arxiv:1204.0770v4 [math.AG] 5 Nov 2012

A cohomological classification of
vector bundles on smooth affine threefolds

Aravind Asok Jean Fasél
Department of Mathematics Mathematisches Institut
University of Southern California Ludwig Maximilians Universitat
Los Angeles, CA 90089-2532 Theresienstrasse 39, D-80333 Miinchen
asok@usc.edu jean.fasel@gmail.com
Abstract

We give a cohomological classification of vector bundles moath affine threefolds over

algebra

ically closed fields having characteristic uneqoi@. As a consequence we deduce

that cancellation holds for arbitrary rank projective mieduover the corresponding algebras.
The proofs of these results involve three main ingrediehisst, we give a description of the
first non-stableA'-homotopy sheaf of the general linear group. Second, thesgputations
can be used in concert with F. Morelis -homotopy classification of vector bundles on smooth
affine schemes and obstruction theoretic techniques (stegrfnrom a version of the Postnikov
tower in A'-homotopy theory) to reduce the classification results tooomology vanishing
statements. Third, we prove the required vanishing stat&me
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2 1 Introduction

1 Introduction

Assumek is an algebraically closed field. X is a smooth affiné-variety of dimensiors, classical
results of N. Mohan Kumar and M.P. Murthi{[[/82] prove the existence of vector bundles &n
with given Chern classes. Among other things, they provethigge is a unique rankvector bundle
with given Chern classes. Recent work of the second auttarl[] further showed that stably free
rank2 bundles over suclX are in fact free.

This paper, which is the first in a series includirg-[.2g AF12H], studies problems regarding
projective modules using the Morel-Voevodsky-homotopy theory. The main outcome of our
approach, as we hope becomes clear in this introductioheaommarized in the following slogan:
there is a framework in which intuition and results aboussieal homotopy groups of spheres and
special linear groups can be suitably “algebraized” to mrihe theory of projective modules on
smooth affine algebras. As a byproduct of our approach, weezover, refine and extend the
statements mentioned above. For example, if we wirjt€X ) for the set of isomorphism classes of
rankn vector bundles ok, we can establish the following results.

Theorem 1 (see Theorem$.10 and 6.11). SupposeX is a smooth affineg-fold over an alge-
braically closed field: having characteristic unequal tb The map assigning to a vector bundle of
rankr < 3 the sequencé, ..., ¢, ) of its Chern classes gives isomorphisms of pointed sets:

Vo(X) = Pic(X) x CH?*(X), and
V3(X) =5 Pic(X) x CH*(X) x CH3(X).

One says that cancellation holds for projective modulesankf over smooth affine algebras
of dimensiond if stably isomorphic projective modules of ramkare in fact isomorphic. The
Bass-Schanuel cancellation theorem (s&e€2 Theorem 2] or Bas64 Theorem 9.3]) shows that
cancellation always holds for projective modules of rank> d. Suslin’s famous cancellation
theorem Fus77 Theorem 1] states that cancellation holds for projectiaelates of rank- if r >
d. In [Sus79 (see the discussion after Theorem 6), Suslin asked whetrarellation holds for
projective modules of rank > di;. However, Mohan KumarlK85] constructed examples
showing that cancellation sometimes fails for projectiveduies of rankr = d — 2. Whether
cancellation holds for rank — 1 projective modules over affine algebras of dimensibis, in
general, an open problem. From the above theorem, we deaeiéallbwing result, which provides
an answer to the first non-trivial case of Suslin’s candeltatjuestion for general algebraically
closed fields.

Corollary 2 (see Corollan6.13. If X is a smooth affing-fold over an algebraically closed fiefd
having characteristic unequal &, then cancellation holds for projective modules of any ramn&r
k[ X].

If £ is a field having cohomological dimensianandX is a smooth affine variety of dimension
d over k, Suslin proved that stably free ramkbundles are freejus8). If k is furthermoreCt,
Bhatwadekar showed how to deduce cancellation for kabkindles over a smooth affiréfold
from Suslin’s result Bha03. Based on these results, it was hoped that cancellatiorafted —
1 vector bundles over smooth affirkfolds over algebraically closed fields could be reduced to
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the assertion that stably free radk— 1 bundles on such varieties are in fact free (we will say
that “cancellation can be reduced to the stably free caské)fact that stably free modules rank
d — 1 bundles over smooth affinéfolds over an algebraically closed base are free was rgcent
established by the second author in collaboration with R. && R. SwanfRS1]. Dhorajia and
Keshari showed that # is the algebraic closure of a finite field, then cancellationld be reduced

to the stably free cas@K12]. However, it is apparently much harder to reduce candefiab the
stably free case over larger fields (even whea 3), and it was therefore desirable to find a general
framework in which to approach the cancellation problem.

Henceforth, assumé is an arbitrary field. Morel and Voevodsky/[/99] introduced # (k),
the A'-homotopy category of smooth schemes oker For spacesX andY, set[X, Y], :=
Hom sy, (X,Y) (we will clarify the word space later, but, for the time beiiitgsuffices to believe
that smooth schemes aftty7L,, are both spaces). One of the main results\ofP9] is that stable
isomorphism classes of vector bundlesambitrary smoothk-schemes could be understood in terms
of A'-homotopy theory. More precisely, they introduced spaBés.,, and a spacé&G L., such
that the sef{X,Z x BGLy] is Ko(X), i.e., the functorK (restricted to smootfi-schemes) is
representable in tha'-homotopy category.

From the beginning, homotopy theoretic ideas have servad amportant source of inspiration
in the study of projective modules (see the introductionzag64). Thus, by analogy, extending
the representability result of Morel-Voevodsky, one migkipect thatl/,,(-) admits a description in
terms of maps to the classifying spaBé;L,,. Such representability statements hold true+fet 1,
i.e., the Picard group is representable®§ L,. Unfortunately, for > 2, the functor?/,(-) fails
to be Al-invariant for smooth schemes in general, i.e., the gpX) — 7, (X x Al) fails to
be a bijection in general. Indeed, already f6r= P!, the failure ofA'-homotopy invariance is
well-known. Even worse, for arbitrary smooth schemes, #lilare of homotopy invariance is, in a
certain sense, “as bad as can beDpa].

Nevertheless, classical results of Lindel establishiegass-Quillen conjecturéi82] showed
that the functor?),(-) is A'-invariant when restricted to the category of smooth affirechemes.
Using Lindel's results, together with results of Suslin arfaist on the so-called(;-analogue of
the Serre problem, Morel showellpri?] that if X is a smooth affiné-scheme (at least over a
perfect fieldk), then[X, BGL,],: = V,(X), at least forn > 3, i.e., a partial representability
result remains true. Combined with recent results of L.-Bsbt [Vios1]], the above result can be
extended to the cagse= 2 as well.

The above results can be viewed as an algebro-geometricgaoSteenrod’s homotopy clas-
sification of topological vector bundles on CW complexes=p9 §19.3]. However, Steenrod also
opened the door to enumeration of vector bundles on masifefing techniques of obstruction
theory. Notably, given results known at the time about hampwtgroups of (classifying spaces of)
special orthogonal groups, Dold and Whitney/|59] provided explicit conomological descriptions
of sets of isomorphism classes of (real, oriented) vectadlas having a given rank on complexes
of dimension< 4 in terms of characteristic classes. Our approach is topasesthese ideas into
algebraic geometry.

One of the main impediments to applying techniques of ob8tm theory, say via the Postnikov
tower, inA'-homotopy theory arises from our limited knowledgeAd-homotopy sheaves. Since
classical homotopy groups are notoriously difficult to cengdirectly from the definition, and since
A'-homotopy sheaves are defined abstractly in terms of mapscertain category, performing
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computations might seem even more hopeless. Neverthelesiyst devote some attention to
providing some new computations Af-homotopy sheaves. Before stating our results, we briefly
recall some known computations.

Morel showed thatSL,, is connected from the standpoint &f -homotopy theory. Geometri-
cally, this corresponds to the fact that, over any extenSed K /k, any two elements of L,,(K)
can be connected by the image of a morphism féofy that this can be done is a consequence of
the classical fact thaf L,,(K) is generated by elementary matrices. Morel also compuited”]

the sheafr®' (SL,):
MW
Al K2 |f n=2
m ) {Ké” if n > 2.

Roughly speaking, the sheaij*1 (SL,) encodes information about the non-trivial relations befwe
elementary matrices, and the above result can be viewed mgamation of a classical theorem
of Steinberg/Matsumoto\jat69, though it is independent of that statement. H&é! is then-th
unramified Milnor K-theory sheaf (the abelian group of sasi of this sheaf over a field extension
K /k is precisely then-th Milnor K-theory group ofK), and KMW is the Milnor-Witt K-theory
sheaf introduced in\[lor06, Mor12). Furthermore, fon > 3, the sheafrr‘l*l(SLn) is “in the stable
range”.

Remark3. As written above,nfl*l(SL2) appears not to fit the regular pattern that appears for
n > 3, i.e., it appears to be an unstable group: this is simply #ufeaof the presentation.
The low-dimensional isomorphistiL, = Sps can be used to give an alternate computation:
w%l(SLg) = Kf”, Wherngqp is the sheafification of the second symplectic K-theory fa& th
Nisnevich topology. In that case, the identificatigig’"V =~ Kf” can be viewed as a manifestation
of Suslin’s description of the second symplectic K-thedira dield [Sus871)§6]. After making the
notion of stable range precise (see TheorrAsind2.10), we we see that all the homotopy sheaves
of SL,, described so far are already “stable” groups.

On the other hand, Wendt\[en1( provides a rather general description of sections\of
homotopy sheaves 6fL,, (and, more generally, Chevalley groups) as “unstable Kargillamayor
K-theory.” While having such a description is appealings ipractically speaking intractable since
there are essentially no techniques available to study snstable K-theory groups. Our first main
computation can be viewed as providing a computationadlgtétble description of the first “hon-
estly” unstableA'-homotopy sheaf o5 L,;; moreover, while the constituents of the description
might appear involved, we will see below there are a numbeaediniques available to facilitate
their study.

Theorem 4 (See Theorem8.9 and 3.20). If k£ is an infinite perfect field having characteristic
unequal ta2, there are canonical short exact sequences of stricthinvariant sheaves

0— S} — wh (SLy) — K5P — 0

0 — Sy — w5 (SL3) — K§ — 0,

and forn > 4 there are isomorphisms?' (SL,,) = K¢. Here,K¥ is the sheafification of thith
Quillen K-theory functor for the Nisnevich topologyg” is the sheafification of the third symplectic



5 1 Introduction

K-theory group for the Nisnevich topology, and there is acdeal epimorphisnK}! /6 — S,. The
sheafS/ sits in an exact sequence of the form

I’ —S]—8S,—0,

whereI” is the unramified sheaf associated with file power of the fundamental ideal in the Witt
ring, and there is a canonical epimorphis&}! /12 — S/,.

In fact, the description oﬁQAl(SLg) provided above is derived from a description of the first
non-stable homotopy sheaf §f.,, whenn is odd. We summarize this in the following result.

Theorem 5(See Theoren3.9). If k£ is an infinite perfect field, then for every odd integet> 3
there are canonical short exact sequences of the form

0—Spi1 — w2 (SL,) — K9 — 0,
where there is an epimorphisk’ ; /n! — S,,;1.

The proofs of Theorems and5 rely on the theory of\!-fiber sequences attached to Zariski
locally trivial SL,, andSp,,-bundles developed by Morél/or12] and Wendt [Ven11 and Morel’s
unstable connectivity results; these ideas are review&kation2. Moreover, these theorems im-
mediately give identifications of homotopy sheaveé&:df,, SL,, and, with appropriate index shifts,
the associated classifying spaces: it is for this reasdntbanay pass freely between discussion of
(higher) homotopy sheaves 6fL,,, its classifying space of,,. Combining the results of Morel
and Wendt, one obtains that:' (GL,) andw4' (GLs) are extensions of a “stable” sheaf by a cer-
tain quotient oK}V, In a sense, the point of the theorems is to precisely idetiti§ quotient, and
this requires reinterpreting some classical results ofis{iSus84; this is completed in Sectio8,
though some results of Sectidrare necessary as well. The first isomorphism reflects thetfatt
SLy = Spy is just outside the stable range for symplectic K-theory tie second\!-homotopy
sheaf gets a contribution from symplectic K-theory. Theoselcisomorphism reflects the fact that

Al . . .
75 (SLs) is just outside the stable range for the general linear group

Remark6. The question of whether the surjective nﬁd{rl/n! — S,,11 IS an isomorphism is
equivalent to a question posed by Suslin #u§84. Indeed, if F' is a field, Suslin constructs a
homomorphismk %, | (F) — K. (F) whose image contains! KM, (F'). He observes that the
question of whether the image of this map is precise ,%1(F) is equivalent to a portion of
Milnor’s conjecture on quadratic forms far = 3, and speculates about equality in general. Our
choice of the lettes in the notation is intended to remind the reader of both stivigy and Suslin.

Suslin’s question is already non-trivial when= 3. In that case, using the Voevodsky-Rost
proof of the Bloch-Kato conjecture and the spectral seqaeatating motivic cohomology to al-
gebraic K-theory, one can give conditions involving matigbhomology groups that implg, is
isomorphic toK}! /6; these points are discussed in detail in Appenix

The question of whetheK%rl/n! — S,+1 IS an isomorphism is yet more difficult. Nev-
ertheless, these issues only appear over non-algebyaaatied fields. For example, # is al-
gebraically closed, sincK} (F) is divisible for arbitraryi > 1, it follows that K2 | /n!(F) is
trivial. Likewise, the Bloch-Kato conjecture implies vahing of K% , /n!(F) for fields F* of étale
cohomological dimensior n.
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We use obstruction theory, in this case using a version oPt=nikov tower inA!'-homotopy
theory, to deduce Theorefinand Corollary2; this is explained in Sectiofi. Indeed, at least over
algebraically closed fields, the classification results lmamleduced from the computations of-
homotopy sheaves above by establishing certain vanishiegréms for cohomology of certain
constituents of these sheaves. In particular, our appnoackssitates understanding cohomology of
KYW K$ K /6, K} /12, 1° andK5”. The cohomology oK$, K2/ /6 (or K2/ /12), andI® can
be studied by means of Bloch’s formulalp86] and the Gersten resolution; the relevant vanishing
theorems are established in Secttomhe cohomology oK;?f” can be studied by a careful analysis
of the Gersten-Grothendieck-Witt spectral sequence ésge,[-S09), and this constitutes the bulk
of Section4; the techniques of that section can be used to study the abggnof K} as well.

These observations are just the beginning of the story. Tomlmve draw is: additional in-
formation about unstabl&'-homotopy groups of7L,, can be directly translated into results about
vector bundles on smooth affine schemes. To keep the lengiisgiaper reasonable, we have de-
ferred the discussion of some natural questions to subeeguek; we mention just two points here.
For example, infF124, we complement Theoremby providing a description Ofr‘%;_l(SLgn);
we also discuss compatibility of our computations with catagons in classical homotopy theory
by means of realization functors. These comparison reslgltisonstrate that the factor of or
12 appearing in the computations above is an algebro-geanmatnifestation of results regarding
the classical unstable homotopy groups of spheres or $piegar groups. We also study vector
bundles on smooth affine schemes that have\thomotopy types of motivic spheres.
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2 Al'-homotopy theory of SL,, and Sp,: the stable range

In this section, we review some preliminaries fram-homotopy theory, especially some results
regarding classifying spaces i'-homotopy theory, some results from the theoryddffiber se-
guences, due to Morel and Wendt, and Morel’s classificatientem for vector bundles over smooth
affine schemes. We then recall some stabilization resulté fehomotopy sheaves of linear and
symplectic groups; these results are also due to Morel amititVé& he ultimate goal of this section
is to define the stable range, and understandithbomotopy sheaves in this range.
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Preliminaries from A'-homotopy theory

Assumek is a field. WriteSm,, for the category of schemes that are smooth, separated &ad ha
finite type overSpeck. SetSpc, := = A°Shonis(Smy,) (resp. Spe,. ) for the category of (pointed)
simplicial sheaves on the site of smooth schemes equgbcthm Nisnevich topology; objects of
this category will be referred to §gointed)k-spacesor simply agpointed) spaces k is clear from
context. Write#\'s (k) (respH.5(k)) for the (pointed) Nisnevich simplicial homotopy category
this category can be obtained as the homotopy categorygof,tiee injective local model structure
onSpe, (see, e.g.,\1V99] for details). Write# (k) (resp.H, (k)) for the associated '-homotopy
category, which is constructed as a Bousfield localizatioft{§s (k) (resp. }[S{\I}S(k)).

Given two (pointed) spacek and?’, we set.X, 9], := HomﬂNm (X, ) and [ X, Y] =
Hom (X 9); morphisms in pointed homotopy categories will be denotedlarly with base-
points epr|C|tIy written if it is not clear from context. Werite S% for the constant sheaf afvn,
associated with the simpliciatsphere, andz,, will always be pointed byl. The A'-homotopy
sheaves of a pointed spac¥, z), denotedvrg*1 (X, x) are defined as the Nisnevich sheaves asso-
ciated with the presheavés — [S¢ A U, (X, x)]41. We also writeﬂ-ﬁ; (X, x) for the Nisnevich
sheafification of the preshe&f — [Si A G, A Uy, (X, )1

A presheaf of set& on Sm;, is calledA!-invariantif for any smoothk-schemd/ the morphism
F(U) — F(U x Al) induced by pullback along the projectidh x A! — U is a bijection. A
Nisnevich sheaf of grouggis calledstronglyA !-invariantif the cohomology presheavés, (-, G)
areA'-invariant fori = 0, 1. A Nisnevich sheaf of abelian grougs is calledstrictly A'-invariant
if the conomology presheaveés; (-, A) areAl-invariant for everyi > 0.

A review of the theory of A!-fiber sequences

If K isacompact Lie group, princip& -bundles are standard examples of Serre fibrations. Associ-
ated with a Serre fibration is a corresponding long exactesszpiin homotopy groups. Constructing
A'l-fibrations is more delicate and not so many examples are knéfnG is a (smooth) algebraic
group over a field”, then in general7-torsors are only locally trivial in the étale topology. i$lob-
servation and the failure of homotopy invariance for thecton“isomorphism classes 6f-torsors”
make attaching fibrations iA'-homotopy theory taG-torsors somewhat delicate. Nevertheless,
if G is a special group in the sense of Grothendieck-Serre|fial, G-torsors are Zariski locally
trivial, G-torsors give rise t@\'-fiber sequences in a sense we now explain.

We will use the general theory of fibrations in model categmrior which we refer the reader
to [Hov99, §6.2]. Given a morphisnf : (E,z) — (B, y) of pointed spaces that is ax!-fibration
in the sense of tha!-local model structure, we writg for the A'-homotopy fiber off. Given this
setup, there is an induced action®f2! B (the simplicial loop space of a fibrant model B) on
F; this action is specified functorially, i.e., given an ardiy spaced one constructs an action of
(4, RQLB],1 on[4, F],: by means of the homotopy lifting property of fibrations. lhetwords,
given anA'-fibration, we obtain a sequence of pointed spaces and nsonghif the form

(F,20) — (E,z) -1 (B, y)

together with an action d&R2! B on F. An A'-fiber sequences then a sequence of morphisms of
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pointed space — X — 9, together with an action dR€2}9” on Z that is isomorphic in#4 (k)
to a sequence constructed fromzhfibration as above.

Morphisms of fiber sequences are sequences of morphisi#4 (i) that respect the actions
of loop spaces. The main result about fiber sequences we seillsusummarized in the following
statement, which is quoted from\Venl], Proposition 5.1, Proposition 5.2, and Theorem 5.3]; in
any situation in this paper where a sequence of spaces idesse be am\!-fiber sequence (and
for which no auxiliary reference is given), the sequencethasproperty because of the following
result.

Theorem 2.1 (Morel, Moser, Wendt) AssumeF' is a field, and(X, z) is a pointed smoott'-
scheme. IfP — X is a G-torsor for G = G,,,SL,,GL,, or Sps,, then there is am\!-fiber
sequence of the form

G—P—X.

If, moreover,Y is a pointed smooth quasi-projectivé-scheme equipped with a left action Gf
then the associated fiber space, i.e., the quotlén«tG Y, exists as a smooth scheme, and there is
an A'-fiber sequence of the form

Yy —-Px°Yy — X.

Comments on the prooAAs regards attribution: Morel proved the above result @y,, SL,, or
GL, (n > 3)in[Morl2], and Wendt extended his result to treat a rather generss dbreductive
groups; the case wheré = S, requires the results of Mosewps11]. In [Wenll, Proposition
5.1], this result is stated under the apparently additibgpbthesis that’ be infinite. However, the
assumption thaf’ is infinite is only used by way of Proposition 4.1ibfd to guarantee Nisnevich
local triviality of G-torsors that are trivial upon restriction to the base point particular, since
SL, and Sp, are special groups (in the sense of Grothendieck-Seatreprsors for such groups
are automatically Zariski locally trivial over any base.

In the second statement, quasi-projectivity Yofis only used to guarantee that the quotient
P xCY exists as a smooth scheme and that this quotient coincidesheiNisnevich sheaf quotient
of the functor represented By x Y by the functor represented I6y. O

By the general theory of fiber sequence® |99, §6.2 and Proposition 6.5.3] together with a
sheafification argument, ak'-local fiber sequence as above gives rise to an associatgiact
sequence il\'-homotopysheaveswe summarize this in the next statement; we will use thisltes
without mention in the sequel.

Proposition 2.2. If (F,z9) — (E,z) — (B,y) is an Al-fiber sequence, then for any pair of
integersi, j, there is a long exact sequence of the form

el (Boy) D wh(F o) — wh(Eax) — 7w (By) —
where all the unmarked arrows are induced by covariant fanality of homotopy sheaves, and the
connecting homomorphistis defined by the composiRQ! B — F x RQLB — F, where the

first map is given by inclusion of the base-point and the sg&enap is given by the action of the
simplicial loop space of the base on the fiber.
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Classifying spaces and vector bundles

Suppose’ is a Nisnevich sheaf of groups. Throughout the paper, we alithys assumé; is
pointed by the identityspec(k) — G, and we will suppress the base-point. We wiité&, for the
usualCech-simplicial object associated with the morphiSm- Spec(k), i.e., EG, = G*"* and
the simplicial structures are induced by projections antigiaiagonals. The shedf acts onEG,
(on the right), and the quotiedG, /G = BG, gives the usual simplicial bar constructidri'\{99,
84.1]. The spaceé3G, is a reduced simplicial sheaf (i.e., its sheaflesimplices is the constant
sheafSpec(k)), and soBG, has a canonical base-point.

Morel and Voevodsky show\[VV99, §4 Proposition 1.15] that ifX is a space, then there is a
canonical bijection

[x7 BG']S ; H&Iis(‘x’ G)7

to be clear, we are taking maps in thepointedsimplicial homotopy category here. In particular,
if G is a linear algebraic group that is special, then it follohatisomorphism classes @ftorsors
are in bijection with elements &X', BG.,];.

Write G'ry, 4N for the grassmannian parameterizinglimensional subspaces of am- N-
dimensional vector space. We 6%, o be colimy G, 4+~ for the morphisms induced by stan-
dard inclusions. The universal vector bundle@n, ,, .y induces a simplicial homotopy class of
morphismsGry, ,+n — BGL, ., and Morel and Voevodsky observe that the induced morphism
G7Tn.0o — BGL, is anAl-weak equivalence\[\/99, §4 Proposition 3.7]. Morel proves the follow-
ing fact.

Theorem 2.3(Morel, Moser [Vior12, Theorem 8.1]) If k is a perfect field, and ifX is a smooth
affine k-scheme, then there is a canonical bijection

(X, Gryoolar & Vo(X),
where?/,(X) is the set of isomorphism classes of rankector bundles orX .

In a number of situations below, only the'-homotopy type ofBG, plays a role. For that
reason, we make the following convention.

Notation 2.4. Write BG for any space that has tig -homotopy type ofBG,.

Stabilization sequences
We now apply the results on fiber sequences above té tHiber sequences
SL,—1 <~ SL, — SL,/SL,_1
and
Span—2 — Span — Span/Span—2.

Each of these fiber sequences gives rise to a long exact sexjired' -homotopy sheaves. Taken
together, the next pair of results, observed by Morel anddiyemows that the quotients that appear
are highlyA!-connected.
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Proposition 2.5. The “projection onto the first column” morphisi#iL,, — A™ \ 0 (resp. Spa, —
A?m )\ () factors through am\!-weak equivalenc&L,,/SL, 1 — A™\ 0 (resp. Spa,/Span_2 —
A2\ 0).

Proof. In the first case$ L,, acts transitively od\™ \ 0 and the stabilizer of a point can be identified
with an extension of5L,,_; by a unipotent group. Furthermore, there is a Zariski lgcalVial
morphismSL, /SL,—1 — A™\ 0 with affine space fibers. The case of the symplectic group is
similar. O

The stable range

Theorem 2.6(Morel). For any integem > 2, the space\” \ 0 is (n — 2)-A'-connected, and there
is a canonical isomorphismA” | (A”\ 0) = KMW,

Remark2.7. Explicit generators and relations for the sections of theasasKMW are given in
[Mor12, §3]. A number of basic properties of the sheaves we use willdmtegl from this source.

Corollary 2.8 (Morel, Wendt) The morphisma-fl(SLn_l) — wfl(SLn) are epimorphisms for
i < n — 2 and isomorphisms for < n — 3. The morphismsr®' (Spa,_2) — 74 (Spay) are
epimorphisms foi < 2n — 2 and isomorphisms far < 2n — 3.

Re-indexing slightly, the sheaves®' (SL,,) coincide with the stable groups®' (SL..) for
i < n — 2 and homotopy sheaves in this range of indices will be saidettnithe stable range.
Likewise, the sheaves®' (Sp,,,) coincide withm®' (Sps.) for i < 2n — 1 and homotopy sheaves
in this range of indices will again be said to be in the stablege.

Homotopy sheaves ot7 L,, in the stable range

We quickly review the computation of the homotopy sheave& bf, in the stable range, which is
due to Morel. Forming a colimit in the indexthere are spacesr., .. and BG L« together with
anA'-weak equivalenc€&'r, o« — BG Lo e. By [MV99, Theorem 3.13], the spa@x Groo oo
represents Quillen K-theory for smoathschemes.

Write KZQ for the Nisnevich sheaf associated with the presbea$ K;(U), whereK; denotes
Quillen K-theory; these sheaves are called Quillen K-thestieaves. The next result describes the
A'-homotopy sheaves &fL,, or GL,, in the stable range in terms of Quillen K-theory.

Theorem 2.9. For any integers > 0 and anyn > 1 there are canonical isomorphisms
1 1 1
7t (SLn) = 7l (GLy) = 7wl (BGLy).
If furthermore,0 < i < n — 2, there are canonical isomorphisms of the form

w1 (BGLy ) = miy (BGLocs) 2K,

Proof. There areA!-fiber sequences of the form

G,, —GL, — SL,
GL, —EGLy e — BGL, .
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SinceG,, is A'-rigid [MV99, §4 Example 2.4], we hava;*l(Gm) = 1for¢ > 1. Itis straightfor-
ward to check that the inclusid®,, — GL,, induces an isomorphis®@,, = w4 (G,,) — 74" (GL,).
Combining these two observations gives the first isomorphis

For the second isomorphism, note tha® L, , — BGL, . is aGL,-torsor (it can even be real-
ized as a colimit of7L,,-torsors over smooth schemes) and thus gives rise fo'diber sequence.
SinceEGL,, is A'-contractible, the second isomorphism is immediate.

By representability of algebraic K—theorKf2 can also be described aq‘“ (Z x BGLx).
Moreover, fori > 0, the only contribution to this sheaf comes from theconnected component of
the base-point, s¢r;-*1 (Z x BGLx,e) = w?l(BGLOO,.). The final statement can then be deduced
from Corollary2.8. O

Homotopy sheaves 05p,,, in the stable range

Replacing the general (or special) linear group by the sgaija group, there are analogous sta-
bility statements. Let/ Gr(2n,2(n + N)) be the open subscheme@fs,, 5(,,4 ) Parameterizing
2n-dimensional subspaces oké&: + N)-dimensional symplectic vector space to which the sym-
plectic form restricts non-degenerately. One can give aenfianctorial description of this space,
but let us note that, upon choice of a base-palhé;r(2n,2(n + N)) becomes isomorphic to the
homogeneous spac®s,,+n)/(Span X Span).

The morphismSpy 4 vy /Span — HGr(2n,2(n + N)) is anSpa,-torsor and, as mentioned
above, is therefore classified by a simplicial homotopy sles mapsH Gr(2n,2(n + N)) —
BSpane. Taking an appropriate colimit oveY, there is an induced morphisfGr(2n,c0) —
BSpane. Likewise, taking a colimit over, there is an induced morphistH Gr (oo, 00) —
BSpose. Panin and Walter show”[/V10 Theorem 8.2] that the spa@ x HGr (oo, 00) repre-
sents symplectic K-theory.

Theorem 2.10. For any integers > 0 and anyn > 1 there are canonical isomorphisms
1 1
7‘-? (Sp2n) = 7"'é&.;_1(B‘S'p2n,o)-

If 0 < i < 2n—1and, furthermore, the base fields assumed to have characteristic unequet to
there are canonical isomorphisms of the form

W?J;(BSPM,-) = W?jl(BSPoo,-) = Kffl.

Proof. This result is proven in a fashion formally analogous to thatS'Z,,. The first identification
comes from the\!-fiber sequence associated with the torSps (1 )/ Span — HGr(2n,2(n +
N)) together with a colimit argument. The second isomorphissulte by applying the stabilization
isomorphisms of Corollar.8. This result was stated by Wendt in a slightly different foim
[Wenll, Theorem 6.8 and Remark 6.12]. The hypothesis on the cleasistat of the base-field is
required to apply the results a? V1. O

Remark2.11 In [MV99, §4], a different geometric mode®,,,, Spa,, for the classifying spacgp.,
is constructed; this model is essentially Totaro’s modélisTmodel can also be used to construct
a space representing symplectic K-theory as explained in([5, Remark 3.8]. While the spaces
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By Span, areAl-weakly equivalent td Gr(2n, o), and both spaces are given as colimits of finite-
dimensional approximations, the spaBg,, Sp2, is not well-adapted to our needs since it is not
a colimit of homogeneous spaces. The main technical difterdoetween the finite dimensional
smooth varieties approximating Gr(2n, co) and those approximating,,, Sp2y, is that the former
do not form an admissible gadget in the sense/6f 9, 54 Definition 2.1]. Furthermore, the proof
that the spacef x HGr (oo, 00) represent symplectic K-theory is very similar to that gifen
algebraic K-theory inlf1\V99, §4].

3 A'-homotopy theory of SL,, and Sp,,: some non-stable results

The main goal of this section is to describe the first nonlstalb-homotopy sheaf foSL,, (resp.
GL,) for n > 2. This result is broken into two largely independent partse Tase: > 3 is treated
first. In this range, the groups in question aneta-stablen the following loose sense: at least
if n is odd, the sheak™' | (SL,) takes a form that depends in a uniform fashionmorThe first
non-stableA'-homotopy sheaf o6 L, was, as explained in the introduction, computed by Morel
(see Theorem2.6 and use the fact thafL, — A2\ 0 is anA'-weak equivalence). The next non-
stableA'-homotopy sheaf af L, is treated, extending an idea of Wendtgn 11, Proposition 6.11],
by means of the exceptional isomorphisii, = Sp, and stabilization results for symplectic K-
theory. Some of the results are proven in greater genethhty necessary since we expect they will
be useful in understandinagﬁl_l(SLn) whenn > 2 is an even integer.

A short exact sequence describing-ﬁl_l(SLn), n>2
The long exact sequence A -homotopy sheaves associated with #efiber sequence
SLy—1 — SL, — SL,,/SL,,—1
gives rise to an exact sequence of the form
7t (SL,) — w2 (SLn/SLn_1) — 72 J(SLy_1) — wh,(SLy) — 0.

In casen = 3, we furthermore observe that%l(SLg) and w%l(SLg) are known to be sheaves
of abelian groups and are therefore strictlj~invariant [Vior12, Corollary 6.2], i.e., the sequence
above is always a sequence of stricily-invariant sheaves of groups.

Theorem?2.6 and Theoren?.9 (the groupSnﬁl_2(SLn) are in the stable range) allow us to
rewrite this sequence as

ht (SLy) 5 KW U ekt (S, ) — KD, 0.

n—1

Our goal is to understand the imagerdf. | (SL,) — KMW.

The connecting homomorphiséy_; gives a homomorphismﬁl_l(SLn/SLn_l) — wﬁl_2(SLn_1).
The composite homomorphisg_206,,—1 therefore gives a malMWV — KMW. SinceSL,,/SL,_1
is A'-(n—2)-connected by Propositigh5and Theoren.6, if A is any strictlyA !-invariant sheaf,
[ADO9, Theorem 3.30] gives a canonical bijection

HY (SLn/SLn-1,A) =5 Hom i (w421 (SLa/SLy-1), A).
k
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Applying these observations with = KMW, the morphismg, _» o 6,1 is determined by an
element of A% " (SL,,/SLy—1, KMW).

The connecting homomorphism in the long exact sequencet#@neol (up to simplicial ho-
motopy) by applying simplicial loops to the classifying mpbismSL,,/SL,,—; — BSL,_1 . Of
SL,_i-torsor SL,, — SL,/SL,_1. The composite morphisfSL,/SL, 1 — SL, 1 —
SLy,-1/SL,_ comes from the action o$L,,_; on SL,_1/SL,_o. There is an induced mor-
phism fromSL,,_1/SL,_ to the A'-homotopy fiber of the morphisSL,_2e — BSL,_1.
and this morphism is ah'-weak equivalence. As a consequence, the cohomology @éessrdned
by the homomorphism,,_s 04,1 is precisely the primary obstruction to lifting the clagsiy map
of theSL,,_,-torsorSL,, — SL,,/SL,_, toamapSL,/SL,_1 — BSL,_2,.. By definition, the
resulting class is therefore precisely Morel's Euler clafsthe S L,,_;-torsor in question.

The A'-weak equivalencéL,,/SL, 1 ~ A™\ 0 also gives an identificatio§L,,/SL,_1 =
»"~1G,,\". By means of the suspension isomorphism, the grii{p,' (SL,/SL,-1, KMY)
is then canonically isomorphic Y, (G,,"", KMY). The group on the right hand side can be
described in terms of contractions (see Proposifigh, and one obtains a canonical identification
HE NSL,/SLy—1, KMW) =2 KMW (k). By [Mor12, Lemma 3.10]KMWV (k) = W (k), and every
element of this group is of the forms for s € GW (k). The next lemma gives a precise description
of this Euler class.

Lemma 3.1. The Euler class of th&'L,,_;-torsor SL,, — SL,,/SL,_1, which is an element of
HE HSL,/SL,—1, KMW), is the class of) if n is odd and if n is even.

Proof. Let Ag,—1 := k[z1, .., Zn, Y1, - -, Yn] /O iy — 1) andQa,—1 = Spec(Aa,—1). Project-
ing a matrix to its first row and the first column of its inverselgls aS L,,_1-equivariant morphism
T @ SL, — Qo,-1, WhereSL,_ acts trivially on the right-hand term; abusing notatioristh
morphism induces an isomorphism : SL,,/SL,_1 — Q2,—1 for any integem > 2.

The vector bundle given by the morphis&’,,/SL,,—1 — BSL,_1,. can be described as
follows. LetV,, be the standard-dimensional representation §f,,. As usual, ifV is ak-vector
space, we writé\ (V') := Spec SymV", whereVV is thek-vector space dual. We viety(V;,) as an
SL,-scheme with the induced right action. LetSL,,_; — SL, be the closed immersion group

homomorphism given by
. 1 0
i(G) = (0 G> .

View SL,, as anSL,,_1-scheme by means of left multiplication by-). The quotient may'L,, —
SL,/SL,—11sanSL,_,-bundle and we can form the associated geometric vectordsund

Ep = A(V_q) x5En=1 L.,

i.e., the quotient of\(V,,_,) x SL, by the diagonalSL,,_;-action, where we viewsL,_; as a
subgroup ofSL,,.

Claim. Under the identificationr,, : SL,,/SL,—1 — Q2n—1, E,, IS the total space associated with
the stably free modul®,, of rankn — 1 defined by the following (split) exact sequence:

(xlv“'vxn)

0

Aoy (Agp—1)" P, 0.
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Viewing V,, as anSL,,_i-module by restriction vid, it splits as a direct surh & V,,_1. The
short exact sequence 8f.,,_1-modules

0—k—V,—V,_1—0
gives rise, by faithfully flat descent, to an exact sequerigeometric vector bundles
0 — Al x5t 81, — A(V;,) x5 SL,, — B, — 0.

SinceSL, _ acts trivially onA', the first vector bundle is simply the trivial bundié x SL,,/SL,, 1.
Since the morphism on the right hand side is split, it folldhet this is a split short exact sequence.
Next, define a morphism,, : A(V,,) x SL, — A" X Qap—1 by ¢, (v, M) = (vM, 7, (M)).
This morphism isS'L,,_;-equivariant for the action &§ L,,_; on A(V},) x SL,, specified above and
for the trivial SL,,_1-action onA™ x ()s,_1 and, once again abusing notation slightly, therefore
descends to a morphisa, : A(V;,) x5n=1 SL, — A" x Qay,_1.

Combining these facts, we get a commutative diagram whodealemorphisms are isomor-
phisms

0— Al x5In-1 ST, L A(V,) x5Tn-1 SL, L B, —0

o]

A" x Q2n—1 —Fk, =0

0—= Al X Qo251

I
It suffices to check that' is the announced morphism to prove the claim.

We now proceed to the computation of the Euler clasg,gf If n is even, then the Euler class
of E, is trivial since a stably free module given by a unimodulaw af even length always has a
free factor of rank one and thus a trivial Euler class. In gageodd, the Euler class is computed in
[Fas1Z Proposition 3.2]. O

Lemma 3.2. For n > 3 and odd, there is a short exact sequence of the form
0 — Sps1 — w2 (SL,) — K9 — 0,
whereS,, . is a quotient oK ;.

Proof. We combine the long exact sequences lshomotopy sheaves associated with the fibrations
SL,-1— SL, - SL,/SL,—,andSL,,_o — SL,—1 — SL,_1/SL,—_» to get a diagram of the
form
KMW
n

5n71

q’!L*
7"§1—2(5Ln—2) - ”ﬁl—z(SLn—l) : K%—V\{ ”ﬁl—s(SLn—ﬂ - Kg—2 —0
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Now, note thatoker(-n : KMW — KMW) = KM | Under the hypotheses, the composite map
Gn—20 61 : KMW — KMW is multiplication byn by Lemmas3.1, a diagram chase shows that

there is an isomorphisrvker(K? | — KM ) — coker(g,_2). O

Homological stabilization for GL,, and the sheafS,, |

By Lemma3.2, the sheafS,,;; is a quotient ofK,ﬁVﬂrl by means of a homomorphisiﬁﬂi%rl —

K%H- As the proof of the aforementioned result makes clear, do&of ongJrl that appears
comes from the stabilization homomorphis$.,, — SL, 1. We now attempt to obtain a more
concrete description of the image of this homomorphism. aBse the shed,, | is strictly A'-
invariant, which follows from the fact that the category tfcly A'-invariant sheaves over a field
F' is abelian [Vor05, §6], to describeS,, 1, it suffices to describe its sections over any finitely
generated separable extensibfF. The goal, which is realized in Lemna8 after a number of
preliminaries, is to connect the sections of the morpﬁéﬁ]rl — K2 | overL to some results of
Suslin, which we recall below.

The sections of the simplicial classifying spaBé:L,, , over any fieldL give a simplicial set
whose homology is precisely the standard bar complex ussahipute group homology. The usual
homomorphisnGL,,_; — GL, induces a morphisl8GL,,_; « — BGL, . In this context, we
can state the result that we will refer to as Suslin’s stadiion theorem in the sequel.

Theorem 3.3([Sus84 Theorem 3.4]) If L is an infinite field, the stabilization homomorphism
Smp : Hpn(BGLyp—1,6(L),Z) — H,,(BGLy, o(L),Z)
is an isomorphism ifn < n — 1, ands,, ,, has cokerneKy(L).

Using the above stabilization result, Suslin constructedraomorphism from Quillen K-theory
to Milnor K-theory [Sus84 §4]. Consider the sequence

(3.1)
KE(L) := 1,(BGLooo(L)") — H,(BGLwo(L)",7Z)

5 H,(BGLooe(L),Z) — H,(BGL,«(L),Z) — K)(L),

where the first homomorphism is the Hurewicz homomorphisie second homomorphism comes
from the definition of the plus construction, the third honoophism is the inverse to the composites
of the maps coming from the stabilization theorem, and thetficthomomorphism is the projection
morphism coming from Theorem 3.

First, let us reinterpret the short exact sequence from Lath@ We observed before that the
canonical morphisnGr, .. — BGL, . is anA'-weak equivalence, so by means of the isomor-
phisms of Theoren?.9, for i > 2 the homotopy sheavesg*l(SLn) can be replaced by homo-
topy sheaves ofrﬁl(Grnm). Furthermore, the inclusiofL, — GL,, induces an isomorphism
SLp/SLy—1 = GL,/GLy_;.

If we identify Gr,, - as a quotient of ar\!-contractible spac#, ~, by a free action of+L,,
then we get ar\!-fiber sequence of the fornef( [Mor12, Proposition 8.11))

GLy/GLy—1 — Voo X" GL,/GLy— 1 — Grp oo
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The space in the middle i&!-weakly equivalent ta>r,,_1 ., by a standard argument. The con-
necting homomorphism in the long exact sequence of homathpgves attached to this -fiber
sequence fits into the exact sequence:

(3.2 (Grn loo) — 71' (Grnoo) — 71' (GLn/GLn 1)-

and one checks that the first homomorphism in the above segusrprecisely the stabilization
homomorphismr®' | (SL,, 1) — 74" (SL,) fori > 2.

For any spacet, recall that the functofing, 1()() is obtained as the diagonal of the bisim-
plicial space(i,j) — Hom(N ;). Where A’ is the algebraig-simplex. There is a canonical
morphismX — Sing®' (X), which is anA'-weak equivalence, anfling®' (-) commutes with
formation of finite limits [M\V99, p. 87 anc2 Corollary 3.8]. Furthermore, the augmentation map
Speck — A® induces a morphisming®' (X) — X.

The spacesSing® (GL,), Sing® (GL,/GL, 1), and Sing® (Gry.) all have a version
of the so-called affine BG property (seédrl12, Appendix A.1] for the relevant definitions, and
[Mor12, Theorems 8.1, 8.9, and 9.21] for the results). The mainemrence of this that we use is
that if L is a finitely generated separable extensiott'pthere are canonical isomorphisms

T8 (Grnso) (L) 2 mi(Sing® (Gro o) (L)),
2 (GL,)(L) = m;(Sing® (GL,)(L)), and
2 (GL,/GLy_1)(L) = m(Sing® (GLy/GLn-1)(L)),

where ther; on the right hand side denotes the ordinatit homotopy group of a simplicial set.

Remarl3.4. To be more precise, Morel proved tmgfl (GLy,) andSz‘ng*Al (GL,/GL,—1) have
the affine BG property in the Nisnevich topology fer> 3. Moser [Vios1]] extended this to treat
the casen = 2 as well. The spac@z‘ngﬁl(Grn,oo) has the affine BG property in the Zariski
topology, and the statement we use is then a consequenb&of], Theorem A.19].

TheA'-weak equivalencé/'L,,/GL,_1 — A™\0 of Theoren2.6says that; L,,/GL,,_1 is A'-
(n—2)-connected, and thus the simplicial $ét.g” (GL,,/GL,_1)(F) is (n—2)-connected for an
arbitrary fieldF'. Suslin’'s homomorphism is defined in terms of a different elad the classifying
space of+L,,, and to this end, we will replac@r,, », by a different model. We saw above that the
canonical morphisn@r, o, — BGL, . is anAl-weak equivalence. We now establish a slightly
stronger version of this fact.

Lemma 3.5. The morphisnsing®’ (Gr,..) — Sing®' (BGL, ) induced by the classifying mor-
phismGr,, . — BGL, . is a simplicial weak equivalence. In particulafﬁ;ingfl(BGLn,) is
A'l-local.

Proof. The spaceGr, . is a quotient oﬂ/mo by GL,, whereVmo is a colimit of open sub-
schemes of affine spaces. Consider Gezh simplicial objecC( ) obtained from the morphism
Voo = Grp . By [MVO9, §2 Lemma 2.14], the morphlsr@(p) — Gy o0 IS @ simplicial
weak equivalence. It follows that the mSp'mg*Al (C‘(p)) — Sz‘ngﬁl(Grnm) is a simplicial weak
equivalence (use\[\V99, §2 Lemma 1.8]). Furthermore, theth term of this simplicial scheme is
then + 1-fold fiber product ofV/;, ., with itself overGr,, . In this case, the-th term is isomorphic
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t0 V00 x GLX". In particular,C(p) can be described as the quotigt, .. x EGL,..)/G Ly,
whereEGL, is theCech simplicial scheme associated with the projectidn, — Spec k. Projec-
tion onto the facto=G L, then defines a morphisrfi(p) — BGL, , and therefore also a morphism
Sing® (C(p)) — Singt’ (BGLy,s)

By constructionSz‘ngﬁl(-) commutes with formation of finite products. The proof &f\[99,
84 Proposition 2.3] shows that the structure morphSmgfl(Vnm) — Speck is a simplicial

weak equivalence. It follows that the induced morphisimg?' (C(p)) — Sz’ngfl(BGLm.) is a
termwise weak-equivalence of simplicial sheaves and thierea simplicial weak equivalence by
[MV99, §2 Corollary 1.21]. O

As a consequence of this lemma, we haye (Gry o) (L) = m;(Sing®' (BGL,,.)(L)) for any
n and any integef > 0. Taking sections of the exact sequence in Equaii@over L thus yields
an exact sequence of the form
(3.3)
7i(Sing™ (BGLy_1.4)(L)) — mi(Sing™ (BGLy.e)(L)) — mi_1(Sing® (GLyp/GLy_1)(L)).

for any integer > 0.

Because\™\0 is A'-(n—2)-connected, and becauSeéng®' (GL,, /GL,_1) is Al-local andA -
weakly equivalent ta\™\ 0, it follows thatSing®' (GL,, /GL,_,) is simplicially (n—2)-connected.
As a consequence, taking sections over any figlthe Hurewicz theorem (for simplicial sets) gives
a canonical isomorphism

B4) w1 (Sing® (GL,/GLy1)(L)) % Hyo1(Sing® (GLy/GLy—1)(L), Z).

The Hurewicz homomorphism is functorial and therefore gi@e&ommutative square of the form

7i(Sing® (BGLy_1.6)(L)) —— mi(Sing® (BGL, ) (L))
H;i(Sing® (BGLy_1.4)(L), Z) — H;(Sing® (BGLy.e)(L), 7).
These two homomorphisms are compatible by the followingltes

Lemma 3.6. If n > 3, there is a commutative diagram of the form

Tn(Sing® (BGLy_1.4)(L)) —— m,(Sing® (BGL, +) (L)) — KMWV(L)

| | |

Hn(Sing*Al (BGLn—l,-)(L)> 7) — Hn(Sing*Al (BGLm.)(L), Z7) — KQAW(L%

where all the vertical morphisms are Hurewicz homomorpkismd the farthest right arrow is the
isomorphism ofEquation3.4.

Proof. If n > 3, becauseSing®' (GL,/GL,_1)(L) is (n — 2)-connected, the first non-trivial
differential for the homological Serre spectral sequetitef the fibrationSz‘ng*Al(BGLn_l,.) —
Singfl (BGL,,) fits into the short exact sequence of the stated form. O
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Lemma 3.7. The augmentatioSingﬁl (X) — X induces a commutative diagram of the form

H,(Sing® (BGLy_1.4)(L),7) —= H,(Sing® (BGLy,.)(L), Z) —= KMW(L)

| | |

Hy(BGLy_1.4(L),Z) Hy(BGLy,(L),Z) KM(L),

where the two vertical arrows on the left are split surjengo

Proof. By Suslin’s stabilization theorerfi.3, the homotopy fiber of the mapGL, 1 .(L) —
BGL, (L) is homologically(n—2)-connected. In particular, the same argument as above thgng
homological Serre spectral sequence together with the ptré of Suslin’s theorem identifies the
cokernel of the lower left horizontal map witkiM (L). That the two vertical arrows on the left are
split surjections follows from the splitting of the augmatiin given by the natural transformation
Id — Sing®' (). O

Finally, we can prove the main result we need.

Lemma 3.8. For any finitely generated separable extensibpF’, the morphisme_l(L) —
KM | (L) from Lemma3.2factors through Suslin’s stabilization morphisSri.

Proof. Consider the following commutative diagram

T (Sing® (BGLy.o)(L)) —— 7 (Sing® (BGLaso s )(L))

| |

Hy(Sing® (BGLy.o)(L), Z) — H,(Sing® (BGLsoe)(L), Z)

| |

H,(BGLy (L), Z) H,(BGLx (L), Z),

where the vertical arrows emanating from the top row are Wiciehomomorphisms, and the ver-
tical arrows incident on the bottom row are split surjecsioriFurthermore, the lowest horizontal
arrow is an isomorphism by Suslin’s stabilization theorem.

As we observed at the beginning of this section, the homohilmpwﬁl(BGan.) — K¥
factors through the map2' (BGL,..) — 72" (BG L4 . ). The bottom horizontal arrow is the iso-
morphism from Suslin’s stabilization theorem. Finallye tlirst sequence of composites in Suslin’s
homomorphisn8.1is precisely the composite of the two vertical arrows on tgktrhand side with
the inverse to the isomorphism given by the bottom horidartaw.

Now, combining Lemma8.6 and3.7 we get a commutative diagram with three rows. We start
with an element ok MW (L) lying in the image of the map from,,(Sing®' (BGL, .)(L)). By the
discussion of the two previous paragraphs, that eIememrEamroughKfif(L). Since the image
factors through td<M (L), commutativity of the diagram described in the first linelogtparagraph
shows that the morphism in question factors thro#f{ BGL,, ., Z). Then, by commutativity of
the diagram two paragraphs above and the definition of Ssislomomorphism, it follows that our
morphism factors through Equati@nl O
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By Theoren®.9, there are canonical isomorphism$' (BGL,, o) = w2 (BSL,e) = 74" [ (SLy).
Using this fact, the next result implies Theoré&rand takingn = 3 the second exact sequence of
Theoremy.

Theorem 3.9. If F'is an infinite perfect field, then for any odd integei> 3, there is a short exact
sequence of the form )
0 — S, 1 — 7 (BGL,) — K% — 0,

together with an epimorphis#?. ; /n! — S,,41.

Proof. The assumption that the base fiélds perfect stems from our implicit use of Morel’s result
that a stronglyA'-invariant sheaf of abelian groups is strictly-invariant.

By Lemma3.2 there is a short exact sequence wh8yg ; is the cokernel of a morphism
KSH — Kﬁ/{H. By Lemma3.8, the morphism of the previous homomorphism factors thrahgh

Suslin’s homomorphisrﬁ(fﬂ — K%A of Equation3.1 By [Sus84 Corollary 4.4], the image of
this homomorphism on sections over fields contai}K,%l(F), which gives the epimorphism.[J

Remark3.10 Suslin’s stabilization theorer®.3 and [Sus84 Corollary 4.4] were extended to local
rings with infinite residue field inS89, and independently, to all rings of stable rani [Gui8d].
While this is unnecessary for our analysis, these resulpdyintat maps on stalks induced by the
homomorphisrrKgJr1 — K2 | we constructed in Lemm&2are understood.

Comparing fiber sequences via homogeneous spaces

Proposition 3.11. For any integersm,n > 1, letis, : Sps, — SLs, be the obvious closed im-
mersion group homomorphism (obtained by picking a symipléamm on ann-dimensional vector

space)j, : SLy, — SLy,41 be defined by, (M) = <1 0

0 M> andly, : Spgn — Sp2n+2 defined

byls,(N) = <Iod ](\)[> The following diagram is cartesian

lon
Span . Spon+2

aniin li2n+2

SLopy1 —— SLapy2
J2n+1

and it induces a diagram

lon
Spop ————— Spop 42— Sponta/Spon

j27L7;27Ll/ li2n+2 l

SLopy1 ——— SLopyo ——— SLopt2/SLops1

|

SLont1/Span — SLont2/Span+2
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where the lines and columns are exact sequencé&saté (representable) sheaves. Moreover, the
induced morphismspa,, 12/Sp2n — SLany2/SLony1 and SLayi1/Span — SLany2/Spante
are isomorphisms.

Proof. We first check that the square

lon
Span —— Spani2

j2ni2nl li2n+2

SLopt+1 — SLopyo
J2n+1

is cartesian. LefR be a ring,M € SLo,+1(R) and N € Spao,i2(R) such thatjo, 1 (M) =

. . 1 0 . a v .
Z2n+2(N), l.e., <0 M> S Sp2n+2(R). Write M = <w M,> witha € R, v € Ml’Qn(R),

w € My, 1(R) andM’ € M,,(R). Expressing the condition fo@ ]\04> to be symplectic, we
see that: = 1, v,w = 0 and M’ € Sp,,(R). That the diagram is cartesian follows because all the
maps in the diagram are injective. The quotients in the diagr

lon
Spop ————— Spop 42— Sponta/Spon

j27L7;27Ll/ li2n+2 l

SLopy1 ——— SLopyo ——— SLopi2/SLops1

|

SLont1/Span — SLont2/Span+2

exist by [FGA7( exposé VIA, Théoreme 3.2, p311] and they representthie sheaves associated
with the quotient presheaves.

The isomorphism of the quotient&lo,, 12/ S Loy +1 — Span+2/Span i classical. Moreover, as
a consequence, there is a transitive actio®f, 2 on.S_Ly,12/SLa,+1. Equivalently, there is a
transitive action of5 Loy, 1 0N S Loy, 12/ Span+2 and the computations above identifies the stabilizer
of the identity coset witht'ps,,; the required isomorphism of homogeneous spaces followestt
from this observation. O

Corollary 3.12. The rows and columns of the pullback squareRvbposition3.11 give rise to
commutative diagrams of long exact sequences of homoteayeh associated with a fibration.

Proof. We prove the result for rows; the result for columns is eshbl in a formally identical
fashion. Essentially, this is a consequence of propernesisec'-local model structure. The
functorSingfl(-) is compatible with the formation of limits\j\V99, p. 87]. As a consequence,
given any pullback square of schemes, upon applicatioﬁmyﬁl (-) one obtains a corresponding
pullback square of spaces. Applying this observation tq@sition 3.11 we obtain a pullback
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square of the form
Singfl (Spap—2) —— Singfl (Span)

| |

Singfl (SLop—1) — Smg*Al (SLap).

The induced morphisms of spacgsig?’ (Spa,) — Sing™ (Span/Span—z) andSing®' (SLay,) —
Sing®" (SLayn/SLany1) give rise to a diagram of the form

Sing®" (Span_a) — Sing®" (Span) — Sing™ (Span/Span_2)

| | |

Sing® (SLan_1) —= Sing®' (SLan) — Sing® (SLap/SLan_1).

where the right vertical map is the identity. It suffices t@whthat this commutative diagram
of spaces is a morphism of simplicial fiber sequences\ViggL1, Proposition 5.1] and\/en1],
Theorem 5.3].

The action ofSpy,_2 0n Sps, is compatible with the action d¥Ls,,_; on S L, by the com-
mutativity of the diagram in Propositidh 11 We can assume all spaces in question are simplicially
fibrant since the fibrant replacement functor commutes vaitmétion of limits as well. Then, the
morphismSing® (Span) — Sing® (Span/Span—2) is a simplicial Sing®' (Span,—2)-torsor and is
classified by a morphismsing®' (Spa, /Span—2) — BSing® (Span—z), and likewise, there is a
classifying morphisn®ing®’ (SLan/SLop—1) — BSing® (SLay,_1). Furthermore, the morphism
Span—y <> SLan_1 induces a morphismBSing®' (Span_2) — BSing™ (SLan_1).

Now, to show that we have a morphism of fiber sequences, itcesffio observe that the
action of theRQiBSingfl(Spgn_g) (resp. RQ;BSingfl(SLgn_l)) on Singfl(Spgn) (resp.
Sing™ (SLay)) is precisely given by the induced action 8fng®' (Span—2) on Sing™ (Span)
(resp. the action afing®' (SLay_1) on Sing' (SLay)). O

Remark3.13 Whenn = 2, one can refine Propositidh11lusing the isomorphisn§ L, = Sps. In
that case one also knows that,/Sps = SLs3/S L, is a5-dimensional smooth affine quadric that
is A'-1-connected.

The A'-homotopy type of S Lo, /Span

The inclusion morphisndpsy, — GLs, induces a morphisnBSps,, — BG Ls,. Stabilizing this
morphism with respect te and takingA'-homotopy sheaves produces a morthrZ?f’ — KZ.Q.
This morphism, which will be studied in greater detail atlieginning of Sectiod, is precisely the
map induced by “forgetting” the symplectic structure. Ie #table range, our understanding of this
homomorphism can be translated into understanding ofithomotopy theory ofSLs,, / Spay..
Indeed, there is aA'-fiber sequence of the form

SLQn/Sp2n — BSp2n — BSLQn

We now construct a stabilization morphism that will allomtogompare the spacéd.s,, / Spa, for
different values of.
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Lemma 3.14. There is a pullback diagram of the form

Spon—2 —= SLop_2

L

Sp2n - SL2n

Next, consider the sequence of inclusio®s,,, o — SLs, o < SLo,. These inclusions
induce morphisms of homogeneous spaces

SLon—2/Span—2 < SLap/Span—2 — SLap/SLoy—2,

where the second morphism is Zariski locally trivial witheib S Lo,,—2/Spa,—2. Indeed, the sec-
ond morphism is the projection onto the first facsdrs,, x 5272 S Lo, _5/Spon_o — SLop/SLan_o.

Next, consider the sequence of inclusids,, o < Sp2, — SLs,. These inclusions induce
morphisms of homogeneous spaces

Span/Span—2 — SLap/Span—2 — SLay/Span.

Again, the second morphism is a Zariski locally trivial srtftomorphism with fibers isomorphic to
Span/Span—2. In this case, the second morphism is the projection ontdirtefactor S Lo, x SP2n
Span/Span—2 — SLay/Span.

Composing the inclusion in the first sequence with the ptmjedn the second sequence we
obtain a morphism

(3.5) SLop—2/Span—2 — SLay/Span,

and composing the inclusion in the second sequence withrifjegtion in the first sequence we
obtain a morphism
Span/Span—2 — SLan/SLop—2

Furthermore, in both sequences above, as the associateglssplaans Lo,-torsor (resp. Spay,-
torsor), these sequences are againfiber sequences. Using Lemn3al4 as before, there are
morphisms between the resultidg -fiber sequences as well; we summarize this in the next result

Corollary 3.15. The pullback diagram ofemma3.14induces a morphism of fiber sequences

Span—9 —= SLop_9 —= SLop_2/Span—2

L |

Sp2n SL2n SL2n/Sp2n

where the right vertical morphism is that 8f5.

From the discussion above, we have a morphism, /Spa,—o2 — SLa,/SLay,—o. COomposing
with the projectionS Lo, /SLay—o — SLay/SLay—1, We get the isomorphismps, /Span—2 —
SLay,/SLa,—1 Of the previous section. We summarize these two obsengiioithe following
result.
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Lemma 3.16. The morphisnbps,, /Span—2 — SLay,/SLa,—2 admits a retraction, and the projec-
tion morphismS Ly, /SLay—o2 — SLay/SLay,—1 Splits.

There is one further relationship between the quotiétis,, /Spa, and.SLy,—2/Spa,—2. By
the isomorphism we wrote down before, we can identifi,, / Spa, = SLoy—1/Span—2. There is
then a sequence of the form

SLon—9/Span—2 — SLay_1 x5527=2 SLy. 5/Spo, o9 — SLay_1/SLay 2,

where the middle term is isomorphic $d.,,—1 /Sp2,—2 and the second morphism is Zariski locally
trivial with fibers isomorphic t&' Lo, —2/Sp2,—2. Again, this is an associated space ofdy,, o-
torsor and so gives rise to an'-fiber sequence. Note that, in this casé,s, 1/SLa, 2 is Al-
(2n — 3)-connected.

A short exact sequence describingrs’' (SL,)

The fibre sequence
Spa — Spg — Spa/Sp2

and theA'-equivalenceSp,/Sp; ~ A* \ 0 induce an exact sequence
7T3A1(Sp4) —= KW - 71"2*1 (SLy) — 71"2*1 (Spy) —=0.

Both sheave3r§1(Sp4) and w‘%l(SpLL) are in the stable range and so we know by TheoPeid)
thatms' (Spy) = K57 andw' (Sps) = K;7. Thus the above sequence reads as

K;? —= KMV - 7h'(SLy) K;" 0.

If we write
Sy = coker(Kf‘” — KYW),

where the map on the right is from the exact sequence juseabod we identify5 L., = Spo, then
in order to understang’’ (SLs), it remains to describs?.
To this end, let
oy K" — K

be defined as the composite of the forgetful morphi§iif — K¢ and the morphisnp, : K —
K} of Lemma3.8. We write S/, for the cokernel ofy,. The next result is a refinement of/pn1,
Proposition 6.11].

Lemma 3.17. The composit&® — KW — S/ yields an exact sequence

P8 S, 0
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Proof. Consider the cartesian square

Sp4 I SL4

y

Spe — SLg

of Lemma3.14 The vertical quotients are respectivedys/Spy and SLg/SLy. We know that
Spe/Sps has theA'!-homotopy type of\® \ 0, which isA'-4-connected again by Theore®.

The columns of the cartesian square in the previous paragyap rise to a morphism of!-
fiber sequences by CorollaByl5and a corresponding morphism of associated long exact segsie
in A'-homotopy sheaves. By the connectivity results just meetip the portion of these long exact
sequences regarding degkomotopy sheaves yields a commutative diagram with exdgirots
of the form:

0—— =72 (SLg/SLy)

w5 (Sps) ———m5 (SLa4)

74" (Spe) —— 74 (SLq)

0 0.

The spaces Lg/SL, also fits into am! -fiber sequence of the form
SL5/SL4 — SL6/5L4 — SLG/SL5,

where the fiber has th&'-homotopy type ofA® \ 0 and the base has the!-homotopy type of
A%\ 0. Moreover, by Lemma.16 the morphismSLs/SL, — SLg/SLs is split by the mor-
phismSpg/Sps — SLg/S L4 and therefore the corresponding long exact sequenté-lomotopy
sheaves is also split; this splitting induces an isomom&™Y = 74" (SLg/SLy).

The connecting homomorphism in thé-fiber sequenc& L, — SLg — SLg/SLy is induced
by the classifying mag L/ SL, — BSLy4, while the connecting homomorphism in thé-fiber
sequenceSLy — SL; — SLs/SLy is induced by the classifying mafLs;/SLy — BSLy.
These two homomorphisms are compatible by means of thesiod$ L., < SL; — SLg, and it
follows that the compositiolK MV — 74" (SLg/SLs) — w4 (SL4) is induced by the connecting
homomorphism in the fibre sequence

SL4 — SL5 — SL5/SL4.

There are stabilization isomorphism§' (SLs) — 74" (SLe) = K andwh' (Spy) = 7' (Sps) =
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Kf” . We then obtain a commutative diagram with exact columns@farm:

0

MW MW
K5 K5
n

74" (Spy) —= w4 (SLy) —= KW

K;? K{ K}

0 0 0.

The morphismef — K} in the bottom row agrees with Suslin’s homomorphism upofntak
sections over finitely generated extensions of the baselfiel&emma3.8 (while the quoted lemma
appears to implicitly assume thais odd, that assumption was only necessary in order to défene t
homomorphism; in the situation under consideration we esexplicitly a factorization through
n and the same proof then applies here as well). Similarly, veady observed that the forgetful
homomorphism is induced by the morphig#$p., — BG L., coming from the inclusio$ps,, <
G Lo, and therefore, since the morphislfrfp — Kf in the bottom row is induced by stabilization,
it follows that this morphism is precisely the forgetful homorphism.

By performing a diagram chase, we observe tatis an extension of) by the image of
n: KMW — KMW . To finish, observe that it follows from the description of{r04, Theorem
5.3] that the image of : KMW — KMW is preciselyl®. O

Remark3.18 Our guess is that the morphisin — S/ is injective.

Lemma 3.19. If the base field: is assumed to have characteristic unequal tthere is a surjective
morphismK}/ /12 — S}.

Proof. In Section4 we write i, : K3? — K¢ for the forgetful homomorphism. With this
notation, by definition, we have an exact sequence of sheaves

K5 #1002 gem s/ 0.

Now, for any field F, there is a natural homomorphism of grougg’(F) — Kf(F) in-
duced by the isomorphistA M (F) = K(F) and the ring structures. This yields a morphism
of sheavest;, : K} — Kff. In Section4, we will also introduce the hyperbolic morphism

Hyo : Kff — Kf”. To prove the lemma, it suffices to show that there is an eghism of
K7 /12 to the cokernel of the composition

@40 faz0 Hyzoly: Ki' — Ki'.
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In view of [Sus84 Corollary 4.4], this follows from the commutative diagram

Kig fa,20H4 2 Ki)

J T

K}/ K}/

induced by Lemmd.3. O

The next result, which gives the second part of Theodefollows immediately by combining
Theorem2.9, and Lemmag.17and3.19

Theorem 3.20.If the base field: is assumed to be infinite perfect and to have characteristmjual
to 2, then there are short exact sequences of the form

0— 8] — wh (GLy) — K5P — 0

and
P —S]—8S,—0,
whereS/, is a quotient ofiK}! /12.

Remark3.21 The stabilization sequence f6ips,, gives the exact sequence

74 (BSpan—2) — mhy (BSpan) — mhy_1(Span/Span—2)

1 1
— Wgn_l(BSpgn_Q) — Wgn_l(BSpgn) — 0.

We knowss | (Span/Span—2) = KXW andw, (BSpa,) = K57, By the compatibility of fiber
sequences of Corollary.15 we know that the morphism‘z*,i(BSpgn) — ﬂ%;_l(spgn/spgn_z)
fits into a commutative diagram of the form

b (BSpan—2) —= h, (BSpan) — mh,_1(Span/Span—2)

l ! |

7 (BSLoy_1) —= b, (BSLay) — mhyy 1 (SLoyn/SLap_1)

Results of Hutchinson-Tad[T 10, Theorem 1.1] give stabilization results for the homolo@yhe
special linear group which are very similar to Suslin’s diadition theorem3.3. In addition to
only being proven for fields having characteridticone main difference between these results and
Suslin’s involves the appearance &Y. In particular, Hutchinson and Tao construct an exact
sequence of the form

Hop(BSLay 16(L),Z) — Hop(BSLape(L),Z) — KYW(L) — 0
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One can then construct a homomorphisfi’ (L) — K)W (L) as follows. Consider the com-
posite

(3.6) K5P(L) := mon(BSpL) — Hop(BSpeo, Z) — Hop(BSLoo,Z)
' — Hyp(BSLay, Z) — KYW(L)

An argument similar to that of Lemnta8, will then show that the induced homomorphiiﬁf}j —
KW factors through a Hurewicz style homomorphism just likel@iss[ Suss4 §4]. Unfortu-
nately, we do not know a result analogous to Suslin’s resulsg4 Corollary 4.4] regarding the
image of this map.

4 Grothendieck-Witt groups

In this section, we begin by recalling some basic facts al@rathendieck-Witt groups. These
are a Waldhausen-style version of hermiti&ntheory. The general reference here is the work of
M. Schlichting ([5ch103, [Sch10/}). The main goal is to prove Theoreml1l, which will give

a description of the third cohomology of the shééf” (which appears as one term in the exact
sequence of Theoref20).

Definitions

Let X be a smooth scheme withe Ox (X)* (we keep these assumptions throughout the section,
though it is not necessary for some of the arguments)P(éf) be the category of coherent locally
free O x-modules and’h®(X) be the category of bounded complexes of objecB(iY). It carries
the structure of an exact category, by saying that an exgquesee of complexes is exact if it is exact
in P(X) degreewise.

For any line bundle orC on X, the dualityHomp, (-, £) onP(X) induces a dualityj, on
Ch*(X) and the canonical identification of a coherent locally freeduie with its double dual
gives a natural isomorphism of functoxs: : 1 — #.4,. One can also define a weak-equivalence
in Ch?(X) to be a quasi-isomorphism of complexes. This shows (a4t (X), gis, fi,,w,) is
an exact category with weak-equivalences and (strong) duglithe sense of§ch10l) §2.3] (see
alsoloc. cit, §6.1]). The (left) translation functdf’ : ChP(R) — Chb(R) yields new dualities
#% := T™ o #, and canonical isomorphisms} := (—1)""+1)/2¢ .

To any exact category with weak-equivalences and dualdlliShting associates a spag&V
and defines the (higher) Grothendieck-Witt groups to be tlmedtopy groups of that spacegh10h
§2.11]. More precisely:

Definition 4.1. Fori > 0, we denote byGW/ (X, £) the groupmGW(ChY(X), gis, 4, wh). If
L = Ox, we writeGW/ (X) for GW/ (X, Ox).

One can extend further the definition of Grothendieck-Witiups by considering a spectrum
GW (Ch*(X), gis, ., @}) [Sch10h §10]. The negative Grothendieck-Witt groups are defined as
GW? (X, L) == n_;GW (Ch*(X), qis, %, w?.) for i > 0.
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For anyj € Z, the groquW({(X,ﬁ) coincides with the Grothendieck-Witt group defined by
Balmer-Walter of the triangulated categaBf(P(X)) of bounded complexes of coherent locally
free O x-modules endowed with the corresponding dualifyc(jll Lemma 8.2], [Val03 Theorem
5.1]), and negative Grothendieck-Witt groups coincidehvtitangular Witt groups as defined by P.
Balmer (see, e.g.Ral05) under the formulaGW7 (X, £) = Wit (X, L).

The Grothendieck-Witt groups defined above coincide withmiiigan i -theory as defined by
M. Karoubi ([Kar73, [Kar8() in the case of affine schemes, at least wheis invertible (see
[Sch10s Remark 4.16], see als6iprOZ]). In particular, given a smooth-algebrak we have the
identifications

GW?(R) = K;O(R)
GW2(R) = K;Sp(R).

There are identification&W/! (R) = _,U;(R) andGW?(R) = U;(R), where the group#/;(R)
and_,U;(R) are Karoubi'sU groups, and=W," is 4-periodic inn. Comparing P\W10 Theorem
8.2] with the above definitions yields a description of theeatest” from the previous section.
We summarize this observation in the following result.

Proposition 4.2. The sheainp is the Nisnevich sheafification of the functor 6w, defined by
X = GWA(X).

Functoriality

Let & be a field having characteristic unequal2oand supposeX is a smoothk-scheme. By
definition, these groups are contravariantly functoriatha input space, i.e., given a morphism
f X — Y of smooth schemes and a line bundl®en Y, there are pullback homomorphisms

5 GWI(Y, L) — GWI (X, f*L).

These pullback morphisms satisfy a number of the “usualperiees, which we now discuss.

If i : U — X is an open immersion with closed complemeht= X \ U, then one defines
the Grothendieck-Witt groups with support @nusing the exact categoy H?(X )z of complexes
supported or¥. In this setup, there is an associated long exact localizagquence:

L= GW] (X, L) — GW/(X, L) — GW}(U,L) — GW]_| ,(X. L) — ...

Note, however, that in general there is no “dévissage” @mmsm comparing the Grothendieck-
Witt theory of Z with the theory supported od. We will return to this issue when we discuss
transfers.

The higher Grothendieck-Witt groups also d@r&-homotopy invariant. More precisely, given
a vector bundle : E — X (or, more generally, a Nisnevich locally trivial morphisnithvaffine
space fibers), the induced morphiginis an isomorphism.

One can compare QuilleR-theory with higher Grothendieck-Witt groups with the hgtpalic
morphismsH; ; : K;(X) — GW/ (X, £) and forgetful morphismg; ; : GW/ (X, L) — K;(X)
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defined for anyi, 7 € N and any line bundl&€ over X . The hyperbolic and forgetful morphisms are
connected by means of ti&roubi periodicityexact sequences

7i.j i—1.j— Hi1,

o F(X) L qwi (x, o) T e x o P R 0 Y ewd (X L) ——

wheren; ; are certain connecting homomorphisms.
The compositiory; jo H; ; is in general difficult to understand, but the situationigrgly better

when X is taken to be a field. For any field, the identification¢; : KM (F) — KlQ(F), induces
a (functorial inF") homomorphisng; : KM (F) — KZ.Q(F) using the ring structures on both sides.

Lemma 4.3. For any field ' having characteristic unequa, and for any integers, j > 0, the
following diagram commutes:

K2(F) figoHis

| B

KM(F) ——— KM(F).
(1+(—1)’L+J)Id

Proof. Let (£,w,,n) be an exact category with weak-equivalences and dualithensense of
[Sch10h §2.3]. With any exact category with weak-equivalences, care @ssociate the hyper-
bolic category(HE,w) ([Sch10h §2.15]). Its objects are pairsX, Y) of objects ofC, a morphism
(X,Y) — (X', Y') is a pair(a,b) of morphisms ofC witha : X — X" andb : Y’ — Y. Such
a morphism is a weak-equivalencedfandb are. The switch X,Y) — (Y, X) yields a dual-
ity * on HE and there is an obvious identificatiad : 1 —**. Thus(HE,w,*,id) is an exact
category with weak-equivalences and duality. The GrotleakeWitt spaceGW(HE,w,* ,id) is
naturally homotopic to thé{-theory spaceC(&,w) [Sch10h Proposition 2.17]. In this context,
the forgetful functorF reads as”(X) = (X, X*) for any X in £. On the other hand the hyper-
bolic functor H : HE — £ is defined byH (X,Y) = X @ Y* ([Sch1026§3.9]). The composition
FH : (HE,w,*,id) — (HE,w,* ,id) is then given byFH(X,Y) = (X @ Y!, X! @ Y#). In
particular, this composition is the same {éf, w, £,7) and (&, w, §, —n).

Consider now(Ch?(F), gis,#/,w’). We have an involution o’ L(F) defined byG +
(G*)~L. This involution induces a ring homomorphism K;(F) — K;(F) (which is the identity
on Kj). Using [5ch10h Proposition 8.4] and our description 8fH, we see that the compositions

fij

Ki(F) % G (F) 2 K (F)

are equal td + (—1)77. Now 7 corresponds tdd on K, (F) and multiplication by—1 on K (F).
U
The Gersten-Grothendieck-Witt spectral sequences

In analogy with Quilleni -theory, one can define a coniveau spectral sequence oneBditick-
Witt groups [-S09, but the situation is a bit more complicated since one h#aki® into account the
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relevant dualities. Nevertheless, there exists foriamyN and any line bundl&€ over X a spectral
sequence(n, £)P converging taGW;!_,_ (X, £) whose terms at pageare

E(m, L= P GWpP (k(zp),wh).

n—p—q 1 Tp
zpeX(P)
Here,ws denotes the duality o6'a’(k(x,)) defined ork(u,)-vector spaces by

WwE (V)= Homk(xp)(V, Ext%x’zp(k:(xp), L®O0xy,))-

Tp

Since the Gersten conjecture holds for Grothendieck-\kiitigs [-S09 Remark 27], any ling € Z
at page2 gives a flasque resolution of the sheaf associated with gshpaf

U ker(GW (k(U),wh) — @ GWrTl_ (k(z1),w5));

s %o
xleU(l)

one typically refers to elements of this kernel as unramiéiednents irGW,"_ (k(U) wk .

Y 0

Notation 4.4. If X is a smooth scheme, anflis a line bundle onX, for anyi,j € N, write
GW/ (L) for the Zariski (or Nisnevich) sheaf associated with thesheaf of unramified elements

in GW/ (k(X),w%).

» %o

In particular, taking: = 2 andg = —1, we see that the line = —1 in the spectral sequence
E(2)P1is a flasque resolution of the shdﬁ@f” = GW2.

Remark4.5. One useful fact about the Gersten-Grothendieck-Witt spesequences is that the
forgetful homomorphismg; ; : GW{(X,E) — K;(X) and hyperbolic homomorphismd; ; :
Ki(X)— GWij(X, L) induce morphisms of spectral sequences between the G&stéimendieck-
Witt spectral sequence and the Brown-Gersten-Quillentsgesequence i -theory (and con-
versely).

Transfers

In this section, we refer tail072] for more information on the category of complexes of quasi-
coherentOD x-modules with coherent and bounded homology, and the guatit.

Let X be a smooth scheme withinvertible and letM (X) be the category of quasi-coherent
Ox-modules. We denote byh’(M(Ox)) the category of complexes of objectsin (O ) whose
homology is bounded and coherent. We can define a structumeaot category o6'h8(M(Ox))
by saying that a sequence of complexes is exact if it is degseeexact. A weak-equivalence of
complexes is a quasi-isomorphism.

If £is aline bundle oveX, we fix an injective resolutio of £

0 c I I o 14 0

and we consider for any compleX € Ch%(M (X)) the complextiz(M) := Homep, (M,T).
There is a canonical isomorphismy : 1 — t77 and then(Chl(M (X)), gis, i1, wz) is an exact
category with weak-equivalences and duality. As seen iptegous section, the translation functor
yields new dualitieg} andw’ and we can define theoherent Grothendieck-Witt grougs the
homotopy groups of the spagdV associated WithCh(M (X)), qis, iz, wz).
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Definition 4.6. Fori > 0, we denote b@//g(X, L) the groupm;GW(Chb(M(X)), qis, i1, w1).
If £= Ox, we simply put(?VT/? (X) instead of(?ﬁ/Z(X, Ox).

The embedding®(X) ¢ M(X) yields a functor. : Ch*(X) — Ch%(M(X)) and the choice
of an injective resolutior of £ induces a natural transformatig¢pn o « — ¢ o ff, which is a duality
preserving functor in the sense 6fdh10k)§2.1]. The functor is moreover non-singular and exact
and then induces a morphism of spaces

L GW(CHY(X), qis, bz, wr) — GW(CRE(M(X)), qis, iz, )

which is a weak-equivalence by means 81105 Lemma 2].

Let X, Y be smooth schemes, afid Y — X be a finite morphism. We will assume th¥tand
Y are integral and set = dim(X) — dim(Y’). Let £ be a line bundle oX andZ be an injective
resolution ofL

0 c Iy I T4 0.

Let f : (YV,0y) — (X, f.Oy) be the morphism of ringed spaces inducedfbyWe let f%Z be
the complexf” (Home, (f.Oy,Z)) and we observe that!Z induces a duality orC'hl(M(Y))
[Gil075, §2.4]. The trace map induces a duality preserving fungteri;:; — §zo f. and therefore
we get a morphism of spaces

fe gW(Chg(M(Y))aqisaﬁfﬁ27wfﬁ2) — QW(Chg(M(X))7qi37ﬁI7WI)-

Let N be the invertibIeOy—moduIeT*Ext"OX(f*(’)y, L) [Gil073, §4.3]. Thent ;7 is an injective
resolution of\/ (shifted—r times) by [5il073, §4.3] and thereford, induces a morphism of spaces

fo: GW(CRUM(Y), gis, £l w7 ly) — GW(ChUM(X), gis, iz, wr)

giving homomorphismsf,, : GW?~"(Y,N) — GW/(X, L) for anyi > 0 and anyj € Z. If
/Y — X is aclosed immersion, observe that, by constructjgrfactorizes through the groups
on X supported orY’.

A finite morphism preserves the filtration by codimension wort, and then induces mor-
phisms of Gersten-Grothendieck-Witt spectral sequersass for instance-ps0§ Lemma 5.3.2)).
These observations allow one to prove the following “déagge” result:

Proposition 4.7. Let X be a smooth scheme and tC X be a closed smooth subscheme. Let
L be aline bundle oveX and N := T*Ext’”ox(f*oy, L). Letr = dim(X) — dim(Y"). Then the
transfer homomorphisms

fo: GWIT (VN — GW] (X, L)
are isomorphisms for any j € N.

Proof. Our argument is along the same lines @8()2, §4]. We know thatf, induces a morphism
between the corresponding Gersten-Grothendieck-Witttsgdesequences and it suffices to prove
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that it is an isomorphism at pa@eto prove the result. After dévissage§09 Proposition 28],/
induces a homomorphism

Fo: GWIR(k(yp), whl) — GWIP (k(yp), wE)

for anyy, € Y'®), wherew)’ = Homy,,(V, Ext%y’yp(k:(yp),N ® Oy,y,)) for any vector space

V andw; = Homy,)(V, Ext’(’gt(’:yp(k(yp),ﬁ ® Oxy,))- The morphismf, is induced by the
canonical identification

Extl,., (k(yp), N @ Ov,y,) = Extey] | (k(yp), £ ® Oxy,)

and is therefore an isomorphism. O

Computation of H3._ (X, K5?)

Our aim in this section is the computation B8, (X, K5”). As seen in the section on the Gersten-
Grothendieck-Witt spectral sequences, the line —1 at page2 in the spectral sequendg(2)?4
provides a flasque resolution K?f” in the Zariski topology. Since Grothendieck-Witt groups of
smooth schemes are homotopy invariant, the sfﬁ%fis strictly Al-invariant and thus its Zariski
cohomology coincides with its Nisnevich cohomology by,.e[glorl2, Corollary 5.43]. We are
thus reduced to the study of the Gersten resolutiok#f whose last terms look as follows:

P cWik(@s),we,) — P CGW§(k(x3),ws,) —= H (X, K5") —= 0.
226X (2) 236X (3)

To understand the right-hand cohomology group, we first agenthie group&/WP(F) andGWg (F)
for any field F’ (again, we assume th&thas characteristic unequal2p Observe that by definition
GWY(F) = K10(F).

Lemma 4.8([FS0§ Lemma 4.1]) Let F be a field with2 € F*. The hyperbolic functofy s :
Ko(F) — GW3(F) yields an isomorphisr/2 — GW(F).

Lemma 4.9 ([Bas74 Corollary 4.7.7]) Let F' be a field with2 € F*. The determinantlet :
K10(F) — 7Z/2 and the spinor norn$n : K1O(F) — F>*/(F*)? induce an isomorphism

K\O(F) =5 Z)2® F*/(F*)?
More precisely, the factoF > /(F*)? is the image of the hyperbolic functor
Hig: Ki(F) — GW(F)
while the factorZ/2 is the image of the homomorphism : GW(F) — GW3(F).

Notation 4.10. We will denote byCh™(X) the groupCH"(X)/2, whereCH"(X) is the Chow
groups of codimension cycles inX.
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By means of functoriality of the Gersten resolutions, weagbh commutative diagram of the
form

P Kik(@)/2—— P Kolk(zs))/2

206X (2) x3€X3)

[
I
| | ‘
Y
@ GWlo(k(xZ)awm)_) @ GWg’(k(x?»)awxg)_>H3(X7K§p)_>0
z2€X () r3€X®)

@l 7.2 (l)

$2€X(2)

Ch3(X)——=0,

)
)

and combining Lemma&.9 and4.8with the discussion of the last paragraph, the first two colsim
are short exact sequences. A diagram chase then yields etrsegaience of the form

P z/2—=0n¥(X) —= B} (X, K3") —=0.
IQEX(2)

Now, the commutative diagram

P Wi k(z1),we) —= P W (k(22),ws,)

z1eX®) 20€X(2)

772,1l lm,o

@ GWlo(k(xl),wxl)—> @ GW(?(k(w2)7wl’2)

Z’16X(1) Z’QEX(2)

H1,0T THO,B

P Kik(z1))2——— P Kolk(z2))/2

z1eX) 22€X(2)

shows that the ma@,,, . x» Z/2 — Ch*(X) actually factors through a maph?(X) — Ch?(X)
that we still denote by.

Next, recall from Bro03, §8] that one can define Steenrod square operatigis Ch™(X) —
Ch"T1(X) for anyn € N satisfying reasonable functorial properties. In particuif f : ¥ — X
is a proper morphism of smooth connected schemes, we Baved, 8.10, 8.11, 9.4]:

Sq*(fulY]) = er(wx/p) [+ ([Y]) = Feler(wyyn)),

wherewy . (resp.wyy4) is the canonical sheaf of overSpeck (resp.Y overSpec k).



34 4 Grothendieck-Witt groups

Theorem 4.11.If X is a smooth scheme of dimens®aver a fieldk having characteristic different
from 2, then there is an exact sequence of the form

2 Sq¢? 3 3 Sp
Ch*(X) — Ch’(X) — H’(X,K35") —0.

Proof. Let A be a Dedekind domain, anibe an invertibleA-module. We comput&W (A, £)
using two different methods. Karoubi periodicity yieldseact sequence of groups for amye N

fo,n Ho i1

GWJH(A, L) " Ko(A) = GWITH (A, L) —= W™ (A L) —=0

where the last term on the right is the triangular Witt growfirled by P. Balmer (seeé3f105]).
Using the fact thatV3(A, £) = 0 becauseA is of dimensionl [B\W02, Theorem 10.1], we get

a surjective mag, 3 : Ko(A) — GWE(A, £). Using the exact sequence once again, we get an
exact sequence

fo,30Ho,3 Ho o
_—

Ko(A) Ko(A) GWO(A, L) WO(A, L) 0.

To computefy 3 o Hy 3, recall that there is an isomorphism: Z & Pic(A) — Ky(A) defined by

o(m,N) = (m — 1)[A] + [N] foranym € NandN € Pic(A). If M is a projectiveA-module,

then(fo.3 0 Ho3)([M]) = [M] — [M" ® L]. Usingy, we see that the composite morphism
f073 ¢} H073 7P PZC(A) — 7@ P’LC(A)

is given by(fo 3 0 Ho3)(m, N) = (0, N2 @ (LY)®™). We therefore get an exact sequence

0——7Z @ ChY(A)/(L) 2% GWO(A, L) —— WO(A, L) —— 0.

We now use the Grothendieck-Witt spectral sequeR¢e)P to computeGW{ (A, £). Setting
Y = Spec(A) and writing K for the field of fractions of4, we see that the ling = 0 at pagel
takes the form

GWY(K,. L)~ P Wkn),wf),
y1eY ()

while the lineq = —1 takes the form

d
WK, £) == D GWk(y),wy,)-
y1ey @

We first analyze the ling = 0. SinceK is a field, there is an exact sequence

0—=2Z -~ GWIK, L) —=W(K,L) —=0,
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which yields a commutative diagram
Z 0
H j
d
GWOO(K7 ﬁ) - @ W(k(y1)7wy£1)
yrey (@)

W(K,L)—"~ @ W(kn),wh)
y1€Yy (@)

where the columns are short exact sequences, the middléslite lineq = 0 in the spectral
sequencd®(0)P? and the bottom line is the ling = 0 in the Gersten-Witt spectral sequence. The
kernel of the bottom map i#°(A, £) by [BWO02, Corollary 10.3] and we get an exact sequence

0 ——=7—> H°(A,GWY(L)) —= WA, L) —=0.

We now analyze the IinE(O)g"l. Lemmast.8and4.9yield a commutative diagram

Ki(K)/2

P Kolky))/2

yrey @

' l

H
CW(K, L)~ @ GWi(k(y),wp,)
yrey (@)

GW3 (K, L) 0

where the columns are short exact sequences. Thus, justresdiscussion subsequent to Notation
4.10 we obtain an exact sequence of the form

72—~ Pic(A))2 —= H*(A,GW?(L)) —= 0

where the map has yet to be identified. To understagpbserve that the spectral sequence yields
an extension (sincéim(A) = 1, the spectral sequence collapses at pjge

0—— H' (A, GWI(L)) —= GW(A, L) —= H(A,GW(L)) — 0.
Using again our computation 6t 3 (k(y1), ‘*’51)' we see that the composition

Pic(A)/2 — H'(A, GWY(L)) —= GWO(A, L)
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is equal toH, o (restricted to the Picard group). Looking at our first conagion of GW{ (A, £),
we therefore see thatis such thay(1) = [£].

With these results in hand, we now return to the original [mwb Letz, ¢ X2 and letY be
the normalization of the closut® of x5 in X. Observe that the compositigh: Y — Z C X isa
finite morphism. To compute the composition

d
GW{)(k($2)v W:m) - @ GWlo(k(x2)>wr2) - @ GWO?’(k(xii)v WJBS)
206X (2) x3€X®)

it suffices by definition to compute the component corresprantb the summand@Wg (k(z3), wa, )
for anyxs € X3). We can then assume thit= Spec(Ox .,) and that¥” is an essentially smooth
curve with a finite number of closed points. Moreover, we hWal¢) = k(z2) by definition, and
we letL := wy)), @ ffwy ), = f Ext}_(f.0y,Ox). The morphismf, induces a commutative
diagram

CWO(k(ws), way) —

GW(k(Y),wh) — P GW(k(y),wy,)
y1eY (™)

GW(?(k(wi’))? wl‘:s)

fx

and the differentialdy: on the component/2 of GW(k(Y),w 0) can be computed using our

analysis in the case of Dedekind rings. Projectir@ GWE (k(y1),w 1) ontoCH'(Y'), we find
yrey (@)
dy (T) = c1(L£) in CRY(Y).
We find therefore
Fedy (1) = feer(wysr @ frwyy,) = S¢*(T)

and the theorem is proved. O

Remark4.12 Let X be a smooth scheme of dimensidrover a fieldk with 2 € k*. The same
proof as above shows that?(X, GW4™!) = coker(Sq? : Ch?~1(X) — Ch?(X)).

5 Vanishing theorems

In this section, we review some basic properties of the agtitm construction, which is useful
in giving explicit descriptions of the terms of Gersten Heions. Together with these facts, we
prove a number of cohomological vanishing results thatlvélused in Sectio6 to provide explicit
descriptions of sets of isomorphism classes of vector lasndl

Contractions

Suppose; is a stronglyA!-invariant sheaf of groups. For any smoaétischemd/, the unit ofG,,
defines a morphisrtx,, — G,,, x U. Recall thaiG_; is the sheaf

G_1(U) =ker(G(G,, xU) = G(U))
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Iterating this construction one defings;.

Remarks.1 The projection maf=,, x U — U is split by the inclusionl/ — G,,, x U given by
taking the product with the identitypec k — G,,,. SUPpPOSEA is a strictly A'-invariant sheaf of
groups. ApplyingA to the projection gives a homomorphisa(U) — A(G,,, x U), which is split
injective since the compositidii — G,,, x U — U is the identity onJ. This observation allows us
to identify its cokernel with the contraction just mentidn&Ve will use this alternative presentation
for contractions later.

If we restrict() _; to the category of strictlys!-invariant sheaves of groups, it is an exact functor
(see, e.g.,IMorl2, Lemma 7.33] or, more precisely, its proof).

Theorem 5.2([Mor12, Theorem 6.13)) If (X, ) is a pointedA!-connected space, then for every
pair of integersi, j > 1, ) _ )
m) (RQg, X) =7 (X)-;.

Lemma 5.3. For any integers, j > 0 and any integer. > 0, there are canonical isomorphisms

M oo
Ki_j/n if j <1

) , and
0 ifj >

<MWmﬁ%{

Q P
(K9 ;= {8 TSt
0 ifj>i

Remarks on the proofThe proofs of these two statements can be obtained by the mathed as
that of Propositiorb.4, which is a bit more delicate, so we will prove that statemestiead. [

To describe the contractions 6fW, it is more convenient to identifyGW?)_; as the coker-
nel of the morphism (see Remaikl)

P GW? — GW?(— x Gp)
wherep* is induced by the projectiop: X x G, — X.
Proposition 5.4. For anyi, j € N, we have GW?)_; = GW/ .

Proof. It suffices to prove that for any local ring we have an exact sequence of groups
0— GW/(X) > GW/(X x G,,,) — GW/ [ (X) —0

whereX = Spec(A). Denote byC the lineq = j — i at page2 of the Gersten-Grothendieck-Witt
spectral sequendg(;)P? and byC’ the lineq = j — i at page2 of the spectral sequende(j — 1)"9.
Since the Gersten conjecture holds for Grothendieck-Wattigs,C provides a flasque resolution of
the shealGW? while C’ provides a flasque resolution @‘-W{:ll. Arguing as [Vlor12, Theorem
5.38], we see that the projectighi : X x A' — X induces for anyn € N an isomorphism
(p)* : H"(X,C) — H™(X x Al,C). SinceX is local, we then havél} (X x A',C) = 0 and the
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long exact sequence in cohomology associated with the apeedding; : X x G,, — X x A!
reads as

0 —= HO(X x AL,C) —“> HY(X X Gy, C) —= Hk (X x AL,C) —0.

The proof of Propositiort. 7 shows that the closed embeddifg X x {0} — X x A! induces
isomorphismH"(X,C’) — H;?;l{o} (X x Al,C) for anyn € N (here we trivialize the invertible

modulej*Ext}QX " (7+Ox,Oxy«a1) using the Koszul complex associated with the global section
t € k[t]). Thus we get an exact sequence

0— GWI(X) Lo GWI (X x Gyp) — GWI L (X) —=0
and therefordGW?)_; = GW/_]. O

Cohomology of K}

For anyn € Z, we denote by the unramified sheaf (in the Nisnevich or Zariski topologyjhe

n-th power of the fundamental ideal as considered for ingtand~as09. If £ is a line bundle
over a smootlk-schemeX, we denote by (£) the sheaf twisted by (denoted byl in [Fas09).

The next result, which uses the affirmation of the Milnor eatjire on quadratic form&)}/\VV07],

follows from [Vior04, Theorem 5.3].

Theorem 5.5(Morel). SupposeX is a smoothk-scheme. For any. € Z and any line bundle& on
X, there is a short exact sequence of sheaves on the smalMitisrsite of X of the form

0 ——I1""(L) —= KMW(£) KM 0.

n

Proposition 5.6. Let X be a smooth scheme of dimensibover a fieldk with cda(k) = 7 < oo
and let£ be a line bundle oX. Then the Zariski shedf'(£) = 0 foranyn > r +d + 1.

Proof. By definition of I"(£) it is sufficient to prove thal”(k(X), £ ® k(X)) = 0. Choosing a
generator off ® k(X) yields an isomorphisni™(k(X)) ~ I"(k(X), L ® k(X)) and we can thus
suppose that is trivial. Consider the quotient group' (k(X)) := I"™(k(X))/I" ! (k(X)). The
affirmation of the Milnor conjecture yields an isomorphigi(k(X)) ~ Hg_ (k(X), u5™). The
latter is trivial sincecds(k(X)) < r + d by [Ser94 §4.2, Proposition 11]. It follows then from
[AP71, Korollar 2] that/™(k(X)) = 0. O

Corollary 5.7. Let X be a smooth scheme of dimensibaver a fieldk with cd2(k) = r < oo and
let £ be a line bundle orX. ThenH{, (X,I"(£)) = 0 for anyi € Nand anyn > r +d + 1.

Proof. The sheafl”(£) admits a Gersten resolution b§z[07b, Corollary 7.7]. It follows that its
Nisnevich cohomology coincides with its Zariski conomalognd therefore the result follows from
the above proposition. O

We now prove a yet stronger vanishing statemenI{df (£).
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Proposition 5.8. Let X be a smooth affine scheme of dimengiaver a fieldk with cdy (k) = r <
oo and let£ be a line bundle orX . If d > 1, thenH&. (X, 1/(L)) = 0foranyj > d+r. If d > 2
then we have?d (X, T/ (L)) = 0 for anyj > d + r.

Proof. Once again, the cohomology of the sh&&f.) computed in the Zariski topology coincides
with the corresponding computation in the Nisnevich togglowe therefore prove the result for
cohomology computed in the Zariski topology. By Proposit6, we are reduced to the case
j = d+ r. The exact sequence of sheavesd09§2.1]

0 —— IH7+1(L) — = T4+7(L) o 0

yields a long exact sequence in cohomology and Propositidshows thatif* (X, I +1(£)) = 0
for anyi € N. Therefore, for any € N, one obtains isomorphisms

Hi(X, 177 (L)) — HI(X, 1)
and it suffices to prove the result féF (X, T*"").

For any smooth schem& and anyqg € N, let ¢ be the sheaf associated with the presheaf
Uw— HL(U, u?‘l). The Bloch-Ogus spectral sequence({[/4]) converges to the étale cohomology
groupsH (X, ugw) and its groups at pageare the groupsf?, (X, H?). These are computed via
the Gersten complex

d _ _
HIRX), p3") == @D HO (h(wn), 13" ) — ..
Z’1€X(1)

The affirmation of Milnor's conjecture on quadratic forms\[\V07] shows that this complex is
isomorphic to the complex

do

T'(k(X) = P T" '(k(z1)) — ...

x1 ex@)

which is a flasque resolution of the shdaf It follows that the two sheaves are isomorphic and
therefore thatf(X,I") ~ H(X,H9) for anyi € N. The proof of Propositios.6 shows that the
linesq > r +d+ 1 are trivial in the Bloch-Ogus spectral sequence. This shbatswe have an iso-
morphismHg, (X, H™") ~ HZ (X, up) and a surjective homomorphisfiz ™1 (X, 1i5) —
H‘Zi;rl(X, HA+T). The result therefore follows if we can show thag( X, u2) = 0fori > d+r+1.

If k& is separably closed, this i&/[I80, Chapter VI, Theorem 7.2]. In general, it suffices to use the
Hochschild-Serre spectral sequenddi($0, Chapter Ill, Theorem 2.20], see alddi[80, Remark

2.21(b)]) and the result for separably closed fields. O

Corollary 5.9. If k is a quadratically closed fieldX is a smooth affiné:-scheme of dimension
d > 2,and L is a line bundle onX, for any pair of integers, j > d — 1, there are isomorphisms
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Proof. Use the long exact sequence in cohomology associated vétlshbrt exact sequence of
sheaves '
0— Tt (L) — KW(L) — KM —0

and Propositiorb.8. O

A vanishing result for conomology of K /m

Proposition 5.10. Let X be a smooth affine variety of dimensidrover a fieldk. If there exists
an integerm > 0 such that for any closed point € X the groupk(z)* is m-divisible, then
HY(X, K}, /m) = 0.

Proof. The Gersten resolution for the shééﬁ{rl/m gives an exact sequence of the form

GB (K%Mm)—d(k‘(x)) — Hi(X, Kz]i\/-ji-l/m)
zeX(d)

FurthermorgK}% | /m)_q = K /m, andK}! /m(k(z)) = k(z)* /(k(x)*)™ = 0 by assumption.
]

6 Obstruction theory and classification results

In this section, we begin by reviewing aspects of obstructi®ory involving the Postnikov tower
in A'-homotopy theory. We combine the results of the previous@eswith obstruction theory for
the Postnikov tower oBG L, to obtain information about vector bundles. The sectiosedowith
some additional information. Specifically, using the dsssan of contractions, we provide some
statements relating our computationsidthomotopy sheaves from SectiBo ordinary homotopy
groups of the unitary groups by means of the complex re@izdtinctor.

The Postnikov tower in A'-homotopy theory

If G is a (Nisnevich) sheaf of groups, ad is a (Nisnevich) sheaf of abelian groups on which
G acts, there is an induced action gfon the Eilenberg-Mac Lane spaéé(A, n) that fixes the
base-point. In that case, we 96¢ (A,n) := EG x9 K(A,n). The projection onto the first factor
defines a morphisnk' 9 (A, n) — B that is split by the inclusion of the base-point.

Just as simplicial homotopy classes of magis K (A, n)|s are in bijection with elements of
H{, (X, A), there is a corresponding classification theorem in thissted” setting. A mapX —
KY9(A,n) gives, by composition, a morphisti — B G, which yields aG-torsor ? — X by
pullback. Then, the morphism of the previous sentence cantéreted as & -equivariant map
P — K(A,n), i.e., aG-equivariant degree cohomology class oX with coefficients inA. The
following result summarizes the form of the Postnikov towerwill use; this result is collated from
a collection of sources includingsp)09 Chapter VI1.5], MVV99] and [Vior12, Appendix B].

Theorem 6.1. If (9, y) is any pointedA'-connected space, then there are a sequence of pointed
spaceg ), y), morphismg; : 9 — 9@, and morphismg; : 9 (+1) — () such that



41 6 Obstruction theory and classification results

i) 7 isi+ l-runcated, i.e. (9, y) = 0 for j > i,

i) the morphisnmp; induces an isomorphism on homotopy sheaves in degree
iii) the morphismf; is an A'-fibration, and the homotopy fiber ¢f is aK(ﬂ-ﬁil(Df),z' +1),
iv) the induced morphismMY” — holim; 9 is an A'-weak equivalence.

Furthermore,f; is atwistedA!-principal fibration i.e., there is a unique (up th'-homotopy)
. 1
kipr: 0D — K™ (@ (9),i+2)

such that) (1) is theA'-homotopy fiber of this morphism, and the actionrét () on the higher
A'-homotopy sheaves is the usual conjugation action indugezhénge of base-points.

Remark6.2 When we apply this theoremr,fl*l (9, y) will be a sheaf of abelian groups.

If G = 1, then the word “twisted” can be dropped in the above staténlarthat case, given
anA'-principal fibrationZ — ‘B classified by a morphis® — F’ (hereF’ is an Eilenberg-Mac
Lane space), a morphisti — B lifts to ‘£ if and only if the composite morphistX — F' is
homotopically constant. Moreover, the simplicial funatiobject preserves fibration&1}/99, §2
Lemma 1.8.3], so there is a fibration

S(X,E) — S(X,B)

whose fiber isS(X, QL F’). Thus, the space of lifts over a given map— B is isomorphic to
S(X,QLF.

In the special case wherg’ is an Eilenberg-MacLane sheaf, the obstruction to liftisghe
pullback of the “universal” class o8 given by B — 7’ to X. Furthermore, the loop space in
guestion is again an Eilenberg-MacLane sheaf, and the sgdides of a given mapX — B is
parameterized (as a set) by a corresponding cohomology set.

When G acts non-trivially, the setup is similar, but one worisequivariantly. In that case,
the obstruction to lifting is given by aequivariantcohomology class olX’, which is pulled back
from the “universal” clas€B — F'. Note that, in this case, the homotopy fiber is an ordinary
Eilenberg-Mac Lane space (rather than a twisted one). Ictipea we will use the Postnikov tower
to factor a space as a sequence of twistéeprincipal fibrations and then deduce an (inductively
defined) sequence of obstructions to lifting: each subseaqiestruction is defined after choosing a
lift, whose existence is guaranteed by vanishing of theiptsvobstruction.

The universal primary obstruction vanishes

The primary obstruction to existence of vector bundles @arialyzed by means of the discussion
of the previous section: in this case, the situation is paldily simple. To begin, recall tha&SL,,
is A'-1-connected for any. > 2 by Theorem2.9. We also know tha’h"%l(BSLn) = wfl*l(SLn)
and the latter iF}™WV for n = 2, andK2! for n > 2.
The second stage of the Postnikov tower B L,, gives rise to a (principal) fiber sequence of
the form
BSL® — BSLY — K(xb' (BSL,),3).
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SinceBSL, . is Al—l—connectedBSLﬁll,). = %, and the mapBSL,(f,). — K(Tr‘%l(BSLn),?,) is
trivial. We summarize this in the following result.

Lemma 6.3. The universal obstruction clagsSL{ — K(W§1 (BSLy),3) is trivial.

We know that the mafBSL, — BGL, induced by the inclusion ofL,, into GL,, is, up
to A'-homotopy, aG,,-torsor and consequently ax'-covering spacel]lor12, Definition 7.1 and
Lemma 7.5] (we can replacBSL,, with the modelB,,,SL,, of [MV99, §4.2] using the standard
representation obL,,, and this space is evidently @,,-torsor overGr,, o). This presentation

allows us to deduce an action s (BGL,) = G, on 72" (BSL,) for i > 2. In this case, the
twisted Eilenberg-MacLane spa;z‘,éGm(wf&1 (BGL,), j) is the quotient sheaf

KCm(xb (BGLy),j) = EGy, xS K (% (BGLy), j),

as discussed ir\jor12, §B.2]; this furthermore completely determines the secoadesbf theA ! -
Postnikov tower folBG L,,.
Remark6.4. The action ofG,, on 74’ (BGLy) = K™V is non-trivial and gives rise to an action

of G, on the spacek (K™, 2). The homotopy fiber of the maBGng) — BG,, is also a
K(KYW 2).

Proposition 6.5. The universal obstruction claBGLY — KGm(vrzAl (BGL,,),3) factors through
the constant maBG,,, — KS= (w4 (BGL,),3) induced by inclusion of the base-pointiof 4’ (BGL,), 3).

Proof. First, identify BGLY) = BG,,. The mapBGLY) — KGm(xh'(BGL,),3) is then a
map BG,,, — KGM(w§1(BGLn),3). However, this map comes from @,,-equivariant map
BSL,(f) — K(ﬂ"%l(BSLn),?;). The aforementioned map is homotopically trivial by Lem@éa
As a consequence of this, the action®j, on a representing class is also trivial. O

Corollary 6.6. If X is any smooth scheme over a figldthen the primaryA!-homotopy theoretic
obstruction to existence of a ramkvector bundle onX with given determinant line bundlglies in
cohomological degree- 3.

Proof. We want to build a mapX — BGL,, by inductively working up the (twisted) Postnikov
tower. We begin with a constant map — BGLSLO) = x. We then choose a itk — BGLS),
which, sinceBGLﬁLl) = BG,,, corresponds to fixing a line bundfeon X. The primary obstruction

to lifting this class to a mag — BGL? is the pullback of the universal obstructi@G LY —
KG=(KMW 3): since the latter map is homotopically the constant iB&p,, — BG,,, by Propo-

sition 6.5, it follows that precomposing with the map — BGLQ) is simply the magg. We may
therefore fix a lift of this class to the second stage of therisv tower of BGL,,, and the next
potentially non-trivial obstruction lies in degree4. O

Lifting classes versus Chern classes

As we saw above, thé\!-Postnikov tower forBGL,, gives rise to a sequence of morphisms
BGL, — BGLS). If we consider the identity mapGL,, — BGL,, since each induced map



43 6 Obstruction theory and classification results

BGL, — BGL,(f_l) lifts to a morphismBGL,, — BGL%), the identity map factors through
a morphismBGL,, .« — K(wfl(BGLn),z') for eachi. Since fori < n we have identifications
72 (BGL,) = K, these classes can be identified with elemenfs36tL,,, K (K&, i)],:. These
classes admit the following geometric description.

First, using the\'-weak equivalencérr, .. - BGL,, we can view these classes as canonical
elements inH"(Grnpo,KiQ). The spaceir, o is a filtering colimit of finite-dimensional grass-
manniansGry, ,+n. By Bloch's formula,Hi(Grn7n+N,K?) >~ CHYGrpp+n). In particular,
these groups are isomorphicZdndependent ofV for i < n. Therefore, the limitC H (Gry, n+ )
only depends om and, as a consequendé!(Gr;, o, KZQ) = Z. The calculation of the cohomol-
ogy of the grassmannian gives us a canonical generatufr H'(G7,, oo, KZQ). It follows that our
obstruction class is a multiple of.

Wheni = n, the situation is just a bit more complicated. In that caspeating the discussion
of the previous paragraph, one obtains a canonical class,ine H" (BGL,, ﬂ-ﬁl(BGLn)). If n
is odd, then Theorerf.9 gives rise to a long exact sequence of the form

HE (G0, T8 (BGLpoo)) — HEo(Groo, K9) — HYH(Grpnoy Snitt)

The image ob,, ,, € H, (GTy o0, KY) = Zis a multiple ofc,.

Remark6.7. In [Pet59 Lemma 4.5], an explicit relationship is given betwegnando,, ,,. Using
this and compatibility of our constructions with complexlization, one deduces a more precise
relationship betweeun,, ,, andc,,.

Forn < 3, the lifting classes can be defined analogously, and we cavédre more explicit.
Forn = 1, BGL; = BG,, = K(K} 1) ando;; € H'(BG,, K}). Forn = 2, we can give
the lifting class a slightly different description. Insteaf considering the identity maBG Ly —
BGLs, we consider the identity maBSL, — BSLo, which is G,,-equivariant. In that case,
we can identify the lifting class canonically é5,,-equivariant conomology class sin%Lf) =
K (KW, 2). More precisely, the lifting class is a canonical element € HZ, (BSLy, K}'™W) =
H?(BG Ly, K¥W(det €)): here the action ofr; (BGL,) = G,, on K(KYW 2)is indicated by
the notation (and depends on fixing a determinant line biyintlewever, the image of this lifting
class inH?(BGLy, K3') induced by the epimorphisi}!WV (det ¢) — K37 is independent of
these choices.

Proposition 6.8. If n = 1 or n = 2, theno,, ,, = ¢j,.

Proof. If n = 1, thenBGL; = BG,, = K(K?, 1) as mentioned above, so there is nothing to
check. Ifn = 2, this statement is the content of the last paragraphiof 12, Remark 7.22]. O

The action of G,,, = K? on Kfif

As we observed above, the shedf (BGL,) = G,, acts on®' (BGL,) for anyn > 1. When
1 < n, the sheavesr;.*l(BGLn) are in the stable range, and the action@f, on these sheaves
coincides with the action df,,, on w;.*l (BGLx) = KZQ

Lemma 6.9. For any: > 0, the action ofG,,, on KZQ induced by the identificatior’vsfl*1 (BGL) =
G, andm2' (BG L) is trivial.
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Proof. The action in question is determined by a morphism of she@gs— Hom(K¥ K9).
Since both sheaves are strongly-invariant, so it suffices to prove the induced maps on sestio
over fields is trivial. IfL is a field, identifyingKiQ(L) asm;(BGLx (L)), the result follows from
the definition of the plus construction. O

Classification of rank 2 bundles

Henceforth, we assume thatis algebraically closed and has characteristic unequal tm that
case, we can assunié(k) is non-empty, and we will fix a bage-point. AssumeX is a smooth
affine k-scheme. Here is the structure to which proofs of all resudtew will conform. If X is

of small dimension, by means of tte'-Postnikov tower, and Theorens9, 3.20, or 3.9, we can
describeA!-homotopy classes g@ointedmaps|(X, z), BGL;|4:. The set of isomorphism classes
of vector bundles of rank on X is described by the set ainpointedhomotopy classes of maps
(see Theorend.3). To set of unpointed homotopy classes of mgpsBG L;|,1 can be obtained by
factoring out the the conjugation actionef' (BGL,)(k) = G, (k) on[(X, z), BGL;]4:.

Theorem 6.10. If k£ is an algebraically closed field having characteristic unabto 2, and X is

a smooth affing-fold, the map sending a vector bundle of rahto its Chern classes determines
a bijection between the pointed set of isomorphism claséeank 2 vector bundles onX and
CHY(X) x CH*(X).

Proof. As observed in Corollarg.6, the primary obstruction to existence of a rankector bundle
on X vanishes. Fix a class € Pic(X). Since the primary obstruction vanishes, the first lifting
class is an element @ ?( X, 7r§1 (BGLs)), which by the descriptions of homotopy sheaves (and in
the notation) given above is isomorphich, (X, KYW(¢)). The short exact sequence of sheaves
on X of the form

0— I3 — KYW() — KY — 0.

Taking cohomology of this short exact sequence gives riseeteequence
— HY(X,I(€)) — H*(X, K™ (€) — HA(X,Ky') — HY(X,P(€) — -

Sincek is algebraically closedi?(X,13(¢)) and H3(X,13(¢)) vanish by Propositios.8, so the
morphism in the middle is an isomorphism. By Bloch’s formute?(X, K3!) = CH?(X). As a
consequence, the primary lifting class is uniquely deteeaiby an element «f 72 (X). Moreover,
since BGLYY = Kg,, (KXW, 2), the discussion above shows that the lifting class is exaxtl
element ofCH?(X).

The secondary lift is an element &f3(X, 74 (BGLy)). We know thatr?' (BGL,) is an
extension ofK;fp by S/, and the latter is an extension 8f, by I°(¢); we also know that the
former is a quotient ofK}?/12. By Corollary 5.7, the sheafl®(¢) is trivial and therefore the
sheavesS)] and S, are isomorphic. For reasons of cohomological dimensioeretlis a surjec-
tive map H3. (X, K} /12) — Hg. (X,S}). The first group vanishes by Propositi&nl0 and
thereforer’\’HS(X ,S;) = 0. Thus, the long exact sequence in cohomology gives rise isoamor-
phism HZ. (X, w4 (BGLy)) — H3. (X, K3"). By Theoremd.11, HE, (X, K37) is a quotient of
CH3(X)/2. SinceX is affine,C H3(X) is uniquely divisible by $ri89 and therefore0' H3(X) /2
is trivial.
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Given the above data, we have built a poinfedhomotopy class of map¥ — BGL,. The
action of G, on w?l(BGLQ) is induced by change of base-points. Fot 2, this action is not
trivial, but we only care about the induced action@®f, (k) on HZ, (X, K3 (¢)). However, since
k is algebraically closed, as explained above, the actidof@through an action oHZ, (X, K.
The morphismG,,, — K3 is induced by the stabilization, and Lemré&® shows the action is
trivial in the stable setting. Sincd3(X, w?l(BGLQ)) is trivial, the action oiG,,, (k) on this group
is also trivial. Thus, pointed and unpointed homotopy @ass maps coincide. Finally, we identify
the lifting classes with the Chern classes by means of Pitipo$.8. The map(ci, c2) : 15(X) —
CHY(X) x CH?(X) is therefore a bijection: it is injective since the argunsesivove show that a
vector bundle is uniquely determined by its lifting classgias Chern classes, and it is surjective
since, given the data of Chern classes, we can build aXhap BGLf) by the obstruction theory
arguments above, and such a map extends uniquely to a vecidielon.X . O

Classification of rank 3 bundles

Theorem 6.11.1If k is an algebraically closed field having characteristic unahto 2, and X is a
smooth affing-fold, then the map sending a radkvector bundle to its Chern classes determines
a bijection between the pointed set of isomorphism claskean& 3 bundles onX and the set
CHY(X) x CH?*(X) x CH*(X).

Proof. Again, we fixaclasg : X — BGLgl) = BG.,,, Which corresponds to a classGhi ! (X).
As in the proof of Theoren®.10, the obstruction classes vanish, so it suffices to undetdtam
relevant lifts. The next lift is an element &f2(X, 74" (BGL3)) = H2(X,K$) = CH2(X). The
subsequent lift is an element &f3(X, 74’ (BGL3)). However, we know thatr’' (BGLs) is an
extension ofK$ by S,, whereS, is a quotient ofiK}/ /6. We know thatH®(X, K /6) vanishes
by Proposition5.10, and for reasons of cohomological dimension, it followst tH& (X, S4) = 0.
Therefore, there is an isomorphish? (X, 74" (BGL3)) = H3(X,K$) = CH3(X).

Thus, the set of pointed.'-homotopy classes of maps is in bijection with the set in thees
ment. We claim that the induced action@f,,(k) on CH*(X) is trivial for i = 1,2, 3. To see this,
observe that for each sincek is algebraically closed, the action @, (k) on H'(X, 2" (BGLs))
factors throughi* (X, KZQ) and this factorization is induced by the stabilization mfﬁﬁ)(BGLg) —
TK'ZAl (BGLsj). Thus, it suffices to check that the action is trivial in thebéé setting, in which case
the triviality follows from®6.9.

The identification of the first two lifting classes with Cheaslasses follows from Proposition
6.8. In-so-far as the third Chern class is concerned, we proesellows. We knowos 3 is a
multiple of c3 in the universal setting and since the lifting class)ois a pull-back obs 3 by means
of an A'-homotopy class of map$ : X — BGLs we deduce thaf*os 5 is afixed multiple of
f*(c3). SinceX is a smooth affing-fold andk is algebraically closed, we know thati?(X) is
uniquely divisible (again, se&[i89). Therefore, by dividing by the fixed multiple if necessamne
can replace the third lifting class ky. Given these observations, the proof can be concluded as
in the rank2 case: the mafpcy, co, c3) : 13(X) — CHY(X) x CH?*(X) x CH3(X) is injective
since the Chern classes uniquely determine the liftingselssand surjectivity follows since, given
the data of Chern classes, obstruction theory tells us hdwitd a pointed mapy’ — BG L3 with
prescribed lifting classes. O
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Remark6.12 Supposet is algebraically closed and has characteristic unequal Assumed > 3

is an odd integer. With more care in the description of thenlif classes, it should be possible to
obtain classification results for ramkvector bundles on smooth affikefolds of dimensiond. In
particular, if there is ndd — 1)!-torsion inC H*(X), it should be the case that vector bundles of
rankd are determined by their Chern classes.

Isomorphism vs. stable isomorphism

As a corollary of the above results, we get the following esta¢nt which is a strengthening of
[Fas1l] Theorem 5.4].

Corollary 6.13. Let X be a smooth affind-fold and letE and £’ be two vector bundles ove¥.
ThenE and £’ are stably isomorphic if and only if they are isomorphic.

Proof. We have to prove that stably isomorphic vector bundles atedd isomorphic. I has
rank one, this is obvious. IF has rank> 2, then sincely and E’ are stably isomorphic, they have
the same Chern classes. Whias rank2, the required isomorphism follows from TheoréniQ,
WhenFE has ranig, the required isomorphism follows from Theorémi 1l WhenFE has rank: > 4,
then the resulting homotopy sheaves are already in theestabe. Sincé& andE’ are stably iso-
morphic, the composite of the classifying mays— BGL,, become isomorphic when composed
with the stabilization morphisn3G L,, — BG L. Pick a base-point oK arbitrarily. The same
obstruction theory arguments as above show {hét ), BGL,],1 — [(X,2), BGLoo o] IS @
bijection for X of homotopy dimensior< 3. This follows inductively from the observation that the
A'-homotopy fiber of the morphis®8GL,, — BGL, 1 iS GL,.1/GL,, which isA'-(n — 1)-
connected by Theoret6. O

A On the sheafS,,

Recall that in Sectio® we defined the she&,, as the cokernel of a morphism of shea¥c¥ —
KM, Lemma3.8 showed that, assume our base fi€ldvas infinite, upon taking sections over an
extension fieldL /F', the morphism of the previous sentence coincides with thec(brial in L)
homomorphismK,?(L) — KM(L) defined by Suslin (se8.1). Since both sheaves are strictly
Al-invariant, it followed from this observation that theresaan epimorphism

KM/(n—1)! = S,.

To prove this epimorphism is an isomorphism, it is necesaadysufficient to check that this is the
case on sections over finitely generated extensio§ bé., the above morphism is an isomorphism
if and only if, for every finitely generated extensidry F', Suslin’s homomorphisan?(L) —
KM (L) has image precisely equal ta — 1)! KM (L); the question of whether this is so is what we
will refer to as Suslin’s question (in degreg.

In what follows, we will study Suslin’'s homomorphism in greadetail by considering the
canonical homomorphisti M (L) — K,?(L). Under the identification of Milnor K-theory with an
appropriate motivic conomology group, this latter homopmism can be thought of as an edge map
in the motivic spectral sequence, as was observed origiftalbur knowledge) by T. Geisser and M.
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Levine. One can give explicit conditions under which Susliromomorphism has image precisely
equal to(n — 1)! KM, but these hypotheses are rather cumbersome except fdrnahes ofn.
We describe an “absolute rigidity conjecture” for a certaiativic conomology group, apparently
posed by Suslin, that, as Sasha Merkurjev explained to asagtees tha, = K37 /6.

The motivic spectral sequence

Recall that there is a spectral sequence With! = H?%(Spec L,Z(—q)) that converges to

Kf?p_q(L) [Sus03 FSO0Z Lev0d. Here, since the complexés(—q) are trivial for—¢ < 0, and
since HP~4(Spec L, Z(—q)) vanishes ifp — ¢ > —g, it follows that this is a third quadrant spectral
sequence. The compl@has cohomology in degréeonly, and the comple% (1) has cohomology
only in degree$) and1. Since the motivic cohomology groug$™ (Spec L, Z(n)) = KM (L), it
follows thatEy ™" = KM(L).

Because of the Voevodsky-Rost soluticro¢03 Voel]] to the Bloch-Kato conjecture, which
implies the Beilinson-Lichtenbaum conjecture by work osBu\Voevodsky, much more is known

about the groups that appear in the-page of the motivic spectral sequence.

Lemma A.1. If p — ¢ <0, thenEY? is uniquely divisible (except for= g = 0).

Proof. The coefficient sequence — Q — Q/Z induces morphisms of motivic cohomology
H™%(X,Q/Z) — H"(X,Z) — H"(X,Q) — H"(X,Q/Z)

Now, Q/Z is isomorphic to the product of its-primary components. The-primary components
is the direct limit ofZ/p™. Now, if i < j, the Bloch-Kato conjecture says that motivic cohomology
with Z/p™ coefficients is isomorphic to étale cohomology.i I& 0, then the corresponding étale
cohomology group vanishes since étale cohomology in inegdegrees is trivial. Applying these
observations, we deduce thiat-? is uniquely divisible fop — ¢ < 0 and torsion free fop — ¢ < 0.
It remains to prove that whemn— ¢ = 0 that EP+4 is divisible.

The universal coefficient theorem gives a commutative diagof the form

00— H%(L,Z)/0 — HY(L,Z/¢)

| l

0 —— HY(L, Z4)/t — H*9(L,7,/¢)

where the horizontal maps are injective and the right vartitap is an equality.

We may assume without loss of generality tiais finitely generated over the prime field
[MVWO06, Lemma 3.9]. Now, the Beilinson-Lichtenbaum conjecturelies that the maf, (i) —
By(i) is a quasi-isomorphism (the latter is a limit of truncatiais:, restricted to the Nisnevich
site). In particular, sincé has only finitely many roots of unity, it follows th&® (L, B,(q)) = 0.
As a consequence{"(L,Z,) = 0. It follows that H%4(L,Z) is ¢-divisible, and since/ was
arbitrary, it follows that*¢(L, Z) is divisible. O
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Thus, theEs-page of the spectral sequence then takes the form

0 0 0 0 0 /

0 0 0 0 0 KM (L)
E_5’_2 E—4,—2 E—3,—2 E_2’_2 E_l’_2 Kz\/[(L)
E_5’_3 E—4,—3 E—3,—3 E_Z’_S E—l,—3 Ké\/I(L)
E_5’_4 E—4,—4 E—3,—4 E_2’_4 E_l’_4 Ki\/[(L)

where all the term&%"? on and above the ling = ¢ are uniquely divisible.

The next result is a consequence of the multiplicative fitrecof the motivic spectral sequence,
which is established ir-{S0Z Theorem 15.5]; the result was originally established3in (0, Propo-
sition 3.3].

Lemma A.2 (Geisser-Levine) The edge homomorphism (L) — K,?(L) is the homomorphism
induced by the natural isomorphishi (L) = KIQ(L) and compatibility with products.

Suslin’s question in degreet and motivic cohomology

We now consider Suslin’s question whan= 4. In that case, Suslin’s question has a positive
answer, i.e., the mafy}?(L)/6 — S4(L) is an isomorphism, if and only if the reduction modélo
mapKf(L)/6 — KM (L)/6 is the trivial map. Using the motivic spectral sequence, wlifactor
this map through a different motivic cohomology group.

To unburden the already suffering notation, we drop the Isgpipt () used to denote Quillen
K-theory. The description of the motivic spectral sequealseve implies that the filtration oR4
has3 non-trivial steps:F2K4(L)/F K4(L) = Ex> %, F~'K,(L)/F°K,(L) = Ex"*, and
FOK4(L)/F*K4(L) = E% .

From the above picture it is clear thatM (L) surjects ontaz2 *. To analyze the remaining
terms we will need some additional information about théedéntials in the motivic spectral se-
guence. Classically, it is known that the differentialshia Atiyah-Hirzebruch spectral sequence are
torsion, and Soulé established a motivic analog of this fiore precisely, Soulé constructed an
action of Adams operations on the motivic spectral sequératés compatible with the differentials
(see [5599 §7.1] for one construction).

Lemma A.3 (Soulé Fol; see, e.g.,[fW01, Lemma 1.3]) For any givenr, there exists an integer
M, independent gf andg such thatV - dj, , = 0

The only differential incident oi; "~ comes from, *~2, and all outgoing differentials are

trivial. By LemmaA.l EZ_?”_2 is a uniquely divisible group, so by Lemmfa3 the differential
incident onE; " ~? is trivial. All higher differentials are trivial, and as amsequence we deduce
that H23(L,7) = B, "% = Ex""%. Similarly, the groupE, »~* is uniquely divisible, again by
LemmaA.1. There are no non-trivial incoming differentials, and theigming differential is trivial
by LemmaA.3. All higher differentials are trivial and therefoe, >~ = Ex> 2.

The image of the homomorphisi} (L) — K, (L) is preciselyF° K, (L), which is a subgroup
of F~1K,(L). The composite mag M (L) — K4(L) — K}*(L) is trivial when reduced modulo
6 by Suslin’s theorem. Therefore, the ma(L)/6 — K (L)/6 induced by reducing Suslin’s
homomorphism modulé factors through F 2K, (L)/F°K4(L))/6.
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Now, there is a short exact sequence of the form
0 — H*(L,Z) — F2K4(L)/F°K4(L) — H**(L,Z) — 0.
Since the groug? %2 (L, Z) is uniquely divisible, reducing modul®yields an isomorphism
H*3(L,7)/6 = F72K,(L)/F°K4(L)/6.
and so the morphismiy(L)/6 — K}!(L)/6 factors through a morphism
H*3(L,7)/6 — KM (L)/6.

Therefore, the homomorphisiiy(L)/6 — K2 (L)/6 is trivial if and only if the factored map
H?*3(L)/6 — KM(L)/6 is trivial.

Suslin’s question in degreet: number fields
We now show that Suslin’s question has a positive answersimail” fields.

Lemma A.4. If F is a number field, the canonical mdgs(F)/6 — K} (F)/6 is trivial. In
particular, the factorized magi22(F)/6 — KM (F)/6 is trivial.

Proof. If F'is a number field, then write for the number of real embeddings 61 The maps
F — R induced by the various real embeddings yield a morphism

EM(F) — KM (R).

Now, by results of Bass-Tate, we know that for 3, that KM (F) is finitely generated and that
the above homomorphism induces an isomorphi§f(F) = (Z/2)" [BT73, Theorem 11.2.1]. In
particular, the reduction modutbmap determines an isomorphism

KM(F)/6 = ﬁKiM(R)/G =~ (Z/2)".
=1

On the other hand, we know that, (R) is uniquely divisible {Veil2, Chapter VI.3] sak4(R)/6
is the trivial group. By functoriality of Suslin’'s homomdrism, it follows that the magy (F') /6 —
K} (F)/6 factors througH [_, K4(R)/6 = 0. The second statement is an immediate consequence
of the first by the discussion above. O

Suslin’s question in degreet and absolute rigidity

If Lis afield, letL. denote the algebraic closure of the prime field.ifthe field L. is sometimes
called thefield of absolute constants d@f). If we fix a base fieldF’, we will say that a (covari-
ant) functorF on the category of finitely generated extensidn'd” is absolutely rigidif the map
F(L.) — F(L) is an isomorphism. Sasha Merkurjev attributed the foll@wjuestion about ab-
solute rigidity to Suslin, though it has not appeared intpfior additional context, the reader may
consult, e.g.,$us87aConjecture 5.4], where related questions are posed irotext of the study
of K3.



50 REFERENCES

Question A.5(Suslin) If F is a fixed base-field, is the functér— H?3(L,Z) on the category of
finitely generated extensiords/ F' absolutely rigid?

Since we have established that Suslin’s question in defjiess a positive answer in the case
of a number field, a positive answer to the absolute rigiddgjecture implies a positive answer
to Suslin’s question in degrekin general. More precisely, the next result is an immediatele
lary of functoriality of the homomorphisni/22(L,Z)/6 — K} (L)/6 with respect tol. and the
computations we recalled above for finite fields or numbedsgiel

Corollary A.6. If F'is a fixed base-field (assumed to have characterigtiand the functorl, —
H%*3(L,7Z) is absolutely rigid, then for any field, Suslin’s homomorphisiii, (L) — K2/ (L) has
image preciselp KM (L).

RemarkA.7. By the universal coefficient sequence, there is a short eaagience of the form
0 — H*(L,72)/6 — H*3(L,7/6) — H>3(L,Z)s — 0.

The groupH?23(L,Z/6) is, by the Beilinson-Lichtenbaum conjecture (really, wstjoeed weight
3), isomorphic tngt(L,pgg’?’). If L contains sixth roots of unity, then this group can be idesdifi
with the 6-torsion in the Brauer group af and is therefore non-trivial in general. Note also that
H3*3(L,Z) is K} (L). Furthermore, the map on the right hand side is induced byntiegral
Bockstein homomorphismi>3(L,7Z/6) — H33(L,Z).

RemarkA.8. Finally, we close with one comment about Suslin’s questioouaS,,. Suppose. is
any field having characteristic coprimerng then the Bloch-Kato conjecture gives an isomorphism

KM /(L) = HET(L, pS ).

Thus, if L has étale2- and3-cohomological dimensior: n + 1, then it follows that& 2 | /n!(L)
is trivial. Thus,S,, 11 (L) is trivial under these hypotheses.
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