E , ∗, ϖ) :=
MW(E , ∗, ϖ)

NW(E , ∗, ϖ)
.

This is an abelian group. We denote by [P, ϕ] the class of a symmetric space (P, ϕ)
in W(E), sometimes called the Witt class of the symmetric space (P, ϕ). We have
−[P, ϕ] = [P, −ϕ] by Ex. 22 and the above Remark.

28 Definition 28 Two symmetric spaces (P, ϕ) and (Q, ψ) which define the same Witt
class, [P, ϕ] = [Q, ψ], are called Witt equivalent. This amounts to the existence
of metabolic spaces (N1, θ1) and (N2, θ2) and of an isometry (P, ϕ)⊥(N1, θ1) �
(Q, ψ)⊥(N2, θ2).

29 Remark 29 A Witt class [P, ϕ] = 0 is trivial in W(E) if and only if there exists a split
metabolic space (N, θ) with (P, ϕ)⊥(N, θ) metabolic, or equivalently, if and only
if there exists a metabolic space (N, θ) with (P, ϕ)⊥(N, θ) split metabolic. This
follows easily from the definition, by stabilizing with suitable symmetric spaces
inspired by Ex. 22. However, we will see in Ex. 40 below that a symmetric space
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(P, ϕ) with [P, ϕ] = 0 needs not be metabolic itself, even when E is a split exact
category.

30Remark 30 It is easy to check that W(−) is a covariant functor from exact categories
with duality to abelian groups, via the construction of Def. 11.

The Sublagrangian Reduction 1.2.5

We now explain why the Witt-equivalence relation (Def. 28) is of interest for
symmetric spaces. Two spaces are Witt equivalent in particular if we can obtain
one of them by “chopping off” from the other one some subspace on which the
symmetric form is trivial, i.e. by chopping off a sublagrangian.

Let (E , ∗, ϖ) be an exact category with duality. Let (P, ϕ) be a symmetric space
in E and let (L, α) be an admissible sublagrangian (Def. 17) of the space (P, ϕ).
Recall from (1.1) that we have a commutative diagram

(1.3)

where we also introduce the cokernel Q in E of the admissible monomorphism β,
displayed in the first column. The third column is the dual of the first.

Now consider the morphism s := π ϕ−1π∗ : L⊥ → (L⊥)∗. This is nothing but the
form ϕ “restricted” to the orthogonal L⊥ via the monomorphism ϕ−1π∗ : L⊥ � P
from Def. 16. Observe that the morphism s is symmetric: s∗ = s, that s β = 0 and
that β∗ s = 0. From this, we deduce easily (in two steps) the existence of a unique
morphism

ψ : Q → Q∗ such that s = µ∗ ψµ. (1.4)

One checks that ψ∗ also satisfies equation (1.4). Therefore ψ is symmetric: ψ = ψ∗.
Below, we shall get for free that ψ is an isomorphism, and hence defines a form on
Q = L⊥|L, but note that we could deduce it immediately from the Snake Lemma in
some “ambient abelian category”.
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31 Lemma 31 The following left hand square is a push-out:

(1.5)

and the diagram commutes and has admissible exact lines.

Proof One checks directly that the left-hand square satisfies the universal property
of the push-out: use that if two test-morphisms x : P → Z and y : L⊥ → Z are
such that xα = yβ then the auxiliary morphism w := y − x ϕ−1π∗ : L⊥ → Z factors
uniquely as w = wµ because of w β = 0 and hence (x w) : P ⊕Q → Z is the wanted
morphism. It follows from the axioms of an exact category that the morphism
γ :=

(
ϕ−1π∗

µ

)
: L⊥ � P ⊕ Q is an admissible monomorphism. It is a general fact

that the two monomorphisms α and γ must then have the same cokernel, and it is
easy to prove (using that µ is an epimorphism) that Coker(γ) is as in the second
line of (1.5).

Comparing that second line of (1.5) to its own dual and using symmetry of ϕ
and ψ, we get the following commutative diagram with exact lines:

.

This proves two things. First
( ϕ 0

0 −ψ
)

is an isomorphism and hence ψ is an isomor-
phism, i.e. (Q, ψ) is a symmetric space, as announced. Secondly, our monomor-
phism γ : L⊥ � P ⊕ Q is a lagrangian of the space (P, ϕ)⊥(Q, −ψ). This means
that the space (P, ϕ)⊥(Q, −ψ) is metabolic, i.e. [P, ϕ] = [Q, ψ] in the Witt group.
So we have proven the following folklore result:

32 Theorem 32 Let (E , ∗, ϖ) be an exact category with duality. Let (P, ϕ) be a sym-
metric space in E and let (L, α) be an admissible sublagrangian of the space (P, ϕ).
Consider the orthogonal L⊥ and the quotient L⊥|L. Then there is a unique form ψ
on L⊥|L which is induced by the restriction of ϕ to L⊥. Moreover, the symmetric
space (L⊥|L , ψ) is Witt equivalent to (P, ϕ).
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33Remark 33 A sort of converse holds: any two Witt equivalent symmetric spaces
can be obtained from a common symmetric space by the above sublagrangian
reduction, with respect to two different sublagrangians. This is obvious since
a metabolic space with lagrangian L reduces to zero: L⊥|L = 0.

34Remark 34 Observe that L⊥|L is a subquotient of P and hence should be thought
of as “smaller” than P. If L⊥|L still possesses an admissible sublagrangian, we can
chop it out again. And so on. If the category E is reasonable, this process ends with
a space possessing no admissible sublagrangian – this could be called (admissibly)
anisotropic. Even then, such an admissibly anisotropic symmetric space needs not
be unique up to isometry in the Witt class of the symmetric space (P, ϕ) that we
start with. See more in Rem. 56.

Usual Witt Groups:
Examples and Motivations 1.3

Still in a very anti-chronological order, we specialize the categorical definitions of
the previous section to more classical examples.

Schemes 1.3.1

The origin is Knebusch [41]. The affine case is older: see the elegant Milnor–
Husemoller [50]. A modern reference is Knus [42, Chap. VIII].

Let X be a scheme and let VBX be the category of locally free coherent OX-
modules (i.e. vector bundles). Let L be a line bundle over X. One defines a duality
∗ : VBX → VBX by E∗ := HomOX (E, OX) ⊗OX L, which is the usual duality twisted
by the line bundle L. One defines the natural identification ϖ : E

∼→E∗∗ in the
usual way. For L = OX , this E∗ is of course the usual dual and ϖ is locally given
by mapping an element e to the evaluation at e. The triple (VBX , ∗, ϖ) is an exact
category with duality in the sense of Def. 13. We can thus apply Def. 27 to get
Knebusch’s original one [41]:

35Definition 35 With the above notations, the usual Witt group of a scheme X with
values in the line bundle L is the Witt group (Def. 27):

W(X, L) := W(VBX , ∗, ϖ).

The special case L = OX is the usual usual Witt group W(X).
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36 Remark 36 Let R be a commutative ring. We define W(R) as W(Spec(R)); this
common convention of dropping the “Spec(−)” applies everywhere below. The
category VBR is simply the category of finitely generated projective R-modules,
which is a split exact category. So, here, metabolic spaces are the split-metabolic
ones. If 1

2 ∈ R, these are simply the hyperbolic spaces, yielding the maybe better
known definition of the Witt group of a commutative ring.

37 Remark 37 When L = OX , then the group W(X) is indeed a ring, with product
induced by the tensor product: (E, ϕ) · (F, ψ) = (E⊗OX F , ϕ ⊗OX ψ).

We now produce examples proving “strictness” of the trivial implications:
hyperbolic ⇒ split metabolic ⇒ metabolic ⇒ trivial in the Witt group.

Example 38. Over theringR = Z, the symmetric space (R2,
(

0 1
1 1

)
) is splitmetabolic

but not hyperbolic (the hyperbolic space H(R) = (R2, ψ) has the
property that ψ(v, v) ∈ 2R for any v ∈ R2 but the above form represents 1).

Example 39. An example of a metabolic space which is not split-metabolic cannot
exist in the affine case. Choose an exact sequence OX � P � OX ,

say on an elliptic curve X, with P indecomposable. Then ∧2P is trivial and hence
P has a structure of skew-symmetric space. It is metabolic with the (left) OX as
lagrangianbut cannotbe splitmetabolic since P itself is indecomposable asmodule.
An example of a symmetric such space can be found in Knus–Ojanguren [44, last
remark]. They produce a metabolic symmetric space, which is not split metabolic,
as can be seen on its Clifford algebra.

Example 40. (Ojanguren) Let A := R[X, Y , Z]|X2 + Y2 + Z2 − 1 and let P be the
indecomposable projective A-module of rank 2 corresponding to

the tangent space of the sphere. The rank 4 projective module E := EndA(P) is
equipped with the symmetric bilinear form ϕ : E

∼→E∗, where ϕ(f )(g) = 1
2 (q(f +

g) − q(f ) − q(g)), for any f , g ∈ E, is the form associated to the quadratic form
q(f ) := det(f ). Then [E, ϕ] = 0 in W(A) but the symmetric space (E, ϕ) is not
metabolic.

If Q is the field of fractions of A, it is easy to write ϕ ⊗A Q and to check it
is hyperbolic. Hence the class [E, ϕ] belongs to the kernel of the homomorphism
W(A) → W(Q), which is known to be injective (A is regular and dim(A) ≤ 3,
see e.g. Thm. 95 below). Hence [E, ϕ] = 0 and (E, ϕ) is stably metabolic. To see
that this symmetric space is not metabolic, assume the contrary. Here, a metabolic
space is hyperbolic (affine case and 1

2 ∈ A). So, we would have (E, ϕ) � H(M) for
some projective module M of rank 2. Using the hyperbolic form on H(M) and the
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presence of idP ∈ E with q(id) = det(id) = 1, one can find an element f ∈ E such
that q(f ) = −1, that is an endomorphism f : P → P with determinant −1. Such
an endomorphism cannot exist since it would yield a fibrewise decomposition of
P into two eigenspaces, and hence would guarantee the unlikely triviality of the
tangent space of the sphere.

(By the way, one can show that W(A) =̃ Z⊕ Z|2, see [42, § VIII.6.2].)

41Remark 41 The simplest schemes are the points X = Spec(k) for k a field, or
k a local ring, containing 1

2 . In these cases, the Witt group allows a complete
classification of quadratic forms – see Sect. 1.3.4. With this in mind, several people
got interested in the map W(A) → W(Q) for A a domain with field of fractions Q.
This is commented upon in Sect. 1.6.2.

Example 42. For elementary examples of Witt groups of affine schemes (i.e. com-
mutative rings) like for W(Z) = W(R) = Z, or, q being a power of

a prime, for W(Fq) = Z|2 when q is even, W(Fq) = Z|2[ε]/(ε2) or Z|4 when q ≡ 1
or 3 mod 4 respectively, or for W(Q) = W(Z) ⊕ ⊕

p∈P W(Fp), or for Witt groups
of other fields, or of Dedekind domains, and so on, the reader is referred to the
already mentioned [50] or to Scharlau [71].

Example 43. As a special case of Karoubi’s Thm. 53, we see that for any com-
mutative ring R containing 1

2 , for instance R = k a field of odd
characteristic, the Witt group of the affine space over R is canonically isomorphic
to the one of R:

W(An
R) = W(R) .

(See also Thm. 86 below.) The case of the projective space over a field is a celebrated
result of Arason [1] (compare Walter’s Thm. 104 below):

44Theorem 44: (Arason) Let k be a field of characteristic not 2 and let n ≥ 1. Then
W(Pn

k) = W(k).

This has been extended to Brauer–Severi varieties:

45Theorem 45: (Pumplün) Let k be a field of characteristic not 2. Let A be a central
simple k-algebra and X the associated Brauer–Severi variety.
(i) The natural morphism W(k) → W(X) is surjective.
(ii) When A is of odd index, W(k) → W(X) is injective.

See [67], where further references and partial results for twisted dualities are to be
found. Injectivity fails for algebras with even index, in general.
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Example 46. Here is an example of the possible use of Witt groups in algebraic
geometry. The problem of Lüroth, to decide whether a unirational

variety is rational, is known tohaveapositive answer for curvesover arbitraryfields
(Lüroth), for complex surfaces (Castelnuovo), and to fail ingeneral. Simple counter-
examples, established by means of Witt groups, are given in Ojanguren [57], where
an overview can be found. See also [20, Appendix].

Here is another connection between Witt groups and algebraic geometry.

47 Theorem 47: (Parimala) Let R be a regular finitely generated R- or C-algebra of
Krull dimension 3. Then the Witt group W(R) is finitely generated if and only if
the Chow group CH2(R)|2 is finite.

See [64, Thm. 3.1] where examples are given; compare also Totaro’s Thm. 99
below. This important paper of Parimala significantly contributed to the study
of connections between Witt groups and étale cohomology. Abundant work re-
sulted from this, among which the reader might want to consider Colliot-Thélène –
Parimala [21], which relates to the subject of real connected components discussed
below in Sect. 1.3.2. In this direction, see also Scheiderer [73].

We end this Section by a short guide to the literature for a selection of results in
Krull dimension 1 and 2. The reader will find additional information in Knus [42,
§ VIII.2]. For Witt groups of fields (dim = 0), see Sect. 1.3.4.

In dimension 1, we have:

Dedekinddomains: If D is a Dedekind domain with field of fractions Q, there is an
exact sequence: 0 → W(D) → W(Q)

∂→⊕p W(D|p) where the sum runs over the
non-zero primes p of D and where ∂ is the classical second residue homomorphism,
which depends on choices of local parameters. See [50, Chap. IV].

Elliptic curves: There is a series of articles by Arason, Elman and Jacob, describing
the Witt group of an elliptic curve with generators and relations. See Arason–
Elman–Jacob [2] for an overview and for further references. See also the work of
Parimala–Sujatha [65].

Real curves: For curves over R, the story stretches from the original work of
Knebusch [41, § V.4] to the most recent work of Monnier [53]. Note that the
latter gives a systematic overview including singular curves, which were already
considered in Dietel [23]. See also Rem. 49 below.

In dimension 2, we have:

Complexsurfaces: Fernández-Carmena[24,Thm. 3.4]provedamongother things
the following result: if X is a smooth complex quasi-projective surface then W(X) �
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(Z|2)1+s+q+b where s, q and b are the number of copies ofZ|2 in OX(X)∗/(OX(X)∗)2,
in 2Pic(X) and in 2Br(X) respectively.

Real surfaces: The main results are due to Sujatha [75, Thms. 3.1 and 3.2] and
look as follows. See also Sujatha - van Hamel [76] for further developments.

48Theorem 48: (Sujatha) Let X be a smooth projective and integral surface overR.
(i) Assume that X(R) �= ∅ and has s real connected components. Then

W(X) � Zs ⊕ (Z|2)m ⊕ (Z|4)n.

(ii) Assume that X(R) = ∅. Then

W(X) � (Z|2)m ⊕ (Z|4)n ⊕ (Z|8)t .

Moreover, the integers m, n and t can be described in terms of 2-torsion of the
Picard and Brauer groups of X, and of the level of R(X) in case (ii).

49Remark 49 For an algebraic variety X over R, the formulas describing W(X),
which can be found in the above literature, basically always look as follows: W(X) =
Zs⊕(2-primary torsion part), where s is the number of real connected components
of X(R) and where cohomological invariants are used to control the 2-primary
torsion part. See Mahé’s result 51.

50Remark 50 Further results on Witt groups of schemes have been obtained by
means of triangular Witt groups and are presented in Sect. 1.6. Even in low di-
mension, say up to 3, the situation is quite clarified by the corollaries of Thm. 91
below.

Motivation From Real Algebraic Geometry 1.3.2

There is a long lasting love-story between quadratic forms and real algebraic
geometry, originating in their common passion for sums of squares. For a survey,
see [18, Chap. 15]; early ideas are again in Knebusch [41, Chap. V].

A nice application of Witt groups to real geometry is the following problem,
stated by Knebusch. Let X be an algebraic variety over R. Consider the set of real
points X(R) with the real topology. Then its connected components are conjec-
tured to be in one-to-one correspondence with signatures of W(X), that are ring
homomorphisms W(X) → Z. Basically, the construction goes as follows. Pick
a closed point x in X(R); its residue fieldR(x) isR and hence localization produces
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a homomorphism W(X) → W(R(x)) = Z and one can show that this homomor-
phism only depends on the connected component Cx of X(R) where x was chosen.
In this way, one obtains the following pairing, where CC(X(R)) denotes the above
set of real connected components

λ : CC(X(R)) × W(X) → Z

Cx , ϕ �→ ϕ(x) ∈ W(R(x)) = Z .

This can be read either as a map Λ : CC(X(R)) → Homrings(W(X),Z) or as a ring
homomorphism Λ∗ : W(X) → Cont(X(R),Z), the total signature map.

51 Theorem 51: (Mahé) Let X = Spec(A) be an affine real algebraic variety. Then
the map Λ is a bijection between the set of connected components of the real
spectrum Specr(A) and the set of signatures W(A) → Z.

See [47, Cor.3.3] for the above and see Houdebine–Mahé [31] for the extension
to projective varieties. In fact, a key ingredient in the proof consists in showing
that the cokernel of the total signature Λ∗ : W(X) → Cont(X(R),Z) is a 2-primary
torsion group. Knowing this, it is interesting to try understanding the precise
exponent of this 2-primary torsion group. Such exponents are obtained in another
work of Mahé [48], and more recently by Monnier [52].

Rings with Involution, Polynomials and Laurent Rings1.3.3

52 Definition 52 A ring with involution is a pair (R, σ) consisting of an associative
ring R and an involution σ : R → R, i.e. an additive homomorphism such that
σ(r · s) = σ(s) · σ(r), σ(1) = 1 and σ2 = idR.

For a left R-module M we can define its dual M∗ = HomR(M, R), which is
naturally a right R-module via (f · r)(x) := f (x) · r for all x ∈ M, r ∈ R and f ∈ M∗.
It inherits a left R-module structure via r · f := f ·σ(r), that is (r · f )(x) = f (x) ·σ(r).
There is a natural R-homomorphism ϖM : M → M∗∗ given by (ϖM(m))(f ) :=
σ(f (m)). When P ∈ R–Proj is a finitely generated projective left R-module, this
homomorphism ϖP is an isomorphism. Hence the category (R–Proj, ∗, ϖ) is an
additive category with duality. The same holds for (R–Proj, ∗, ε · ϖ) for any central
unit ε ∈ R× such that σ(ε) · ε = 1, like for instance ε = −1. The Witt group obtained
this way is usually denoted

Wε(R) := W(R–Proj , ∗ , ε · ϖ)

and is called the Witt group of ε-hermitian bilinear forms over R.
This part of Witt group theory is of course quite important, and the reader is

referred to the very complete Knus [42] for more information. We mention here
two big K-theory like results.
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53Theorem 53: (Karoubi) Let R be a ring with involution containing 1
2 . Then

Wε(R[T]) = Wε(R), where R[T] has the obvious involution fixing T.

See Karoubi [37, Part II]. An elementary proof is given in Ojanguren–Panin [59,
Thm. 3.1], who also prove a general theorem for the Witt group of the ring of
Laurent polynomials, giving in particular:

54Theorem 54: (Ranicki) Let R be a regular ring with involution containing 1
2 . Then

the following homomorphism

Wε(R) ⊕ Wε(R) → Wε (
R[T, T−1]

)
(α, β) �→ α + β · 〈T〉

is an isomorphism, where the involution on R[T, T−1] fixes the variable T.

See Ranicki [69] where regularity is not required (neither is it in [59]) and where
suitable Nil-groups are considered. Compare Thm. 103 below.

Semi-local Rings and Fields 1.3.4

Recall that a commutative ring R is semi-local if it has only finitely many maximal
ideals. Local rings and fields are semi-local.

55Theorem 55: (Witt Cancellation) Let R be a commutative semi-local ring in
which 2 is invertible. If (P1, ϕ1), (P2, ϕ2) and (Q, ψ) are symmetric spaces such
that (P1, ϕ1)⊥(Q, ψ) is isometric to (P2, ϕ2)⊥(Q, ψ), then (P1, ϕ1) and (P2, ϕ2) are
isometric.

This was first proven for fields by Witt [86]. This result and much more infor-
mation on these cancellation questions can be found in Knus [42, Chap. VI].

56Remark 56 The above result is wrong for non-commutative semi-local rings, i.e.
rings R such that R| rad(R) is semi-simple. Keller [39] gives a very explicit counter-
example, constructed as follows: let k be a field of odd characteristic; let A0 be
the semi-localization of k[X, Y]|(X2 + Y2 − 1) at the maximal ideals ξ = (0, 1) and
η = (0, −1); let B ⊂ A0 be the subring of those f ∈ A0 such that f (ξ) = f (η);
finally define the non-commutative semi-local ring to be A =

{(
b r
s a0

) ∣∣ b ∈ B , a0 ∈
A0 , r, s ∈ rad(A0)

}
with transposition as involution. Then there are two symmetric

forms on the same projective right A-module N :=
(

1 0
0 0

)·A which are not isometric
but become isometric after adding the rank one space (A, 〈1〉). See more in [39] or
in [42, VI.5.1].

57Remark 57 Let R be a commutative semi-local ring containing 1
2 , with Spec(R)

connected (otherwise do everything component by component). Then any finitely
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generated projective R-module if free. Using the sublagrangian reduction 32 and
the above Witt cancellation, we know that any symmetric space (P, ϕ) over R can
be written up to isometry as

(P, ϕ) � (P0, ϕ0)⊥ H(Rm)

for m ∈ N and for (P0, ϕ0) without admissible sublagrangian – let us say that
the space (P0, ϕ0) is (admissibly) anisotropic – and we know that the number m
and the isometry class of (P0, ϕ0) are unique. Moreover, the spaces (P, ϕ) and
(P0, ϕ0) are Witt equivalent and by Witt cancellation again, there is exactly one
(admissibly) anisotropic space in one Witt class. This establishes the following
result, the original motivation for studying Witt groups:

58 Corollary 58 Let R be a commutative semi-local ring containing 1
2 (for instance

a field of characteristic not 2). The determination of the Witt group W(R) allows
the classification up to isometry of all quadratic forms over R.

59 Remark 59 Reading the above Corollary backwards, we avoid commenting the
huge literature on Witt groups of fields, by referring the reader to the even bigger
literature on quadratic forms at large. See in particular Lam [45], Scharlau [71] and
Serre [74]. For instance, there exist so-called structure theorems for Witt groups of
fields, due to Witt, Pfister, Scharlau and others, and revisited in Lewis [46], where
further references can also be found. In fact, several results classically known
for fields extend to (commutative) semi-local rings. See [41, Chap. II] again or
Baeza [3].

A Glimpse at Other Theories1.4

Our Chapter focusses on the internal theory of Witt groups but the reader might
be interested in knowing which are the neighbor theories, more or less directly
related to Witt groups. We give here a rapid overview with references.

Quadratic forms: When 2 is not a unit one must distinguish quadratic forms from
the symmetric forms we mainly considered. See the classical references already
given in Remark 59. The Witt group of quadratic forms can also be defined, see for
instanceMilnor–Husemoller [50,App. 1]. Seealso the recentBaeza [4] forquadratic
forms over fields of characteristic two. The reader looking for a systematic treatise
including quadratic forms and their connections with algebraic groups should
consider the book [43].

Motivic approach: Techniques from algebraic geometry, Chow groups and mo-
tives, have been used to study quadratic forms over fields, by means of the corre-
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sponding quadrics. See the work of Izhboldin, Kahn, Karpenko, Merkurjev, Rost,
Sujatha, Vishik and others, which is still in development and for which we only
give here a sample of references: [32–35, 38] among many more.

Topological Witt groups: Let M be a smooth paracompact manifold and let
R = C∞(M,R) be the ring of smooth real-valued functions on M. It is legitimate,
having Swan–Serre’s equivalence in mind, to wonder if the Witt group of such
a ring R can be interpreted in terms of the manifold M. The answer is that W(R)
is isomorphic to KO(M) the real (topological) K0 of M, that is the Grothendieck
group of isomorphism classes of real vector bundles over M. This is due to Lusztig
see [50, § V.2]. This should not be mistaken with the Witt group of real algebraic
varieties discussed above.

Cohomological invariants: We already mentioned briefly in Rem. 49 the impor-
tance of cohomological invariants in the part dedicated to real algebraic geometry.
For quadratic forms over fields, the relation between Witt groups and Galois coho-
mology groups is the essence of the famous Milnor Conjecture [49], now proven by
Voevodsky, see e.g. Orlov, Vishik and Voevodsky [60]. See also Pfister’s historical
survey [66].
For a scheme X, there is a homomorphism rk : W(X) → Cont(X,Z|2), the reduced
rank, to the continuous (hence locally constant) functions from X to Z|2, which
sends a symmetric space to its rank modulo 2 (metabolic spaces have even rank).
The fundamental ideal I(X) of W(X) is the kernel of this homomorphism.

Following [42, § VIII.1], we denote by Disc(X) the abelian group of isometry
classes of symmetric line bundles, with ⊗ as product. We denote by δ : I(X) →
Disc(X) the signed discriminant, which sends the class of an even-rank symmetric
space (E, ϕ) of rank 2m to the symmetric bundle 〈(−1)m〉 · (∧mE, ∧mϕ).

One can define further the Witt invariant, which takes values in the Brauer
group, see Knus [42, § IV.8] and which is defined by means of Clifford algebras. See
also Barge–Ojanguren [15] for the lift of the latter to K-theory. Higher invariants
are not known in this framework. One can try to define general invariants into
subquotients of K-theory groups, for arbitrary exact categories or in more general
frameworks. This was started by Szyjewski in [77] and remains “in progress” for
higher ones.

Grothendieck–Witt groups: One often considers also GW the Grothendieck–Witt
group, which is defined by the same generators as the Witt group but with less
relations; namely if a space (P, ϕ) is metabolic with lagrangian L then one sets
the relation (P, ϕ) − H(L) = 0 in the Grothendieck–Witt group, instead of the
relation (P, ϕ) = 0 ( = H(L) ) in the Witt group. There is a group homomorphism
K0 → GW, induced by the hyperbolic functor L �→ H(L) and whose cokernel is
the Witt group. We intentionally do not specify what sort of categories we define
GW(−) for, because it applies whenever the Witt group is defined. For instance,
in the triangular framework of the next two sections, it is also possible to define
Grothendieck–Witt groups, as recently done by Walter [83].
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HermitianK-theory,Karoubi’sWittgroups: The above Grothendieck -Witt group
is equal to Kh

0 , the 0-th group of Karoubi’s hermitian K-theory. For a recent ref-
erence, see Hornbostel [29], where hermitian K-theory is extended to exact cat-
egories. There are higher and lower hermitian K-theory groups Kh

n and natural
homomorphisms Hyp : Kn → Kh

n from K-theory towards hermitian K-theory,
which fit in Karoubi’s “Fundamental Theorem” long exact sequence. Karoubi’s
Witt groups are defined in a mixed way, namely as the cokernels of these homo-
morphisms Hyp : Kn → Kh

n . For regular rings, these groups coincide with the
triangular Witt groups, see more in [36] or in [30].

L-theory: We refer the reader to Williams [85] in this Handbook or to Ran-
icki [70] for the definition of the quadratic and symmetric L-theory groups of
Wall–Mischenko–Ranicki and for further references. We shortly compare them to
the triangular Witt groups to come. First, like triangular Witt groups, L-groups are
algebraic, that is, their definition does not require the above hermitian K-theory.
Secondly, unlike triangular Witt groups, L-groups also work when 2 is not assumed
invertible and this is of central importance in surgery theory. Unfortunately, it does
not seem unfair to say that the definition of these L-groups is rather involved and
requires some heavy use of complexes.
The advantage of triangular Witt theory is two-fold: first, it applies to non-split
exact categories and hence to schemes, and secondly, by its very definition, it
factors via triangulated categories, freeing us from the burden of complexes.

Note that both theories coincide over split exact categories under the assump-
tion that 2 is invertible and that even in the non-split case, the derived Witt groups
of an exact category have a formation-like presentation by generators and relations
(see Walter [83]). In the present stage of the author’s understanding, the triangular
theory of Witt groups, strictly speaking, does not exist without the “dividing by
2” assumption. Nevertheless, even when 2 is not assumed invertible, there are
good reasons to believe that a sort of “L-theory of non-necessarily-split exact cat-
egories” should exist, unfolding the higher homotopies in a Waldhausen-category
framework, using weak-equivalences, cofibrations and so on, but most probably
renouncing the elegant simplicity of the triangular language...

Triangular Witt Groups: General Theory1.5

The second half of this Chapter is dedicated to triangular Witt groups, i.e. Witt
groups of triangulated categories with duality. The style is quite direct and a reader
needing a more gentle introduction is referred to [10].

Basic Notions and Facts1.5.1

All definitions and results of this section are to be found in [6].
For the definition of a triangulated category we refer to Verdier’s original

source [81], to Weibel [84, Chap. 10], or to [6, § 1], where the reader can find
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Axiom (TR 4+), the enriched version of the Octahedron Axiom, due to Bĕılinson,
Bernstein and Deligne [17]. All known triangulated categories and all triangulated
categories considered below satisfy this enriched axiom. Note that a triangulation
is an additional structure, not intrinsic, on an additive category K , which consists
of a translation or suspension T : K → K plus a collection of distinguished
triangles satisfying some axioms. The fundamental idea is to replace admissible
exact sequences by distinguished triangles.

60Definition 60 Let δ = 1 or −1. A triangulated category with δ-duality is an additive
category with duality (K ,#, ϖ) in the sense of Def. 6, where K is moreover
triangulated, and satisfying the following conditions:
(a) The duality# is a δ-exact functor Kop → K , which means that

T ◦# =̃ # ◦ T−1

(we consider this isomorphism as an equality) and, more important, that for
any distinguished triangle A

u→ B
v→ C

w→ T(A) in K , the following triangle
is exact:

C#
v#→ B#

u#→ A#
δ·T(w#)→ T(w#) .

(b) The identification ϖ between the identity and the double dual is compatible
with the triangulation, which means ϖT(M) = T(ϖM) for all M ∈ K .

Note that all “additive notions” presented in Sect. 1.2.1 also make sense in this
framework,as for instance themonoidMW(K ,#, ϖ)of symmetric spaces (Def. 24).
We now explain how the other classical notions which depended on the exact cat-
egory structure (absent here) can be replaced.

61Definition 61 A symmetric space (P, ϕ) is called neutral (or metabolic if no confu-
sion occurs) when it admits a lagrangian, i.e. a triple (L, α, β) such that α : L → P
is a morphism, such that the following triangle is distinguished

L
α→ P

α#ϕ→ L#
β→ T(L)

and such that β : L# → T(L) is δ-symmetric, which here means:

δ · T(β#) = ϖT(L) ◦ β .

In short, the symmetric short exact sequence L � P � L∗ is replaced by the
above symmetric distinguished triangle. Note that we still have α#ϕα = 0, that
is (L, α) is a sublagrangian. (By the way, there is a triangular partial analogue of
the sublagrangian reduction, called the sublagrangian construction, which can be
found in [6, § 4] or, in a simpler case, in [5, § 3].)
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62 Definition 62 Let (K ,#, ϖ) be a triangulated category with δ-duality. As before,
its Witt group is the following quotient of abelian monoids:

W(K ,#, ϖ) :=
MW(K ,#, ϖ)

NW(K ,#, ϖ)
,

where NW(K ,#, ϖ) is the submonoid of MW(K ,#, ϖ) consisting of the classes
of neutral spaces.

63 Definition 63 Let (K ,#, ϖ) be a triangulated category with δ-duality. Let n ∈ Z
arbitrary. Then the square of the functor Tn ◦# : Kop → K is again isomorphic
to the identity, but this functor Tn# is only δn-exact, where δn := (−1)n · δ. We
define the n-th shifted duality on K to be

Tn
(
(K ,#, ϖ)

)
:=

(
K , Tn ◦# , εn · ϖ

)
,

where εn := (−1)
n(n+1)

2 · δn.

It is easy to check that Tm
(
Tn(K ,#, ϖ)

)
= Tm+n(K ,#, ϖ) for any m, n ∈ Z,

keeping in mind that the δn-exactness of Tn# is given by δn = (−1)n · δ.

64 Definition 64 The n-th shifted Witt group of (K ,#, ϖ), or simply of K , is defined
as the Witt group of Tn(K ,#, ϖ):

Wn(K ,#, ϖ) := W
(
Tn(K ,#, ϖ)

)
.

65 Proposition 65 For any n ∈ Z we have a natural isomorphism, induced by T :
K → K , between Wn(K ,#, ϖ) and Wn+2(K ,#, − ϖ). In particular, we have the
4-periodicity: Wn(K ,#, ϖ) =̃ Wn+4(K ,#, ϖ).

See [6, Prop. 2.14]. In fact, these isomorphisms are induced by equivalences of
the underlying triangulated categories with duality.

Example 66. Assume that (K ,#, ϖ) is a triangulated category with exact du-
ality (that is δ = +1). Then so is T2(K ,#, ϖ) and the latter is

isomorphic to (K ,#, −ϖ). The other two T1(K ,#, ϖ) and T3(K ,#, ϖ) are both
categories with skew-exact duality (that is δ1 = δ3 = −1), respectively isomorphic
to (K , T# , −ϖ) and (K , T# , ϖ).

67 Definition 67 A morphism of triangulated categories with duality (F, η) is a mor-
phism of categories with duality (Def. 5) such that F is an exact functor, i.e. F
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sends distinguished triangles to distinguished triangles. More precise definitions
are available in [14] or in [27]. With this notion of morphism, all the groups Wn(−)
constructed above become functorial.

The following very useful result [6, Thm. 3.5] contrasts with the classical frame-
work (compare Ex. 40):

68Theorem 68 Let K be a triangulated category with duality containing 1
2 (see 69).

Then a symmetric space (P, ϕ) which is Witt-equivalent to zero, i.e. such that
[P, ϕ] = 0 ∈ W(K), is necessarily neutral.

Agreement and Localization 1.5.2

69Definition 69 Let A be an additive category (e.g. a triangulated category). We say
that “ 1

2 ∈ A ” when the abelian groups HomA(M, N) are uniquely 2-divisible for
all objects M, N ∈ A, i.e. if A is a Z[ 1

2 ]-category.

The main result connecting usual Witt groups to the triangular Witt groups is
the following.

70Theorem 70 Let (E , ∗, ϖ) be an exact category with duality such that 1
2 ∈ E . Equip

the derived category Db(E) with the duality # derived from ∗. Then the obvious
functor E → Db(E), sending everything in degree 0, induces an isomorphism

W(E , ∗, ϖ)
�→ W

(
Db(E),#, ϖ

)
.

This is the main result of [7, Thm. 4.3], under the mild assumption that E is
semi-saturated. The general case is deduced from this in [14, after Thm. 1.4].

Example 71. The above Theorem provides us with lots of (classical) examples:
all those described in Sect. 1.3, the most important being schemes.

So, if X is a scheme “containing 1
2 ” (i.e. a scheme over Z[ 1

2 ]) and if the bounded
derived category K(X) := Db(VBX) of vector bundles over X is equipped with the
derived duality twisted by a line bundle L (e.g. L = OX), then W0

(
K(X)

)
is the

usual Witt group of Knebusch W(X, L) and similarly W2
(
K(X)

)
is the usual Witt

group of skew-symmetric forms W−(X, L). The Witt groups

Wn
(
Db(VBX)

)
are often called the n-th derived Witt groups of X. They are functorial (contravari-
ant) for any morphism of scheme. Other triangulated categories with duality can
be associated to a scheme X, see 78 below.



562 Paul Balmer

72 Remark 72 Let us stress that the definitions of Sect. 1.5.1 also make sense when 2 is
not assumed invertible. The 1

2 -assumption is used to prove results, like Thm. 70 for
instance. As already mentioned, in the case of the derived category (Db(E),#, ϖ) of
an exact category with duality (E , ∗, ϖ), Walter has a description of W1 and of W3

in terms of formations, generalizing the “split” L-theoretic definitions. See [83].

The key computational device in the triangular Witt group theory is the follow-
ing localization theorem.

73 Theorem 73 Let (K ,#, ϖ) be a triangulated category with duality such that 1
2 ∈ K .

Consider a thick subcategory J ⊂ K stable under the duality, meaning that
(J)# ⊂ J. Induce dualities from K to J and to L := K |J. We have, so to speak,
an exact sequence of triangulated categories with duality:

J�K � L.

Then, there is a 12-term periodic long exact sequence of Witt groups:

· · · → Wn−1(L)
∂→ Wn(J) → Wn(K) → Wn(L)

∂→ Wn+1(J) → · · ·

where the connecting homomorphisms ∂ can be described explicitly.

This is [6, Thm. 6.2], with the easily removable extra hypothesis that K is
“weakly cancellative” (see [14, Thm. 2.1] for how to remove it).

74 Remark 74 In applications, one often knows K and a localization K � L, like in
the case of the derived category of a regular scheme and of an open subscheme.
Then the J is defined as the kernel of this localization and the relative Witt groups
are defined to be the Witt groups of J. See Sect. 1.6.1.

Products and Cofinality1.5.3

The product structures on the groups Wn have been discussed in Gille–Nena-
shev [27]. Inspired by the situation of a triangulated category with duality and
compatible tensor product, they consider the general notion of (external) dualizing
pairing [27, Def. 1.11].

75 Theorem 75: (Gille–Nenashev) Let� : K ×L → M be a dualizing pairing. This
induces naturally a left and a right pairing

Wr(K) × Ws(L)
∗l→∗r

Wr+s(M)



Witt Groups 563

differing by signs, having the following properties:
i. When K = L = M, both products turn ⊕

n∈Z
Wn(K) into a graded ring.

ii. The multiplicative structure is compatible with localization.
iii. The multiplicative structure is compatible with 4-periodicity.

Points (i) and (ii) are in [27, Thm. 2.9 and 2.11], for (iii) see [11, App. 1].
The behaviour of Witt groups with respect to idempotent completion can be

controlled with the following result of [30], whose proof uses the technicalities
(and not only the front results) of [6]. See [30, App. I].

76Theorem 76: (Hornbostel–Schlichting) Let B be a triangulated category with δ-
duality (δ = ±1) and A a full triangulated subcategory which is cofinal (i.e. any
object b ∈ B is a direct summand of an object of A). Then there is a 12-term
periodic long exact sequence

· · · → Wn(A) → Wn(B) → Ĥn
(
Z|2Z , K0(B)|K0(A)

) → Wn+1(A) → · · ·

involving Tate cohomology groups of Z|2Z with coefficients in K0(B)|K0(A), on
which Z|2Z acts via the duality, and where K0 is the 0-th K-theory group.

Witt Groups of Schemes Revisited 1.6

Witt Cohomology Theories 1.6.1

Consider a scheme X containing 1
2 . Consider a presheaf (K ,#, ϖ) of triangulated

categories with duality on the scheme X. That is: for each Zariski-open U ↪→
X, we give a triangulated category with duality K(U) and a restriction qV ,U :
K(U) → K(V) for each inclusion V ↪→ U , which is assumed to be a localization
of triangulated categories, in a compatible way with the duality, and with the usual
presheaf condition.

For each U ⊂ X one can then consider the Witt groups of K(U), which we
denote

Wn
(
K(U)

)
.

Here is a list of such presheaves, with their presheaves of Witt groups.

Example 77. Assume that X is regular (that is here: noetherian, separated and the
local rings OX,x are regular for all x ∈ X). For each open U ⊂ X,

put K(U) := Db(VBU) the bounded derived category of vector bundles over U .
Regularity is used to insure that the restriction K(X) → K(U) is a localization.
By 71, the 0-th and 2-nd Witt groups of K(U) are the usual Witt groups of U of
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symmetric and skew-symmetric forms, respectively. The latter result remains true
without regularity of course.

Example 78. Assume that X is Gorenstein of finite Krull dimension. For each
open U ⊂ X, put K(U) := Db

Coh(QCohU ) the derived category of
bounded complexes of quasi-coherent OU-modules with coherent homology. The
duality is the derived functor of HomOU (−, OU ). See details in Gille [25, § 2.5]. The
Witt group obtained this way

W̃n(U) := Wn
(
Db

Coh(QCohU )
)

is called the n-th coherent Witt groups of U . The groups W̃n(−) are only functorial
for flat morphisms of schemes. They do not agree with derived Witt groups of 71
in general but do in the regular case, since the defining triangulated categories are
equivalent.

Example 79. Let X be a scheme containing 1
2 . One can equip the category of

perfect complexes over X with a duality, essentially as above. The
Witt group obtained this way could be called the perfect Witt groups. Nevertheless,
the presheaf of triangulated categories U �→ Dperf (U) would fit in the above
approach only when U �→ K0(U) is flasque (it is not clear if this is really much
more general than 77). Without this assumption, there will be a 2-torsion noise
involved in the localization sequence below, by means of Thm. 76.

To any such data, we can associate relative Witt groups, as follows.

80 Definition 80 Let X be a scheme and U �→ K(U) a presheaf of triangulated
categories with duality as above. Let Z ⊂ X be a closed subset. Let us define
Wn

Z , the Witt groups with supports in Z as the Witt groups of the kernel category
KZ(X) := ker

(
K(X)�K(X \ Z)

)
Wn

Z

(
K(X)

)
:= Wn

(
KZ(X)

)
.

More generally, for any U ⊂ X, one defines Wn
Z(K(U)) as being Wn

Z∩U(K(U)).

We have the following cohomological behaviour.

81 Theorem 81 With the above notations, we have a 12-term periodic long exact
sequence

· · · → Wn−1(U) → Wn
Z(X) → Wn(X) → Wn(U) → Wn+1

Z (X) → · · ·

where Wn(−) is a short for Wn(K(−)), when the triangulated categories K(−) are
clear from the context and similarly for Wn

Z (−).
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This follows readily from the Localization Theorem 73. This was considered
for derived Witt groups in [8, Thm. 1.6], and for coherent Witt groups in [25,
Thm. 2.19]. We turn below to the question of identifying the groups W∗

Z(X) with
some groups W∗(Z), but we first obtain as usual the following:

82Corollary 82 Assume that our presheaf K of triangulated categories is natural in
X and excisive with respect to a class C of morphisms of schemes, i.e. for any
morphism f : Y → X in C and for any closed subset Z ⊂ X such that f −1(Z)

∼→Z
(with reduced structures), then the induced functor

f ∗ : KZ(X) → Kf −1(Z)(Y)

is an equivalence. (This is the case for K(X) = Db(VBX) from Ex. 77 and C =
flat morphisms of regular schemes; it is also the case for K(X) = Db

Coh(QCohX)
from Ex. 78 and C= flat morphisms of Gorenstein schemes.) Then, for any such
morphism f : Y → X, any Z ⊂ X such that Z′ := f −1(Z)

∼→Z, there is a Mayer–
Vietoris long exact sequence:

· · · → Wn−1(Y \ Z′) → Wn(X) → Wn(Y) ⊕ Wn(X \ Z) → Wn(Y \ Z′) → · · ·

where Wn(−) is a short for Wn(K(−)). (So this applies to derived Witt groups over
regular schemes and to coherent Witt groups over Gorenstein schemes.)

83Remark 83 This holds in particular in the usual situation where Y := U is an open
subset, where f : U ↪→ X is the inclusion and where Z ⊂ U . In this case, putting
V := X \ Z, we have X = U ∪ V and Y \ f −1(Z) = U ∩ V , recovering in this way the
usual Mayer–Vietoris long exact sequence. The above generality is useful though,
since it applies to elementary distinguished squares in the Nisnevich topology for
instance. Observe that this result is a direct consequence of the following three
things: first, the very definition of relative Witt groups via triangulated categories;
secondly, the excision property of triangulated categories themselves; thirdly, of
course, the localization theorem.

We now turn to dévissage (in the affine case).

84Theorem 84: (Gille) Let R be a Gorenstein Z[ 1
2 ]-algebra of finite Krull dimen-

sion n and let J ⊂ R be an ideal generated by a regular sequence of length l ≤ n.
Then the closed immersion ι : Spec(R|J) → Spec(R) induces an isomorphism:

W̃i(R|J)
�→ W̃i+l

J (R)

where, of course, W̃j
J (R) := W̃j

Z(R) is the j-th coherent Witt group of R with supports
in the closed subset Z = V(J) of Spec(R) defined by J.
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This is [25, Thm. 4.1]. Since coherent and derived Witt groups agree in the
regular case, one has the obvious and important:

85 Corollary 85: (Gille) Let R be a regular Z[ 1
2 ]-algebra of finite Krull dimension

and let J ⊂ R be an ideal generated by a regular sequence of length l. Assume
moreover that R|J is itself regular. Then there is an isomorphism of derived Witt
groups:

Wi(R|J)
�→ Wi+l

J (R) .

It is natural to ask if the cohomology theory obtained by derived (and coherent)
Witt groups is homotopy invariant. The following result is a generalization of
Karoubi’s Theorem 53.

86 Theorem 86 Let X be a regular scheme containing 1
2 . Then the natural homomor-

phism of derived Witt groups Wi(X) → Wi(A1
X) is an isomorphism for all i ∈ Z.

(In particular, for i = 0, this is an isomorphism of classical Witt groups.)

This is [8, Cor. 3.3] and has then been generalized in [26] as follows (using
coherent Witt group versions of the result):

87 Theorem 87: (Gille) Let X be a regular scheme containing 1
2 and let E → X

be an affine bundle. Then the natural homomorphism Wi(X) → Wi(E) is an
isomorphism for all i ∈ Z.

Local to Global1.6.2

Recall our convention: regular means regular, noetherian and separated.
Consider an integral scheme X, for instance (the spectrum of) a domain R, and

consider its function field Q (the field of fractions of R). It is natural to study the
homomorphism

W(X) → W(Q)

e.g. because the Witt groups of fields are better understood (see Cor. 58). It is
immediate that for R = R[X, Y]|(X2 + Y2), the map Z � W(R) → W(R) is
split injective but that W(Q) is 2-torsion, since −1 is a square in Q and hence
that 2 · [P, ϕ] = [(P, ϕ)⊥(P, ϕ)] = [(P, ϕ)⊥(P, −ϕ)] = 0. So the homomorphism
W(R) → W(Q) is not injective in general.

For regular schemes of dimension up to 3, injectivity of W(X) → W(Q) holds:
see Thm 95 below. It is well-known to fail in dimension 4 already, even for affine
regular schemes. For an example of this, see Knus [42, Ex. VIII.2.5.3]. Never-
theless, injectivity remains true in the affine complex case, see Pardon [62] and
Totaro [80]. In [9] it is proven that the kernel of W(X) → W(Q) is nilpotent with
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explicit exponent, generalizing earlier results of Craven–Rosenberg–Ware [22] and
Knebusch [41].

88Theorem 88 Let X be a regular scheme containing 1
2 and of finite Krull dimension

d. Then there is an integer N, depending only on [ d4 ] such that the N-th power of
the kernel of W(X) → W(Q) is zero in W(X).

One can always take N = 2[ d
4 ] and one can take N = [ d4 ] + 1 if the conjectural

injectivity W(OX,x) ↪→ W(Q) holds for all x ∈ X. This is indeed the case when
X is defined over a field, as we discuss below. Moreover, Example [9, Cor. 5.3]
show that [ d4 ] + 1 is the best exponent in all dimensions. We have alluded to the
following conjecture of Knebusch, which is a special case of a general conjecture
of Grothendieck:

89Conjecture 89 Let R be a regular (semi-)local domain containing 1
2 and let Q be its

field of fractions. Then the natural homomorphism W(R) → W(Q) is injective.

The key result about this conjecture was obtained by Ojanguren in [56] and
says that the conjecture holds if R is essential of finite type over some ground field.
Conjecture 89 has been upgraded as follows by Pardon [61]:

90Conjecture 90: (Gersten Conjecture for Witt groups) Let R be a regular (semi-)
local ring containing 1

2 . There exists a complex

0 → W(R) →
⊕

x∈X(0)

W(κ(x)) →
⊕

x∈X(1)

W(κ(x)) → · · · →
⊕

x∈X(d)

W(κ(x)) → 0

and it is exact ; where X is Spec(R), X(p) are the primes of height p and d = dim(X).
The complex is now admitted to be the one of 91 below.

For a long time, it remained embarrassing not even to know a complex as above
(call this a Gersten–Witt complex), which one would then conjecture to be exact. In
the case of K-theory, the complex is directly obtained from the coniveau filtration.
Analogously, by means of triangular Witt groups and of the localization theorem, it
became possible to construct Gersten–Witt complexes for all regular schemes [14,
Thm. 7.2]:

91Theorem 91: (Balmer–Walter) Let X be a regular scheme containing 1
2 and of

finite Krull dimension d. Then there is a convergent (cohomological) spectral
sequence E

p,q
1 ⇒ Wp+q(X) whose first page is isomorphic to copies of a Gersten–

Witt complex for X in each line q ≡ 0 modulo 4 and whose other lines are zero.
These isomorphisms involve local choices but a canonical description of the first
page is:

E
p,q
1 := Wp+q

(
D(p) | D(p+1)

)
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where D(p) = D(p)(X) is the full subcategory of Db(VBX) of those complexes having
support of their homology of codimension ≥ p.

This was reproven and adapted to coherent Witt groups with supports in
Gille [25, Thm. 3.14]. Using Thm. 91, the following Corollaries are immediate:

92 Corollary 92 Let X be regular integral Z[ 1
2 ]-scheme of dimension 1. Let x0 be the

generic point and Q = κ(x0) be the function field of X. There is an exact sequence:

0 → W(X) → W(Q)
∂→

⊕
x∈X\{x0}

W(κ(x)) → W1(X) → 0

and we have W2(X) = W3(X) = 0.

Example 93. The above applies in particular to Dedekind domains containing 1
2 .

For instance for D := R[X, Y]|(X2 + Y2 − 1), it follows from [50,
Ex. IV.3.5] that W1(D) � Z. Here, W(D) = Z⊕ Z|2, see [42, VIII.6.1].

94 Corollary 94 Let X be a regular scheme containing 1
2 and of Krull dimension d ≤ 4.

Let Wnr(X) be the unramified Witt group of X. The homomorphism W(X) →
Wnr(X) is surjective.

95 Corollary 95 Let X be a regular integral Z[ 1
2 ]-scheme of Krull dimension 3 and of

function field Q. Then, the above Gersten–Witt complex

0 → W(X) → W(Q) →
⊕

x∈X(1)

W(κ(x)) →
⊕

x∈X(2)

W(κ(x)) →
⊕

x∈X(3)

W(κ(x)) → 0

is exact at W(X) and at W(Q) and its homology in degree i (that is, where X(i)

appears) is isomorphic to Wi(X) for i = 1, 2, 3.

See [14, § 10] for detailed results and definitions as well as for the following:

96 Corollary 96 Let X be regular scheme containing 1
2 and of dimension at most 7.

Then, with the notations of Thm. 91, there is an exact sequence:

0 → E2
4,0 → W0(X) → E2

0,0 → E2
5,0 → W1(X) → E2

1,0

↓
. 0 ← E2

3,0 ← W3(X) ← E2
7,0 ← E2

2,0 ← W2(X) ← E2
6,0

Note that E2
p,0 is the p-th homology group of the Gersten–Witt complex of X.

97 Corollary 97 The Gersten Conjecture holds in low dimension up to 4.
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This is [14, Thm. 10.4] in the local case. For semi-local, one needs [9, Cor. 3.6]
plus the local vanishing of shifted Witt groups, which holds in any dimension:

98Theorem 98: (Balmer–Preeti) Let R be a semi-local commutative ring contain-
ing 1

2 . Then Wi(R) = 0 for i �≡ 0 modulo 4.

This is [7, Thm. 5.6] for local rings and will appear in [13] in general.
Totaro [80] used the above spectral sequence 91 in combination with the Bloch–

Ogus and the Pardon spectral sequences (see [63] for the latter) to bring several
interesting computations. He provides an example of a smooth affine complex 5-
fold U such that W(U) → W(C(U)) is not injective and also gives a global complex
version of Parimala’s result 47 (note that being finitely generated over W(C) = Z|2
means being finite), see [80, Thm. 1.4]:

99Theorem 99: (Totaro) Let X be a smooth complex 3-fold. Then the Witt group
W(X) is finite if and only if the Chow group CH2(X)|2 is finite.

We return to the Gersten Conjecture 90. In [58], Ojanguren and Panin es-
tablished Purity, which is exactness of the complex at the first two places, for
regular local rings containing a field. Using the general machinery of homo-
topy invariant excisive cohomology theories, as developed in Colliot-Thélène–
Hoobler–Kahn [19], the author established the geometric case of the following
result in [8]:

100Theorem 100 The Gersten Conjecture 90 holds for semi-local regular k-algebras
over any field k of characteristic different from 2.

Like for the original K-theoretic Gersten Conjecture, the geometric case [8,
Thm. 4.3] is the crucial step. It can then be extended to regular local k-algebras
via Popescu’s Theorem, by adapting to Witt groups ideas that Panin introduced in
K-theory. This is done in [12]. Now that we have the vanishing of odd-indexed Witt
groups for semi-local rings as well, see Thm. 98, this Panin–Popescu extension also
applies to semi-local regular k-algebras, as announced in the statement. Details of
this last step have been checked in [51].

Computations 1.6.3

Here are some computations using triangular Witt groups:

101Theorem 101: (Gille) Let R beaGorensteinZ[ 1
2 ]-algebraoffiniteKrull dimension

and n ≥ 1. Consider the hyperbolic affine (2n − 1)-sphere

Σ2n−1
R := Spec

(
R [ T1, … , Tn , S1, … , Sn ]

/ (
1 −

n∑
i=1

TiSi

))
.
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Then its coherent Witt groups are W̃i(Σ2n−1
R ) = W̃i(R) ⊕ W̃i+1−n(R). In particular

for R regular, these are derived Witt groups. In particular for R = k a field, or
a regular semi-local ring, the classical Witt groups of Σ2n−1

k is

W(Σ2n−1
k ) =

W(k) ⊕ W(k) if n ≡ 1 modulo 4

W(k) if n �≡ 1 modulo 4 .

102 Theorem 102: (Balmer–Gille) Let X be a regular scheme containing 1
2 and

let n ≥ 2. Consider the usual punctured affine space Un
X ⊂ An

X defined by
Un

X =
⋃n

i=1{ Ti �= 0 }. Then its total graded Witt ring Wtot :=
⊕

i∈Z |4 Wi is:

Wtot(Un
X) � Wtot(X)[ ε ] / ε2 = Wtot(X) ⊕ Wtot(X) · ε

where ε ∈ Wn−1(Un
X) is of degree n − 1 and squares to zero: ε2 = 0.

The element ε is given quite explicitly in [11] by means of Koszul complexes.
The above hypothesis n ≥ 2 is only needed for proving ε2 = 0. For n = 1, the
schemeU1

X = X × Spec
(
Z[T, T−1]

)
is the scheme of Laurent “polynomials” over X

and one has the following generalization of Thm. 54:

103 Theorem 103 Let X be a regular scheme containing 1
2 . Consider the scheme of

Laurent polynomials X[ T, T−1] = U1
X . There is an isomorphism:

Wi(X) ⊕ Wi(X) � Wi
(
X[ T, T−1]

)
given by (α, β) �→ α + β · 〈T〉 where 〈T〉 is the rank one space with form T.

The most striking computation obtained by means of triangular Witt groups is
probably the following generalization of Arason’s Theorem 44:

104 Theorem 104: (Walter) Let X be a scheme containing 1
2 and r ≥ 1. Let Pr

X be the
projective space over X. Let m ∈ Z|2. Consider O(m) ∈ Pic(Pr

X)|2.

For r even, Wi
(
Pr

X , O(m)
)

=

Wi(X) for m even

Wi−r(X) for m odd.

For r odd, Wi
(
Pr

X , O(m)
)

=

Wi(X) ⊕ Wi−r(X) for m even

0 for m odd.

This is indeed a special case of a general projective bundle theorem, for Witt and
Grothendieck–Witt groups, which is to appear in [82]. Walter has also announced
results for (Grothendieck–)Witt groups of quadratics, which are in preparation.
The case of Grassmannians was started by Szyjewski in [78] and might also follow.



Witt Groups 571

Witt Groups andA1-Homotopy Theory 1.6.4

Using the above cohomological behaviour of Witt groups, Hornbostel [28, Cor. 4.9
and Thm. 5.7] establishes the following representability result.

105Theorem 105: (Hornbostel) Witt groups are representable both in the unstable
and the stable A1-homotopy categories of Morel and Voevodsky.

This is one ingredient in Morel’s announced proof of the following:

106Theorem 106: (Morel) Let k be a (perfect) field of characteristic not 2. Let SHk

be the stable A1-homotopy category over k. Then the graded ring⊕
n∈Z

HomSHk (S0,Gm
∧n)

is isomorphic to theMilnor–Witt K-theoryof k. Inparticular,HomSHk (S0, S0) is iso-
morphic to the Grothendieck–Witt group of k and for all n < 0, HomSHk (S0,Gm

∧n)
is isomorphic to the Witt group of k.

Of course, this result requires further explanations (which can be found in [55,
§ 6] or in [54]) but the reader should at least close this Chapter remembering that
Witt groups quite miraculously appear at the core of the stable homotopy category
SHk , disguised as “motivic stable homotopy groups of spheres”, objects which, at
first sight, do not involve any quadratic form.
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