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Abstract

We give a cohomological classification of vector bundles on smooth affine threefolds over
algebraically closed fields having characteristic unequalto 2. As a consequence we deduce
that cancellation holds for arbitrary rank projective modules over the corresponding algebras.
The proofs of these results involve three main ingredients.First, we give a description of the
first non-stableA1-homotopy sheaf of the general linear group. Second, these computations
can be used in concert with F. Morel’sA1-homotopy classification of vector bundles on smooth
affine schemes and obstruction theoretic techniques (stemming from a version of the Postnikov
tower in A1-homotopy theory) to reduce the classification results to cohomology vanishing
statements. Third, we prove the required vanishing statements.
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2 1 Introduction

1 Introduction

Assumek is an algebraically closed field. IfX is a smooth affinek-variety of dimension3, classical
results of N. Mohan Kumar and M.P. Murthy [KM82] prove the existence of vector bundles onX
with given Chern classes. Among other things, they prove that there is a unique rank3 vector bundle
with given Chern classes. Recent work of the second author [Fas11] further showed that stably free
rank2 bundles over suchX are in fact free.

This paper, which is the first in a series including [AF12a, AF12b], studies problems regarding
projective modules using the Morel-VoevodskyA1-homotopy theory. The main outcome of our
approach, as we hope becomes clear in this introduction, canbe summarized in the following slogan:
there is a framework in which intuition and results about classical homotopy groups of spheres and
special linear groups can be suitably “algebraized” to control the theory of projective modules on
smooth affine algebras. As a byproduct of our approach, we canrecover, refine and extend the
statements mentioned above. For example, if we writeVn(X) for the set of isomorphism classes of
rankn vector bundles onX, we can establish the following results.

Theorem 1 (see Theorems6.10 and 6.11). SupposeX is a smooth affine3-fold over an alge-
braically closed fieldk having characteristic unequal to2. The map assigning to a vector bundle of
rank r ≤ 3 the sequence(c1, . . . , cr) of its Chern classes gives isomorphisms of pointed sets:

V2(X)
∼
−→ Pic(X) × CH2(X), and

V3(X)
∼
−→ Pic(X) × CH2(X) ×CH3(X).

One says that cancellation holds for projective modules of rank r over smooth affine algebras
of dimensiond if stably isomorphic projective modules of rankr are in fact isomorphic. The
Bass-Schanuel cancellation theorem (see [BS62, Theorem 2] or [Bas64, Theorem 9.3]) shows that
cancellation always holds for projective modules of rankr > d. Suslin’s famous cancellation
theorem [Sus77, Theorem 1] states that cancellation holds for projective modules of rankr if r ≥
d. In [Sus79] (see the discussion after Theorem 6), Suslin asked whethercancellation holds for
projective modules of rankr ≥ d+1

2 . However, Mohan Kumar [MK85] constructed examples
showing that cancellation sometimes fails for projective modules of rankr = d − 2. Whether
cancellation holds for rankd − 1 projective modules over affine algebras of dimensiond is, in
general, an open problem. From the above theorem, we deduce the following result, which provides
an answer to the first non-trivial case of Suslin’s cancellation question for general algebraically
closed fields.

Corollary 2 (see Corollary6.13). If X is a smooth affine3-fold over an algebraically closed fieldk
having characteristic unequal to2, then cancellation holds for projective modules of any rankover
k[X].

If k is a field having cohomological dimension1, andX is a smooth affine variety of dimension
d over k, Suslin proved that stably free rankd bundles are free [Sus82]. If k is furthermoreC1,
Bhatwadekar showed how to deduce cancellation for rankd bundles over a smooth affined-fold
from Suslin’s result [Bha03]. Based on these results, it was hoped that cancellation forrank d −
1 vector bundles over smooth affined-folds over algebraically closed fields could be reduced to
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the assertion that stably free rankd − 1 bundles on such varieties are in fact free (we will say
that “cancellation can be reduced to the stably free case”);the fact that stably free modules rank
d − 1 bundles over smooth affined-folds over an algebraically closed base are free was recently
established by the second author in collaboration with R. Rao and R. Swan [FRS12]. Dhorajia and
Keshari showed that ifk is the algebraic closure of a finite field, then cancellation could be reduced
to the stably free case [DK12]. However, it is apparently much harder to reduce cancellation to the
stably free case over larger fields (even whend = 3), and it was therefore desirable to find a general
framework in which to approach the cancellation problem.

Henceforth, assumek is an arbitrary field. Morel and Voevodsky [MV99] introducedH (k),
the A1-homotopy category of smooth schemes overk. For spacesX and Y , set [X,Y ]A1 :=
HomH (k)(X,Y ) (we will clarify the word space later, but, for the time being, it suffices to believe
that smooth schemes andBGLn are both spaces). One of the main results of [MV99] is that stable
isomorphism classes of vector bundles onarbitrary smoothk-schemes could be understood in terms
of A1-homotopy theory. More precisely, they introduced spacesBGLn and a spaceBGL∞ such
that the set[X,Z × BGL∞] is K0(X), i.e., the functorK0 (restricted to smoothk-schemes) is
representable in theA1-homotopy category.

From the beginning, homotopy theoretic ideas have served asan important source of inspiration
in the study of projective modules (see the introduction to [Bas64]). Thus, by analogy, extending
the representability result of Morel-Voevodsky, one mightexpect thatVn(·) admits a description in
terms of maps to the classifying spaceBGLn. Such representability statements hold true forn = 1,
i.e., the Picard group is representable byBGL1. Unfortunately, forn ≥ 2, the functorVn(·) fails
to beA1-invariant for smooth schemes in general, i.e., the mapVn(X) → Vn(X × A1) fails to
be a bijection in general. Indeed, already forX = P1, the failure ofA1-homotopy invariance is
well-known. Even worse, for arbitrary smooth schemes, the failure of homotopy invariance is, in a
certain sense, “as bad as can be” [AD08].

Nevertheless, classical results of Lindel establishing the Bass-Quillen conjecture [Lin82] showed
that the functorVn(·) is A1-invariant when restricted to the category of smooth affinek-schemes.
Using Lindel’s results, together with results of Suslin andVorst on the so-calledK1-analogue of
the Serre problem, Morel showed [Mor12] that if X is a smooth affinek-scheme (at least over a
perfect fieldk), then [X,BGLn]A1 = Vn(X), at least forn ≥ 3, i.e., a partial representability
result remains true. Combined with recent results of L.-F. Moser [Mos11], the above result can be
extended to the casen = 2 as well.

The above results can be viewed as an algebro-geometric analog of Steenrod’s homotopy clas-
sification of topological vector bundles on CW complexes [Ste99, §19.3]. However, Steenrod also
opened the door to enumeration of vector bundles on manifolds using techniques of obstruction
theory. Notably, given results known at the time about homotopy groups of (classifying spaces of)
special orthogonal groups, Dold and Whitney [DW59] provided explicit cohomological descriptions
of sets of isomorphism classes of (real, oriented) vector bundles having a given rank on complexes
of dimension≤ 4 in terms of characteristic classes. Our approach is to transpose these ideas into
algebraic geometry.

One of the main impediments to applying techniques of obstruction theory, say via the Postnikov
tower, inA1-homotopy theory arises from our limited knowledge ofA1-homotopy sheaves. Since
classical homotopy groups are notoriously difficult to compute directly from the definition, and since
A1-homotopy sheaves are defined abstractly in terms of maps in acertain category, performing
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computations might seem even more hopeless. Nevertheless,we first devote some attention to
providing some new computations ofA1-homotopy sheaves. Before stating our results, we briefly
recall some known computations.

Morel showed thatSLn is connected from the standpoint ofA1-homotopy theory. Geometri-
cally, this corresponds to the fact that, over any extensionfield K/k, any two elements ofSLn(K)
can be connected by the image of a morphism fromA1

K ; that this can be done is a consequence of
the classical fact thatSLn(K) is generated by elementary matrices. Morel also computed [Mor12]
the sheafπA1

1 (SLn):

π
A1

1 (SLn) =

{
K

MW
2 if n = 2

K
M
2 if n > 2.

Roughly speaking, the sheafπ
A1

1 (SLn) encodes information about the non-trivial relations between
elementary matrices, and the above result can be viewed as anincarnation of a classical theorem
of Steinberg/Matsumoto [Mat69], though it is independent of that statement. Here,K

M
n is then-th

unramified Milnor K-theory sheaf (the abelian group of sections of this sheaf over a field extension
K/k is precisely then-th Milnor K-theory group ofK), andKMW

n is the Milnor-Witt K-theory
sheaf introduced in [Mor06, Mor12]. Furthermore, forn ≥ 3, the sheafπA1

1 (SLn) is “in the stable
range”.

Remark3. As written above,πA1

1 (SL2) appears not to fit the regular pattern that appears for
n ≥ 3, i.e., it appears to be an unstable group: this is simply a feature of the presentation.
The low-dimensional isomorphismSL2

∼= Sp2 can be used to give an alternate computation:
π
A1

1 (SL2) ∼= K
Sp
2 , whereKSp

2 is the sheafification of the second symplectic K-theory for the
Nisnevich topology. In that case, the identificationK

MW
2

∼= K
Sp
2 can be viewed as a manifestation

of Suslin’s description of the second symplectic K-theory of a field [Sus87b, §6]. After making the
notion of stable range precise (see Theorems2.9and2.10), we we see that all the homotopy sheaves
of SLn described so far are already “stable” groups.

On the other hand, Wendt [Wen10] provides a rather general description of sections ofA1-
homotopy sheaves ofSLn (and, more generally, Chevalley groups) as “unstable Karoubi-Villamayor
K-theory.” While having such a description is appealing, itis practically speaking intractable since
there are essentially no techniques available to study suchunstable K-theory groups. Our first main
computation can be viewed as providing a computationally tractable description of the first “hon-
estly” unstableA1-homotopy sheaf ofSLn; moreover, while the constituents of the description
might appear involved, we will see below there are a number oftechniques available to facilitate
their study.

Theorem 4 (See Theorems3.9 and 3.20). If k is an infinite perfect field having characteristic
unequal to2, there are canonical short exact sequences of strictlyA1-invariant sheaves

0 −→ S
′′
4 −→ π

A1

2 (SL2) −→ K
Sp
3 −→ 0

0 −→ S4 −→ π
A1

2 (SL3) −→ K
Q
3 −→ 0,

and forn ≥ 4 there are isomorphismsπA1

2 (SLn) ∼= K
Q
3 . Here,KQ

i is the sheafification of thei-th
Quillen K-theory functor for the Nisnevich topology,K

Sp
3 is the sheafification of the third symplectic



5 1 Introduction

K-theory group for the Nisnevich topology, and there is a canonical epimorphismKM
4 /6 → S4. The

sheafS′′
4 sits in an exact sequence of the form

I
5 −→ S

′′
4 −→ S

′
4 −→ 0,

whereI5 is the unramified sheaf associated with the5th power of the fundamental ideal in the Witt
ring, and there is a canonical epimorphismKM

4 /12 → S
′
4.

In fact, the description ofπA1

2 (SL3) provided above is derived from a description of the first
non-stable homotopy sheaf ofSLn whenn is odd. We summarize this in the following result.

Theorem 5 (See Theorem3.9). If k is an infinite perfect field, then for every odd integern ≥ 3
there are canonical short exact sequences of the form

0 −→ Sn+1 −→ π
A1

n−1(SLn) −→ K
Q
n −→ 0,

where there is an epimorphismKM
n+1/n! → Sn+1.

The proofs of Theorems4 and5 rely on the theory ofA1-fiber sequences attached to Zariski
locally trivial SLn andSpn-bundles developed by Morel [Mor12] and Wendt [Wen11] and Morel’s
unstable connectivity results; these ideas are reviewed inSection2. Moreover, these theorems im-
mediately give identifications of homotopy sheaves ofGLn, SLn and, with appropriate index shifts,
the associated classifying spaces: it is for this reason that we may pass freely between discussion of
(higher) homotopy sheaves ofGLn, its classifying space orSLn. Combining the results of Morel
and Wendt, one obtains thatπA1

2 (GL2) andπA1

2 (GL3) are extensions of a “stable” sheaf by a cer-
tain quotient ofKMW

4 . In a sense, the point of the theorems is to precisely identify this quotient, and
this requires reinterpreting some classical results of Suslin [Sus84]; this is completed in Section3,
though some results of Section4 are necessary as well. The first isomorphism reflects the factthat
SL2 = Sp2 is just outside the stable range for symplectic K-theory, and the secondA1-homotopy
sheaf gets a contribution from symplectic K-theory. The second isomorphism reflects the fact that
π
A1

2 (SL3) is just outside the stable range for the general linear group.

Remark6. The question of whether the surjective mapK
M
n+1/n! → Sn+1 is an isomorphism is

equivalent to a question posed by Suslin in [Sus84]. Indeed, ifF is a field, Suslin constructs a
homomorphismKQ

n+1(F ) → KM
n+1(F ) whose image containsn!KM

n+1(F ). He observes that the
question of whether the image of this map is preciselyn!KM

n+1(F ) is equivalent to a portion of
Milnor’s conjecture on quadratic forms forn = 3, and speculates about equality in general. Our
choice of the letterS in the notation is intended to remind the reader of both surjectivity and Suslin.

Suslin’s question is already non-trivial whenn = 3. In that case, using the Voevodsky-Rost
proof of the Bloch-Kato conjecture and the spectral sequence relating motivic cohomology to al-
gebraic K-theory, one can give conditions involving motivic cohomology groups that implyS4 is
isomorphic toKM

4 /6; these points are discussed in detail in AppendixA.
The question of whetherKM

n+1/n! → Sn+1 is an isomorphism is yet more difficult. Nev-
ertheless, these issues only appear over non-algebraically closed fields. For example, ifF is al-
gebraically closed, sinceKM

i (F ) is divisible for arbitraryi ≥ 1, it follows thatKM
n+1/n!(F ) is

trivial. Likewise, the Bloch-Kato conjecture implies vanishing ofKM
n+1/n!(F ) for fieldsF of étale

cohomological dimension≤ n.
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We use obstruction theory, in this case using a version of thePostnikov tower inA1-homotopy
theory, to deduce Theorem1 and Corollary2; this is explained in Section6. Indeed, at least over
algebraically closed fields, the classification results canbe deduced from the computations ofA1-
homotopy sheaves above by establishing certain vanishing theorems for cohomology of certain
constituents of these sheaves. In particular, our approachnecessitates understanding cohomology of
K

MW
2 ,KQ

3 ,K
M
4 /6,KM

4 /12, I5 andKSp
3 . The cohomology ofKQ

3 , KM
4 /6 (orKM

4 /12), andI5 can
be studied by means of Bloch’s formula [Blo86] and the Gersten resolution; the relevant vanishing
theorems are established in Section5. The cohomology ofKSp

3 can be studied by a careful analysis
of the Gersten-Grothendieck-Witt spectral sequence (see,e.g., [FS09]), and this constitutes the bulk
of Section4; the techniques of that section can be used to study the cohomology ofKMW

2 as well.
These observations are just the beginning of the story. The moral we draw is: additional in-

formation about unstableA1-homotopy groups ofGLn can be directly translated into results about
vector bundles on smooth affine schemes. To keep the length ofthis paper reasonable, we have de-
ferred the discussion of some natural questions to subsequent work; we mention just two points here.
For example, in [AF12a], we complement Theorem5 by providing a description ofπA1

2n−1(SL2n);
we also discuss compatibility of our computations with computations in classical homotopy theory
by means of realization functors. These comparison resultsdemonstrate that the factor ofn! or
12 appearing in the computations above is an algebro-geometric manifestation of results regarding
the classical unstable homotopy groups of spheres or special linear groups. We also study vector
bundles on smooth affine schemes that have theA1-homotopy types of motivic spheres.
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2 A1-homotopy theory ofSLn and Spn: the stable range

In this section, we review some preliminaries fromA1-homotopy theory, especially some results
regarding classifying spaces inA1-homotopy theory, some results from the theory ofA1-fiber se-
quences, due to Morel and Wendt, and Morel’s classification theorem for vector bundles over smooth
affine schemes. We then recall some stabilization results for A1-homotopy sheaves of linear and
symplectic groups; these results are also due to Morel and Wendt. The ultimate goal of this section
is to define the stable range, and understand theA1-homotopy sheaves in this range.
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Preliminaries from A1-homotopy theory

Assumek is a field. WriteSmk for the category of schemes that are smooth, separated and have
finite type overSpeck. SetSpc

k
:= ∆◦ShvNis(Smk) (resp. Spc

k,•
) for the category of (pointed)

simplicial sheaves on the site of smooth schemes equipped with the Nisnevich topology; objects of
this category will be referred to as(pointed)k-spaces, or simply as(pointed) spacesif k is clear from
context. WriteH Nis

s (k) (respH Nis
s,• (k)) for the (pointed) Nisnevich simplicial homotopy category:

this category can be obtained as the homotopy category of, e.g., the injective local model structure
on Spc

k
(see, e.g., [MV99] for details). WriteH (k) (resp.H•(k)) for the associatedA1-homotopy

category, which is constructed as a Bousfield localization of H Nis
s (k) (resp.H Nis

s,• (k)).
Given two (pointed) spacesX andY , we set[X ,Y ]s := HomH Nis

s (k)(X ,Y ) and[X ,Y ]A1 :=
HomH (k)(X ,Y ); morphisms in pointed homotopy categories will be denoted similarly with base-
points explicitly written if it is not clear from context. Wewrite Si

s for the constant sheaf onSmk

associated with the simpliciali-sphere, andGm will always be pointed by1. TheA1-homotopy
sheaves of a pointed space(X , x), denotedπA1

i (X , x) are defined as the Nisnevich sheaves asso-
ciated with the presheavesU 7→ [Si

s ∧ U+, (X , x)]A1 . We also writeπA1

i,j (X , x) for the Nisnevich
sheafification of the presheafU 7→ [Si

s ∧Gm
∧j ∧ U+, (X , x)]A1 .

A presheaf of setsF onSmk is calledA1-invariant if for any smoothk-schemeU the morphism
F(U) → F(U × A1) induced by pullback along the projectionU × A1 → U is a bijection. A
Nisnevich sheaf of groupsG is calledstronglyA1-invariant if the cohomology presheavesH i

Nis(·,G)
areA1-invariant fori = 0, 1. A Nisnevich sheaf of abelian groupsA is calledstrictly A1-invariant
if the cohomology presheavesH i

Nis(·,A) areA1-invariant for everyi ≥ 0.

A review of the theory of A1-fiber sequences

If K is a compact Lie group, principalK-bundles are standard examples of Serre fibrations. Associ-
ated with a Serre fibration is a corresponding long exact sequence in homotopy groups. Constructing
A1-fibrations is more delicate and not so many examples are known. If G is a (smooth) algebraic
group over a fieldF , then in general,G-torsors are only locally trivial in the étale topology. This ob-
servation and the failure of homotopy invariance for the functor “isomorphism classes ofG-torsors”
make attaching fibrations inA1-homotopy theory toG-torsors somewhat delicate. Nevertheless,
if G is a special group in the sense of Grothendieck-Serre, i.e.,if all G-torsors are Zariski locally
trivial, G-torsors give rise toA1-fiber sequences in a sense we now explain.

We will use the general theory of fibrations in model categories, for which we refer the reader
to [Hov99, §6.2]. Given a morphismf : (E , x) → (B , y) of pointed spaces that is anA1-fibration
in the sense of theA1-local model structure, we writeF for theA1-homotopy fiber off . Given this
setup, there is an induced action ofRΩ1

sB (the simplicial loop space of a fibrant model ofB) on
F ; this action is specified functorially, i.e., given an arbitrary spaceA one constructs an action of
[A ,RΩ1

sB ]A1 on [A ,F ]A1 by means of the homotopy lifting property of fibrations. In other words,
given anA1-fibration, we obtain a sequence of pointed spaces and morphisms of the form

(F , x0) −→ (E , x)
f

−→ (B , y)

together with an action ofRΩ1
sB on F . An A1-fiber sequenceis then a sequence of morphisms of



8 2A1-homotopy theory ofSLn and Spn: the stable range

pointed spacesZ → X → Y , together with an action ofRΩ1
sY on Z that is isomorphic inH•(k)

to a sequence constructed from anA1-fibration as above.
Morphisms of fiber sequences are sequences of morphisms inH•(k) that respect the actions

of loop spaces. The main result about fiber sequences we will use is summarized in the following
statement, which is quoted from [Wen11, Proposition 5.1, Proposition 5.2, and Theorem 5.3]; in
any situation in this paper where a sequence of spaces is asserted to be anA1-fiber sequence (and
for which no auxiliary reference is given), the sequence hasthis property because of the following
result.

Theorem 2.1 (Morel, Moser, Wendt). AssumeF is a field, and(X,x) is a pointed smoothF -
scheme. IfP → X is a G-torsor for G = Gm, SLn, GLn or Sp2n, then there is anA1-fiber
sequence of the form

G −→ P −→ X.

If, moreover,Y is a pointed smooth quasi-projectiveF -scheme equipped with a left action ofG,
then the associated fiber space, i.e., the quotientP ×G Y , exists as a smooth scheme, and there is
anA1-fiber sequence of the form

Y −→ P ×G Y −→ X.

Comments on the proof.As regards attribution: Morel proved the above result forGm, SLn or
GLn (n ≥ 3) in [Mor12], and Wendt extended his result to treat a rather general class of reductive
groups; the case whereG = SL2 requires the results of Moser [Mos11]. In [Wen11, Proposition
5.1], this result is stated under the apparently additionalhypothesis thatF be infinite. However, the
assumption thatF is infinite is only used by way of Proposition 4.1 ofibid to guarantee Nisnevich
local triviality of G-torsors that are trivial upon restriction to the base point. In particular, since
SLn andSpn are special groups (in the sense of Grothendieck-Serre),G-torsors for such groups
are automatically Zariski locally trivial over any base.

In the second statement, quasi-projectivity ofY is only used to guarantee that the quotient
P×GY exists as a smooth scheme and that this quotient coincides with the Nisnevich sheaf quotient
of the functor represented byP × Y by the functor represented byG.

By the general theory of fiber sequences [Hov99, §6.2 and Proposition 6.5.3] together with a
sheafification argument, anA1-local fiber sequence as above gives rise to an associated long exact
sequence inA1-homotopysheaves; we summarize this in the next statement; we will use this result
without mention in the sequel.

Proposition 2.2. If (F , x0) → (E , x) → (B , y) is an A1-fiber sequence, then for any pair of
integersi, j, there is a long exact sequence of the form

· · · −→ π
A1

i+1,j(B , y)
δ

−→ π
A1

i,j (F , x0) −→ π
A1

i,j (E , x) −→ π
A1

i,j (B , y) −→ · · · ,

where all the unmarked arrows are induced by covariant functoriality of homotopy sheaves, and the
connecting homomorphismδ is defined by the compositeRΩ1

sB → F ×RΩ1
sB → F , where the

first map is given by inclusion of the base-point and the second map is given by the action of the
simplicial loop space of the base on the fiber.
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Classifying spaces and vector bundles

SupposeG is a Nisnevich sheaf of groups. Throughout the paper, we willalways assumeG is
pointed by the identitySpec(k) → G, and we will suppress the base-point. We writeEG• for the
usualC̆ech-simplicial object associated with the morphismG → Spec(k), i.e.,EGn = G×n+1 and
the simplicial structures are induced by projections and partial diagonals. The sheafG acts onEG•

(on the right), and the quotientEG•/G = BG• gives the usual simplicial bar construction [MV99,
§4.1]. The spaceBG• is a reduced simplicial sheaf (i.e., its sheaf of0-simplices is the constant
sheafSpec(k)), and soBG• has a canonical base-point.

Morel and Voevodsky show [MV99, §4 Proposition 1.15] that ifX is a space, then there is a
canonical bijection

[X , BG•]s
∼

−→ H1
Nis(X , G);

to be clear, we are taking maps in theunpointedsimplicial homotopy category here. In particular,
if G is a linear algebraic group that is special, then it follows that isomorphism classes ofG-torsors
are in bijection with elements of[X , BG•]s.

Write Grn,n+N for the grassmannian parameterizingn-dimensional subspaces of ann + N -
dimensional vector space. We letGrn,∞ becolimN Grn,n+N for the morphisms induced by stan-
dard inclusions. The universal vector bundle onGrn,n+N induces a simplicial homotopy class of
morphismsGrn,n+N → BGLn,•, and Morel and Voevodsky observe that the induced morphism
Grn,∞ → BGLn is anA1-weak equivalence [MV99, §4 Proposition 3.7]. Morel proves the follow-
ing fact.

Theorem 2.3(Morel, Moser [Mor12, Theorem 8.1]). If k is a perfect field, and ifX is a smooth
affinek-scheme, then there is a canonical bijection

[X,Grn,∞]A1
∼= Vn(X),

whereVn(X) is the set of isomorphism classes of rankn vector bundles onX.

In a number of situations below, only theA1-homotopy type ofBG• plays a role. For that
reason, we make the following convention.

Notation 2.4. Write BG for any space that has theA1-homotopy type ofBG•.

Stabilization sequences

We now apply the results on fiber sequences above to theA1-fiber sequences

SLn−1 −֒→ SLn −→ SLn/SLn−1

and
Sp2n−2 −֒→ Sp2n −→ Sp2n/Sp2n−2.

Each of these fiber sequences gives rise to a long exact sequence inA1-homotopy sheaves. Taken
together, the next pair of results, observed by Morel and Wendt, shows that the quotients that appear
are highlyA1-connected.
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Proposition 2.5. The “projection onto the first column” morphismSLn → An \ 0 (resp.Sp2n →
A2n \ 0) factors through anA1-weak equivalenceSLn/SLn−1 → An \ 0 (resp.Sp2n/Sp2n−2 →
A2n \ 0).

Proof. In the first case,SLn acts transitively onAn \0 and the stabilizer of a point can be identified
with an extension ofSLn−1 by a unipotent group. Furthermore, there is a Zariski locally trivial
morphismSLn/SLn−1 → An \ 0 with affine space fibers. The case of the symplectic group is
similar.

The stable range

Theorem 2.6(Morel). For any integern ≥ 2, the spaceAn \ 0 is (n− 2)-A1-connected, and there
is a canonical isomorphismπA1

n−1(A
n \ 0) ∼= K

MW
n .

Remark2.7. Explicit generators and relations for the sections of the sheavesKMW
n are given in

[Mor12, §3]. A number of basic properties of the sheaves we use will be quoted from this source.

Corollary 2.8 (Morel, Wendt). The morphismsπA1

i (SLn−1) → π
A1

i (SLn) are epimorphisms for
i ≤ n − 2 and isomorphisms fori ≤ n − 3. The morphismsπA1

i (Sp2n−2) → π
A1

i (Sp2n) are
epimorphisms fori ≤ 2n− 2 and isomorphisms fori ≤ 2n− 3.

Re-indexing slightly, the sheavesπA1

i (SLn) coincide with the stable groupsπA1

i (SL∞) for
i ≤ n − 2 and homotopy sheaves in this range of indices will be said to be in the stable range.
Likewise, the sheavesπA1

i (Sp2n) coincide withπA1

i (Sp∞) for i ≤ 2n − 1 and homotopy sheaves
in this range of indices will again be said to be in the stable range.

Homotopy sheaves ofGLn in the stable range

We quickly review the computation of the homotopy sheaves ofGLn in the stable range, which is
due to Morel. Forming a colimit in the indexn there are spacesGr∞,∞ andBGL∞,• together with
anA1-weak equivalenceGr∞,∞ → BGL∞,•. By [MV99, Theorem 3.13], the spaceZ × Gr∞,∞

represents Quillen K-theory for smoothk-schemes.
Write K

Q
i for the Nisnevich sheaf associated with the presheafU 7→ Ki(U), whereKi denotes

Quillen K-theory; these sheaves are called Quillen K-theory sheaves. The next result describes the
A1-homotopy sheaves ofSLn or GLn in the stable range in terms of Quillen K-theory.

Theorem 2.9. For any integersi > 0 and anyn > 1 there are canonical isomorphisms

π
A1

i (SLn) ∼= π
A1

i (GLn) ∼= π
A1

i+1(BGLn,•).

If furthermore,0 ≤ i ≤ n− 2, there are canonical isomorphisms of the form

π
A1

i+1(BGLn,•) ∼= π
A1

i+1(BGL∞,•) ∼= K
Q
i+1.

Proof. There areA1-fiber sequences of the form

Gm −→GLn −→ SLn

GLn −→EGLn,• −→ BGLn,•.
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SinceGm isA1-rigid [MV99, §4 Example 2.4], we haveπA1

i (Gm) = 1 for i ≥ 1. It is straightfor-
ward to check that the inclusionGm →֒ GLn induces an isomorphismGm = π

A1

0 (Gm)
∼

−→ π
A1

0 (GLn).
Combining these two observations gives the first isomorphism.

For the second isomorphism, note thatEGLn,• → BGLn,• is aGLn-torsor (it can even be real-
ized as a colimit ofGLn-torsors over smooth schemes) and thus gives rise to anA1-fiber sequence.
SinceEGLn isA1-contractible, the second isomorphism is immediate.

By representability of algebraic K-theory,KQ
i can also be described asπA1

i (Z × BGL∞).
Moreover, fori > 0, the only contribution to this sheaf comes from theA1-connected component of
the base-point, soπA1

i (Z ×BGL∞,•) ∼= π
A1

i (BGL∞,•). The final statement can then be deduced
from Corollary2.8.

Homotopy sheaves ofSp2n in the stable range

Replacing the general (or special) linear group by the symplectic group, there are analogous sta-
bility statements. LetHGr(2n, 2(n +N)) be the open subscheme ofGr2n,2(n+N) parameterizing
2n-dimensional subspaces of a2(n + N)-dimensional symplectic vector space to which the sym-
plectic form restricts non-degenerately. One can give a more functorial description of this space,
but let us note that, upon choice of a base-point,HGr(2n, 2(n + N)) becomes isomorphic to the
homogeneous spaceSp2(n+N)/(Sp2N × Sp2n).

The morphismSp2(n+N)/Sp2N → HGr(2n, 2(n + N)) is anSp2n-torsor and, as mentioned
above, is therefore classified by a simplicial homotopy class of mapsHGr(2n, 2(n + N)) →
BSp2n,•. Taking an appropriate colimit overN , there is an induced morphismHGr(2n,∞) →
BSp2n,•. Likewise, taking a colimit overn, there is an induced morphismHGr(∞,∞) →
BSp∞,•. Panin and Walter show [PW10, Theorem 8.2] that the spaceZ × HGr(∞,∞) repre-
sents symplectic K-theory.

Theorem 2.10.For any integersi > 0 and anyn > 1 there are canonical isomorphisms

π
A1

i (Sp2n) ∼= π
A1

i+1(BSp2n,•).

If 0 ≤ i ≤ 2n− 1 and, furthermore, the base fieldk is assumed to have characteristic unequal to2,
there are canonical isomorphisms of the form

π
A1

i+1(BSp2n,•) ∼= π
A1

i+1(BSp∞,•) ∼= K
Sp
i+1.

Proof. This result is proven in a fashion formally analogous to thatfor SLn. The first identification
comes from theA1-fiber sequence associated with the torsorSp2(n+N)/Sp2N → HGr(2n, 2(n +
N)) together with a colimit argument. The second isomorphism results by applying the stabilization
isomorphisms of Corollary2.8. This result was stated by Wendt in a slightly different formin
[Wen11, Theorem 6.8 and Remark 6.12]. The hypothesis on the characteristic of the base-field is
required to apply the results of [PW10].

Remark2.11. In [MV99, §4], a different geometric modelBgmSp2n for the classifying spaceSp2n
is constructed; this model is essentially Totaro’s model. This model can also be used to construct
a space representing symplectic K-theory as explained in [Hor05, Remark 3.8]. While the spaces
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BgmSp2n areA1-weakly equivalent toHGr(2n,∞), and both spaces are given as colimits of finite-
dimensional approximations, the spaceBgmSp2n is not well-adapted to our needs since it is not
a colimit of homogeneous spaces. The main technical difference between the finite dimensional
smooth varieties approximatingHGr(2n,∞) and those approximatingBgmSp2n is that the former
do not form an admissible gadget in the sense of [MV99, §4 Definition 2.1]. Furthermore, the proof
that the spacesZ × HGr(∞,∞) represent symplectic K-theory is very similar to that givenfor
algebraic K-theory in [MV99, §4].

3 A1-homotopy theory ofSLn and Spn: some non-stable results

The main goal of this section is to describe the first non-stable A1-homotopy sheaf forSLn (resp.
GLn) for n ≥ 2. This result is broken into two largely independent parts. The casen ≥ 3 is treated
first. In this range, the groups in question aremeta-stablein the following loose sense: at least
if n is odd, the sheafπA1

n−1(SLn) takes a form that depends in a uniform fashion onn. The first
non-stableA1-homotopy sheaf ofSL2 was, as explained in the introduction, computed by Morel
(see Theorem2.6 and use the fact thatSL2 → A2 \ 0 is anA1-weak equivalence). The next non-
stableA1-homotopy sheaf ofSL2 is treated, extending an idea of Wendt [Wen11, Proposition 6.11],
by means of the exceptional isomorphismSL2

∼= Sp2 and stabilization results for symplectic K-
theory. Some of the results are proven in greater generalitythan necessary since we expect they will
be useful in understandingπA1

n−1(SLn) whenn ≥ 2 is an even integer.

A short exact sequence describingπA1

n−1(SLn), n ≥ 2

The long exact sequence inA1-homotopy sheaves associated with theA1-fiber sequence

SLn−1 −→ SLn −→ SLn/SLn−1

gives rise to an exact sequence of the form

π
A1

n−1(SLn) −→ π
A1

n−1(SLn/SLn−1) −→ π
A1

n−2(SLn−1) −→ π
A1

n−2(SLn) −→ 0.

In casen = 3, we furthermore observe thatπA1

1 (SL2) andπA1

1 (SL3) are known to be sheaves
of abelian groups and are therefore strictlyA1-invariant [Mor12, Corollary 6.2], i.e., the sequence
above is always a sequence of strictlyA1-invariant sheaves of groups.

Theorem2.6 and Theorem2.9 (the groupsπA1

n−2(SLn) are in the stable range) allow us to
rewrite this sequence as

π
A1

n−1(SLn)
qn−1
−→ K

MW
n

δn−1
−→ π

A1

n−2(SLn−1) −→ K
Q
n−1 −→ 0.

Our goal is to understand the image ofπ
A1

n−1(SLn) → K
MW
n .

The connecting homomorphismδn−1 gives a homomorphismπA1

n−1(SLn/SLn−1) → π
A1

n−2(SLn−1).
The composite homomorphismqn−2◦δn−1 therefore gives a mapKMW

n → K
MW
n−1 . SinceSLn/SLn−1

isA1-(n−2)-connected by Proposition2.5and Theorem2.6, if A is any strictlyA1-invariant sheaf,
[AD09, Theorem 3.30] gives a canonical bijection

Hn−1
Nis (SLn/SLn−1,A)

∼
−→ Hom

AbA1

k

(πA1

n−1(SLn/SLn−1),A).
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Applying these observations withA = K
MW
n−1 , the morphismqn−2 ◦ δn−1 is determined by an

element ofHn−1
Nis (SLn/SLn−1,K

MW
n−1).

The connecting homomorphism in the long exact sequence is obtained (up to simplicial ho-
motopy) by applying simplicial loops to the classifying morphismSLn/SLn−1 → BSLn−1,• of
SLn−1-torsorSLn → SLn/SLn−1. The composite morphismΩ1

sSLn/SLn−1 → SLn−1 →
SLn−1/SLn−2 comes from the action ofSLn−1 on SLn−1/SLn−2. There is an induced mor-
phism fromSLn−1/SLn−2 to theA1-homotopy fiber of the morphismBSLn−2,• → BSLn−1,•

and this morphism is anA1-weak equivalence. As a consequence, the cohomology class determined
by the homomorphismqn−2◦δn−1 is precisely the primary obstruction to lifting the classifying map
of theSLn−1-torsorSLn → SLn/SLn−1 to a mapSLn/SLn−1 → BSLn−2,•. By definition, the
resulting class is therefore precisely Morel’s Euler classof theSLn−1-torsor in question.

TheA1-weak equivalenceSLn/SLn−1 ∼ An \ 0 also gives an identificationSLn/SLn−1
∼=

Σn−1
s Gm

∧n. By means of the suspension isomorphism, the groupHn−1
Nis (SLn/SLn−1,K

MW
n−1)

is then canonically isomorphic toH0
Nis(Gm

∧n,KMW
n−1). The group on the right hand side can be

described in terms of contractions (see Proposition5.4), and one obtains a canonical identification
Hn−1

Nis (SLn/SLn−1,K
MW
n−1)

∼= K
MW
−1 (k). By [Mor12, Lemma 3.10],KMW

−1 (k) ∼= W (k), and every
element of this group is of the formηs for s ∈ GW (k). The next lemma gives a precise description
of this Euler class.

Lemma 3.1. The Euler class of theSLn−1-torsor SLn → SLn/SLn−1, which is an element of
Hn−1

Nis (SLn/SLn−1,K
MW
n−1), is the class ofη if n is odd and0 if n is even.

Proof. LetA2n−1 := k[x1, . . . , xn, y1, . . . , yn]/〈
∑

xiyi−1〉 andQ2n−1 = Spec(A2n−1). Project-
ing a matrix to its first row and the first column of its inverse yields aSLn−1-equivariant morphism
πn : SLn → Q2n−1, whereSLn−1 acts trivially on the right-hand term; abusing notation, this
morphism induces an isomorphismπn : SLn/SLn−1 → Q2n−1 for any integern ≥ 2.

The vector bundle given by the morphismSLn/SLn−1 → BSLn−1,• can be described as
follows. LetVn be the standardn-dimensional representation ofSLn. As usual, ifV is ak-vector
space, we writeA(V ) := Spec SymV ∨, whereV ∨ is thek-vector space dual. We viewA(Vn) as an
SLn-scheme with the induced right action. Leti : SLn−1 → SLn be the closed immersion group
homomorphism given by

i(G) =

(
1 0
0 G

)
.

View SLn as anSLn−1-scheme by means of left multiplication byi(G). The quotient mapSLn →
SLn/SLn−1 is anSLn−1-bundle and we can form the associated geometric vector bundle:

En := A(Vn−1)×
SLn−1 SLn,

i.e., the quotient ofA(Vn−1) × SLn by the diagonalSLn−1-action, where we viewSLn−1 as a
subgroup ofSLn.

Claim. Under the identificationπn : SLn/SLn−1 → Q2n−1, En is the total space associated with
the stably free modulePn of rankn− 1 defined by the following (split) exact sequence:

0 // A2n−1
(x1,...,xn)// (A2n−1)

n // Pn
// 0.
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Viewing Vn as anSLn−1-module by restriction viai, it splits as a direct sumk ⊕ Vn−1. The
short exact sequence ofSLn−1-modules

0 −→ k −→ Vn −→ Vn−1 −→ 0

gives rise, by faithfully flat descent, to an exact sequence of geometric vector bundles

0 −→ A1 ×SLn−1 SLn −→ A(Vn)×
SLn−1 SLn −→ En −→ 0.

SinceSLn−1 acts trivially onA1, the first vector bundle is simply the trivial bundleA1×SLn/SLn−1.
Since the morphism on the right hand side is split, it followsthat this is a split short exact sequence.

Next, define a morphismφn : A(Vn) × SLn → An × Q2n−1 by φn(v,M) = (vM, πn(M)).
This morphism isSLn−1-equivariant for the action ofSLn−1 onA(Vn)×SLn specified above and
for the trivial SLn−1-action onAn × Q2n−1 and, once again abusing notation slightly, therefore
descends to a morphismφn : A(Vn)×

SLn−1 SLn → An ×Q2n−1.
Combining these facts, we get a commutative diagram whose vertical morphisms are isomor-

phisms

0 // A1 ×SLn−1 SLn
j // A(Vn)×

SLn−1 SLn
q //

φn

��

En
// 0

0 // A1 ×Q2n−1
j′

// An ×Q2n−1
// En

// 0

It suffices to check thatj′ is the announced morphism to prove the claim.
We now proceed to the computation of the Euler class ofEn. If n is even, then the Euler class

of En is trivial since a stably free module given by a unimodular row of even length always has a
free factor of rank one and thus a trivial Euler class. In casen is odd, the Euler class is computed in
[Fas12, Proposition 3.2].

Lemma 3.2. For n ≥ 3 and odd, there is a short exact sequence of the form

0 −→ Sn+1 −→ π
A1

n−1(SLn) −→ K
Q
n −→ 0,

whereSn+1 is a quotient ofKM
n+1.

Proof. We combine the long exact sequences inA1-homotopy sheaves associated with the fibrations
SLn−1 → SLn → SLn/SLn−1 andSLn−2 → SLn−1 → SLn−1/SLn−2 to get a diagram of the
form

K
MW
n

δn−1

��

π
A1

n−2(SLn−2) //
π
A1

n−2(SLn−1)
qn−2 //

��

K
MW
n−1

//
π
A1

n−3(SLn−2) // K
Q
n−2

// 0

K
Q
n−1

��
0
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Now, note thatcoker(·η : KMW
n → K

MW
n−1) = K

M
n−1. Under the hypotheses, the composite map

qn−2 ◦ δn−1 : KMW
n → K

MW
n−1 is multiplication byη by Lemma3.1, a diagram chase shows that

there is an isomorphismcoker(KQ
n−1 → K

M
n−1) → coker(qn−2).

Homological stabilization for GLn and the sheafSn+1

By Lemma3.2, the sheafSn+1 is a quotient ofKM
n+1 by means of a homomorphismKQ

n+1 →

K
M
n+1. As the proof of the aforementioned result makes clear, the factor ofKQ

n+1 that appears
comes from the stabilization homomorphismSLn → SLn+1. We now attempt to obtain a more
concrete description of the image of this homomorphism. Because the sheafSn+1 is strictly A1-
invariant, which follows from the fact that the category of strictly A1-invariant sheaves over a field
F is abelian [Mor05, §6], to describeSn+1, it suffices to describe its sections over any finitely
generated separable extensionL/F . The goal, which is realized in Lemma3.8 after a number of
preliminaries, is to connect the sections of the morphismK

Q
n+1 → K

M
n+1 overL to some results of

Suslin, which we recall below.
The sections of the simplicial classifying spaceBGLn,• over any fieldL give a simplicial set

whose homology is precisely the standard bar complex used tocompute group homology. The usual
homomorphismGLn−1 →֒ GLn induces a morphismBGLn−1,• → BGLn,•. In this context, we
can state the result that we will refer to as Suslin’s stabilization theorem in the sequel.

Theorem 3.3([Sus84, Theorem 3.4]). If L is an infinite field, the stabilization homomorphism

sm,n : Hm(BGLn−1,•(L),Z) −→ Hm(BGLn,•(L),Z)

is an isomorphism ifm ≤ n− 1, andsn,n has cokernelKM
n (L).

Using the above stabilization result, Suslin constructed ahomomorphism from Quillen K-theory
to Milnor K-theory [Sus84, §4]. Consider the sequence

KQ
n (L) := πn(BGL∞,•(L)

+) −→ Hn(BGL∞,•(L)
+,Z)

∼
−→ Hn(BGL∞,•(L),Z)

∼
−→ Hn(BGLn,•(L),Z) −→ KM

n (L),

(3.1)

where the first homomorphism is the Hurewicz homomorphism, the second homomorphism comes
from the definition of the plus construction, the third homomorphism is the inverse to the composites
of the maps coming from the stabilization theorem, and the fourth homomorphism is the projection
morphism coming from Theorem3.3.

First, let us reinterpret the short exact sequence from Lemma 3.2. We observed before that the
canonical morphismGrn,∞ → BGLn,• is anA1-weak equivalence, so by means of the isomor-
phisms of Theorem2.9, for i ≥ 2 the homotopy sheavesπA1

i (SLn) can be replaced by homo-
topy sheaves ofπA1

i+1(Grn,∞). Furthermore, the inclusionSLn →֒ GLn induces an isomorphism
SLn/SLn−1

∼
→ GLn/GLn−1.

If we identify Grn,∞ as a quotient of anA1-contractible spaceVn,∞ by a free action ofGLn,
then we get anA1-fiber sequence of the form (cf. [Mor12, Proposition 8.11])

GLn/GLn−1 −→ Vn,∞ ×GLn GLn/GLn−1 −→ Grn,∞.
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The space in the middle isA1-weakly equivalent toGrn−1,∞ by a standard argument. The con-
necting homomorphism in the long exact sequence of homotopysheaves attached to thisA1-fiber
sequence fits into the exact sequence:

(3.2) π
A1

i (Grn−1,∞) −→ π
A1

i (Grn,∞) −→ π
A1

i−1(GLn/GLn−1).

and one checks that the first homomorphism in the above sequence is precisely the stabilization
homomorphismπA1

i−1(SLn−1) → π
A1

i−1(SLn) for i ≥ 2.

For any spaceX , recall that the functorSingA
1

∗ (X ) is obtained as the diagonal of the bisim-
plicial space(i, j) → Hom(∆i,Xj), where∆i is the algebraici-simplex. There is a canonical
morphismX → SingA

1

∗ (X ), which is anA1-weak equivalence, andSingA
1

∗ (·) commutes with
formation of finite limits [MV99, p. 87 and§2 Corollary 3.8]. Furthermore, the augmentation map
Speck → ∆• induces a morphismSingA

1

∗ (X ) → X .
The spacesSingA

1

∗ (GLn), SingA
1

∗ (GLn/GLn−1), and SingA
1

∗ (Grn,∞) all have a version
of the so-called affine BG property (see [Mor12, Appendix A.1] for the relevant definitions, and
[Mor12, Theorems 8.1, 8.9, and 9.21] for the results). The main consequence of this that we use is
that ifL is a finitely generated separable extension ofF , there are canonical isomorphisms

π
A1

i (Grn,∞)(L) ∼= πi(Sing
A1

∗ (Grn,∞)(L)),

π
A1

i (GLn)(L) ∼= πi(Sing
A1

∗ (GLn)(L)), and

π
A1

i (GLn/GLn−1)(L) ∼= πi(Sing
A1

∗ (GLn/GLn−1)(L)),

where theπi on the right hand side denotes the ordinaryi-th homotopy group of a simplicial set.

Remark3.4. To be more precise, Morel proved thatSingA
1

∗ (GLn) andSingA
1

∗ (GLn/GLn−1) have
the affine BG property in the Nisnevich topology forn ≥ 3. Moser [Mos11] extended this to treat
the casen = 2 as well. The spaceSingA

1

∗ (Grn,∞) has the affine BG property in the Zariski
topology, and the statement we use is then a consequence of [Mor12, Theorem A.19].

TheA1-weak equivalenceGLn/GLn−1 → An\0 of Theorem2.6says thatGLn/GLn−1 isA1-
(n−2)-connected, and thus the simplicial setSingA

1

∗ (GLn/GLn−1)(F ) is (n−2)-connected for an
arbitrary fieldF . Suslin’s homomorphism is defined in terms of a different model of the classifying
space ofGLn, and to this end, we will replaceGrn,∞ by a different model. We saw above that the
canonical morphismGrn,∞ → BGLn,• is anA1-weak equivalence. We now establish a slightly
stronger version of this fact.

Lemma 3.5. The morphismSingA
1

∗ (Grn,∞) → SingA
1

∗ (BGLn,•) induced by the classifying mor-
phismGrn,∞ → BGLn,• is a simplicial weak equivalence. In particular,SingA

1

∗ (BGLn,•) is
A1-local.

Proof. The spaceGrn,∞ is a quotient ofVn,∞ by GLn, whereVn,∞ is a colimit of open sub-
schemes of affine spaces. Consider theC̆ech simplicial object̆C(p) obtained from the morphism
p : Vn,∞ → Grn,∞. By [MV99, §2 Lemma 2.14], the morphism̆C(p) → Grn,∞ is a simplicial
weak equivalence. It follows that the mapSingA

1

∗ (C̆(p)) → SingA
1

∗ (Grn,∞) is a simplicial weak
equivalence (use [MV99, §2 Lemma 1.8]). Furthermore, then-th term of this simplicial scheme is
then+1-fold fiber product ofVn,∞ with itself overGrn,∞. In this case, then-th term is isomorphic
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to Vn,∞ × GL×n
n . In particular,C̆(p) can be described as the quotient(Vn,∞ × EGLn,•)/GLn,

whereEGL• is theC̆ech simplicial scheme associated with the projectionGLn → Spec k. Projec-
tion onto the factorEGL• then defines a morphism̆C(p) → BGLn,• and therefore also a morphism
SingA

1

∗ (C̆(p)) → SingA
1

∗ (BGLn,•)

By constructionSingA
1

∗ (·) commutes with formation of finite products. The proof of [MV99,
§4 Proposition 2.3] shows that the structure morphismSingA

1

∗ (Vn,∞) → Speck is a simplicial
weak equivalence. It follows that the induced morphismSingA

1

∗ (C̆(p)) → SingA
1

∗ (BGLn,•) is a
termwise weak-equivalence of simplicial sheaves and therefore a simplicial weak equivalence by
[MV99, §2 Corollary 1.21].

As a consequence of this lemma, we haveπ
A1

i (Grn,∞)(L) ∼= πi(Sing
A1

∗ (BGLn,•)(L)) for any
n and any integeri ≥ 0. Taking sections of the exact sequence in Equation3.2 overL thus yields
an exact sequence of the form
(3.3)
πi(Sing

A1

∗ (BGLn−1,•)(L)) −→ πi(Sing
A1

∗ (BGLn,•)(L)) −→ πi−1(Sing
A1

∗ (GLn/GLn−1)(L)).

for any integeri > 0.
BecauseAn\0 isA1-(n−2)-connected, and becauseSingA

1

∗ (GLn/GLn−1) isA1-local andA1-
weakly equivalent toAn\0, it follows thatSingA

1

∗ (GLn/GLn−1) is simplicially (n−2)-connected.
As a consequence, taking sections over any fieldL, the Hurewicz theorem (for simplicial sets) gives
a canonical isomorphism

(3.4) πn−1(Sing
A1

∗ (GLn/GLn−1)(L))
∼

−→ Hn−1(Sing
A1

∗ (GLn/GLn−1)(L),Z).

The Hurewicz homomorphism is functorial and therefore gives a commutative square of the form

πi(Sing
A1

∗ (BGLn−1,•)(L)) //

��

πi(Sing
A1

∗ (BGLn,•)(L))

��

Hi(Sing
A1

∗ (BGLn−1,•)(L),Z) // Hi(Sing
A1

∗ (BGLn,•)(L),Z).

These two homomorphisms are compatible by the following result.

Lemma 3.6. If n ≥ 3, there is a commutative diagram of the form

πn(Sing
A1

∗ (BGLn−1,•)(L)) //

��

πn(Sing
A1

∗ (BGLn,•)(L))

��

// KMW
n (L)

��
Hn(Sing

A1

∗ (BGLn−1,•)(L),Z) // Hn(Sing
A1

∗ (BGLn,•)(L),Z) // KMW
n (L),

where all the vertical morphisms are Hurewicz homomorphisms and the farthest right arrow is the
isomorphism ofEquation3.4.

Proof. If n ≥ 3, becauseSingA
1

∗ (GLn/GLn−1)(L) is (n − 2)-connected, the first non-trivial
differential for the homological Serre spectral sequencedn of the fibrationSingA

1

∗ (BGLn−1,•) →

SingA
1

∗ (BGLn,•) fits into the short exact sequence of the stated form.
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Lemma 3.7. The augmentationSingA
1

∗ (X ) → X induces a commutative diagram of the form

Hn(Sing
A1

∗ (BGLn−1,•)(L),Z) //

��

Hn(Sing
A1

∗ (BGLn,•)(L),Z) //

��

KMW
n (L)

��
Hn(BGLn−1,•(L),Z) // Hn(BGLn,•(L),Z) // KM

n (L),

where the two vertical arrows on the left are split surjections.

Proof. By Suslin’s stabilization theorem3.3, the homotopy fiber of the mapBGLn−1,•(L) →
BGLn,•(L) is homologically(n−2)-connected. In particular, the same argument as above usingthe
homological Serre spectral sequence together with the other part of Suslin’s theorem identifies the
cokernel of the lower left horizontal map withKM

n (L). That the two vertical arrows on the left are
split surjections follows from the splitting of the augmentation given by the natural transformation
Id → SingA

1

∗ (·).

Finally, we can prove the main result we need.

Lemma 3.8. For any finitely generated separable extensionL/F , the morphismKQ
n−1(L) →

K
M
n−1(L) from Lemma3.2 factors through Suslin’s stabilization morphism3.1.

Proof. Consider the following commutative diagram

πn(Sing
A1

∗ (BGLn,•)(L)) //

��

πn(Sing
A1

∗ (BGL∞,•)(L))

��

Hn(Sing
A1

∗ (BGLn,•)(L),Z) //

��

Hn(Sing
A1

∗ (BGL∞,•)(L),Z)

��
Hn(BGLn,•(L),Z) // Hn(BGL∞,•(L),Z),

where the vertical arrows emanating from the top row are Hurewicz homomorphisms, and the ver-
tical arrows incident on the bottom row are split surjections. Furthermore, the lowest horizontal
arrow is an isomorphism by Suslin’s stabilization theorem.

As we observed at the beginning of this section, the homomorphismπ
A1

n (BGLn,•) −→ K
Q
n

factors through the mapπA1

n (BGLn,•) −→ π
A1

n (BGL∞,•). The bottom horizontal arrow is the iso-
morphism from Suslin’s stabilization theorem. Finally, the first sequence of composites in Suslin’s
homomorphism3.1is precisely the composite of the two vertical arrows on the right hand side with
the inverse to the isomorphism given by the bottom horizontal arrow.

Now, combining Lemmas3.6and3.7we get a commutative diagram with three rows. We start
with an element ofKMW

n (L) lying in the image of the map fromπn(SingA
1

∗ (BGLn,•)(L)). By the
discussion of the two previous paragraphs, that element factors throughKQ

n (L). Since the image
factors through toKM

n (L), commutativity of the diagram described in the first line of this paragraph
shows that the morphism in question factors throughHn(BGLn,•,Z). Then, by commutativity of
the diagram two paragraphs above and the definition of Suslin’s homomorphism, it follows that our
morphism factors through Equation3.1.
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By Theorem2.9, there are canonical isomorphismsπ
A1

n (BGLn,•) ∼= π
A1

n (BSLn,•) ∼= π
A1

n−1(SLn).
Using this fact, the next result implies Theorem5, and takingn = 3 the second exact sequence of
Theorem4.

Theorem 3.9. If F is an infinite perfect field, then for any odd integern ≥ 3, there is a short exact
sequence of the form

0 −→ Sn+1 −→ π
A1

n (BGLn) −→ K
Q
n −→ 0,

together with an epimorphismKM
n+1/n! → Sn+1.

Proof. The assumption that the base fieldF is perfect stems from our implicit use of Morel’s result
that a stronglyA1-invariant sheaf of abelian groups is strictlyA1-invariant.

By Lemma3.2 there is a short exact sequence whereSn+1 is the cokernel of a morphism
K

Q
n+1 → K

M
n+1. By Lemma3.8, the morphism of the previous homomorphism factors throughthe

Suslin’s homomorphismKQ
n+1 → K

M
n+1 of Equation3.1. By [Sus84, Corollary 4.4], the image of

this homomorphism on sections over fields containsn!KM
n+1(F ), which gives the epimorphism.

Remark3.10. Suslin’s stabilization theorem3.3 and [Sus84, Corollary 4.4] were extended to local
rings with infinite residue field in [NS89], and independently, to all rings of stable rank1 in [Gui89].
While this is unnecessary for our analysis, these results imply that maps on stalks induced by the
homomorphismKQ

n+1 → K
M
n+1 we constructed in Lemma3.2are understood.

Comparing fiber sequences via homogeneous spaces

Proposition 3.11. For any integersm,n ≥ 1, let i2n : Sp2n → SL2n be the obvious closed im-
mersion group homomorphism (obtained by picking a symplectic form on ann-dimensional vector

space),jm : SLm → SLm+1 be defined byjm(M) =

(
1 0
0 M

)
andl2n : Sp2n → Sp2n+2 defined

by l2n(N) =

(
Id 0
0 N

)
. The following diagram is cartesian

Sp2n
l2n //

j2ni2n
��

Sp2n+2

i2n+2

��
SL2n+1 j2n+1

// SL2n+2

and it induces a diagram

Sp2n
l2n //

j2ni2n
��

Sp2n+2

i2n+2

��

// Sp2n+2/Sp2n

��
SL2n+1 j2n+1

//

��

SL2n+2
//

��

SL2n+2/SL2n+1

SL2n+1/Sp2n // SL2n+2/Sp2n+2
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where the lines and columns are exact sequences ofétale (representable) sheaves. Moreover, the
induced morphismsSp2n+2/Sp2n → SL2n+2/SL2n+1 and SL2n+1/Sp2n → SL2n+2/Sp2n+2

are isomorphisms.

Proof. We first check that the square

Sp2n
l2n //

j2ni2n
��

Sp2n+2

i2n+2

��
SL2n+1 j2n+1

// SL2n+2

is cartesian. LetR be a ring,M ∈ SL2n+1(R) andN ∈ Sp2n+2(R) such thatj2n+1(M) =

i2n+2(N), i.e.,

(
1 0
0 M

)
∈ Sp2n+2(R). Write M =

(
a v
w M ′

)
with a ∈ R, v ∈ M1,2n(R),

w ∈ M2n,1(R) andM ′ ∈ M2n(R). Expressing the condition for

(
1 0
0 M

)
to be symplectic, we

see thata = 1, v,w = 0 andM ′ ∈ Sp2n(R). That the diagram is cartesian follows because all the
maps in the diagram are injective. The quotients in the diagram

Sp2n
l2n //

j2ni2n
��

Sp2n+2

i2n+2

��

// Sp2n+2/Sp2n

��
SL2n+1 j2n+1

//

��

SL2n+2
//

��

SL2n+2/SL2n+1

SL2n+1/Sp2n // SL2n+2/Sp2n+2

exist by [SGA70, exposé VIA, Théorème 3.2, p311] and they represent the ´etale sheaves associated
with the quotient presheaves.

The isomorphism of the quotientsSL2n+2/SL2n+1 → Sp2n+2/Sp2n is classical. Moreover, as
a consequence, there is a transitive action ofSp2n+2 onSL2n+2/SL2n+1. Equivalently, there is a
transitive action ofSL2n+1 onSL2n+2/Sp2n+2 and the computations above identifies the stabilizer
of the identity coset withSp2n; the required isomorphism of homogeneous spaces follows directly
from this observation.

Corollary 3.12. The rows and columns of the pullback square ofProposition3.11 give rise to
commutative diagrams of long exact sequences of homotopy sheaves associated with a fibration.

Proof. We prove the result for rows; the result for columns is established in a formally identical
fashion. Essentially, this is a consequence of properness of the A1-local model structure. The
functorSingA

1

∗ (·) is compatible with the formation of limits [MV99, p. 87]. As a consequence,
given any pullback square of schemes, upon application ofSingA

1

∗ (·) one obtains a corresponding
pullback square of spaces. Applying this observation to Proposition 3.11 we obtain a pullback
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square of the form

SingA
1

∗ (Sp2n−2) //

��

SingA
1

∗ (Sp2n)

��

SingA
1

∗ (SL2n−1) // SingA
1

∗ (SL2n).

The induced morphisms of spacesSingA
1

∗ (Sp2n) → SingA
1

∗ (Sp2n/Sp2n−2) andSingA
1

∗ (SL2n) →
SingA

1

∗ (SL2n/SL2n+1) give rise to a diagram of the form

SingA
1

∗ (Sp2n−2) //

��

SingA
1

∗ (Sp2n)

��

// SingA
1

∗ (Sp2n/Sp2n−2)

��

SingA
1

∗ (SL2n−1) // SingA
1

∗ (SL2n) // SingA
1

∗ (SL2n/SL2n−1).

where the right vertical map is the identity. It suffices to show that this commutative diagram
of spaces is a morphism of simplicial fiber sequences by [Wen11, Proposition 5.1] and [Wen11,
Theorem 5.3].

The action ofSp2n−2 onSp2n is compatible with the action ofSL2n−1 on SL2n by the com-
mutativity of the diagram in Proposition3.11. We can assume all spaces in question are simplicially
fibrant since the fibrant replacement functor commutes with formation of limits as well. Then, the
morphismSingA

1

∗ (Sp2n) → SingA
1

∗ (Sp2n/Sp2n−2) is a simplicialSingA
1

∗ (Sp2n−2)-torsor and is
classified by a morphismSingA

1

∗ (Sp2n/Sp2n−2) → BSingA
1

∗ (Sp2n−2), and likewise, there is a
classifying morphismSingA

1

∗ (SL2n/SL2n−1) → BSingA
1

∗ (SL2n−1). Furthermore, the morphism
Sp2n−2 →֒ SL2n−1 induces a morphismBSingA

1

∗ (Sp2n−2) → BSingA
1

∗ (SL2n−1).
Now, to show that we have a morphism of fiber sequences, it suffices to observe that the

action of theRΩ1
sBSingA

1

∗ (Sp2n−2) (resp. RΩ1
sBSingA

1

∗ (SL2n−1)) on SingA
1

∗ (Sp2n) (resp.
SingA

1

∗ (SL2n)) is precisely given by the induced action ofSingA
1

∗ (Sp2n−2) on SingA
1

∗ (Sp2n)
(resp. the action ofSingA

1

∗ (SL2n−1) onSingA
1

∗ (SL2n)).

Remark3.13. Whenn = 2, one can refine Proposition3.11using the isomorphismSL2
∼= Sp2. In

that case one also knows thatSL4/Sp4 ∼= SL3/SL2 is a5-dimensional smooth affine quadric that
isA1-1-connected.

TheA1-homotopy type ofSL2n/Sp2n

The inclusion morphismSp2n → GL2n induces a morphismBSp2n → BGL2n. Stabilizing this
morphism with respect ton and takingA1-homotopy sheaves produces a morphismK

Sp
i → K

Q
i .

This morphism, which will be studied in greater detail at thebeginning of Section4, is precisely the
map induced by “forgetting” the symplectic structure. In the stable range, our understanding of this
homomorphism can be translated into understanding of theA1-homotopy theory ofSL2n/Sp2n.
Indeed, there is anA1-fiber sequence of the form

SL2n/Sp2n −→ BSp2n −→ BSL2n.

We now construct a stabilization morphism that will allow usto compare the spacesSL2n/Sp2n for
different values ofn.
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Lemma 3.14. There is a pullback diagram of the form

Sp2n−2
//

��

SL2n−2

��
Sp2n // SL2n.

Next, consider the sequence of inclusionsSp2n−2 →֒ SL2n−2 →֒ SL2n. These inclusions
induce morphisms of homogeneous spaces

SL2n−2/Sp2n−2 →֒ SL2n/Sp2n−2 −→ SL2n/SL2n−2,

where the second morphism is Zariski locally trivial with fibersSL2n−2/Sp2n−2. Indeed, the sec-
ond morphism is the projection onto the first factorSL2n×

SL2n−2SL2n−2/Sp2n−2 → SL2n/SL2n−2.
Next, consider the sequence of inclusionsSp2n−2 →֒ Sp2n →֒ SL2n. These inclusions induce

morphisms of homogeneous spaces

Sp2n/Sp2n−2 →֒ SL2n/Sp2n−2 −→ SL2n/Sp2n.

Again, the second morphism is a Zariski locally trivial smooth morphism with fibers isomorphic to
Sp2n/Sp2n−2. In this case, the second morphism is the projection onto thefirst factorSL2n ×Sp2n

Sp2n/Sp2n−2 → SL2n/Sp2n.
Composing the inclusion in the first sequence with the projection in the second sequence we

obtain a morphism

(3.5) SL2n−2/Sp2n−2 −→ SL2n/Sp2n,

and composing the inclusion in the second sequence with the projection in the first sequence we
obtain a morphism

Sp2n/Sp2n−2 −→ SL2n/SL2n−2

Furthermore, in both sequences above, as the associated spaces of anSL2n-torsor (resp.Sp2n-
torsor), these sequences are againA1-fiber sequences. Using Lemma3.14 as before, there are
morphisms between the resultingA1-fiber sequences as well; we summarize this in the next result.

Corollary 3.15. The pullback diagram ofLemma3.14induces a morphism of fiber sequences

Sp2n−2
//

��

SL2n−2
//

��

SL2n−2/Sp2n−2

��
Sp2n // SL2n

// SL2n/Sp2n

where the right vertical morphism is that of3.5.

From the discussion above, we have a morphismSp2n/Sp2n−2 → SL2n/SL2n−2. Composing
with the projectionSL2n/SL2n−2 → SL2n/SL2n−1, we get the isomorphismSp2n/Sp2n−2 →
SL2n/SL2n−1 of the previous section. We summarize these two observations in the following
result.



23 3 A1-homotopy theory ofSLn and Spn: some non-stable results

Lemma 3.16. The morphismSp2n/Sp2n−2 → SL2n/SL2n−2 admits a retraction, and the projec-
tion morphismSL2n/SL2n−2 → SL2n/SL2n−1 splits.

There is one further relationship between the quotientsSL2n/Sp2n andSL2n−2/Sp2n−2. By
the isomorphism we wrote down before, we can identifySL2n/Sp2n ∼= SL2n−1/Sp2n−2. There is
then a sequence of the form

SL2n−2/Sp2n−2 −֒→ SL2n−1 ×
SL2n−2 SL2n−2/Sp2n−2 −→ SL2n−1/SL2n−2,

where the middle term is isomorphic toSL2n−1/Sp2n−2 and the second morphism is Zariski locally
trivial with fibers isomorphic toSL2n−2/Sp2n−2. Again, this is an associated space of anSL2n−2-
torsor and so gives rise to anA1-fiber sequence. Note that, in this case,SL2n−1/SL2n−2 is A1-
(2n − 3)-connected.

A short exact sequence describingπA1

2 (SL2)

The fibre sequence
Sp2 −→ Sp4 −→ Sp4/Sp2

and theA1-equivalenceSp4/Sp2 ≃ A4 \ 0 induce an exact sequence

π
A1

3 (Sp4) // KMW
4

//
π
A1

2 (SL2) //
π
A1

2 (Sp4) // 0.

Both sheavesπA1

3 (Sp4) andπA1

2 (Sp4) are in the stable range and so we know by Theorem2.10
thatπA1

2 (Sp4) = K
Sp
3 andπA1

3 (Sp4) = K
Sp
4 . Thus the above sequence reads as

K
Sp
4

// KMW
4

//
π
A1

2 (SL2) // K
Sp
3

// 0.

If we write
S
′′
4 := coker(KSp

4 −→ K
MW
4 ),

where the map on the right is from the exact sequence just above, and we identifySL2
∼= Sp2, then

in order to understandπA1

2 (SL2), it remains to describeS′′
4.

To this end, let
ϕ′
4 : K

Sp
4 −→ K

M
4

be defined as the composite of the forgetful morphismK
Sp
4 → K

Q
4 and the morphismϕ4 : KQ

4 →
K

M
4 of Lemma3.8. We writeS′

4 for the cokernel ofϕ′
4. The next result is a refinement of [Wen11,

Proposition 6.11].

Lemma 3.17. The compositeI5 → K
MW
4 → S

′′
4 yields an exact sequence

I
5 // S′′

4
// S′

4
// 0.
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Proof. Consider the cartesian square

Sp4 //

��

SL4

��
Sp6 // SL6

of Lemma3.14. The vertical quotients are respectivelySp6/Sp4 andSL6/SL4. We know that
Sp6/Sp4 has theA1-homotopy type ofA6 \ 0, which isA1-4-connected again by Theorem2.6.

The columns of the cartesian square in the previous paragraph give rise to a morphism ofA1-
fiber sequences by Corollary3.15and a corresponding morphism of associated long exact sequences
in A1-homotopy sheaves. By the connectivity results just mentioned, the portion of these long exact
sequences regarding degree3 homotopy sheaves yields a commutative diagram with exact columns
of the form:

0 //

��

π
A1

4 (SL6/SL4)

��

π
A1

3 (Sp4) //

��

π
A1

3 (SL4)

��

π
A1

3 (Sp6) //

��

π
A1

3 (SL6)

��
0 0.

The spaceSL6/SL4 also fits into anA1-fiber sequence of the form

SL5/SL4 −→ SL6/SL4 −→ SL6/SL5,

where the fiber has theA1-homotopy type ofA5 \ 0 and the base has theA1-homotopy type of
A6 \ 0. Moreover, by Lemma3.16 the morphismSL6/SL4 → SL6/SL5 is split by the mor-
phismSp6/Sp4 → SL6/SL4 and therefore the corresponding long exact sequence inA1-homotopy
sheaves is also split; this splitting induces an isomorphism K

MW
5

∼
→ π

A1

4 (SL6/SL4).
The connecting homomorphism in theA1-fiber sequenceSL4 → SL6 → SL6/SL4 is induced

by the classifying mapSL6/SL4 → BSL4, while the connecting homomorphism in theA1-fiber
sequenceSL4 → SL5 → SL5/SL4 is induced by the classifying mapSL5/SL4 → BSL4.
These two homomorphisms are compatible by means of the inclusionSL4 →֒ SL5 →֒ SL6, and it
follows that the compositionKMW

5 → π
A1

4 (SL6/SL4) → π
A1

3 (SL4) is induced by the connecting
homomorphism in the fibre sequence

SL4 −→ SL5 −→ SL5/SL4.

There are stabilization isomorphismsπA1

3 (SL5) → π
A1

3 (SL6) = K
Q
4 andπA1

3 (Sp4) = π
A1

3 (Sp6) =
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K
Sp
4 . We then obtain a commutative diagram with exact columns of the form:

0 //

��

K
MW
5

��

K
MW
5

η

��
π
A1

3 (Sp4) //

��

π
A1

3 (SL4)

��

// KMW
4

��
K

Sp
4

//

��

K
Q
4

��

// KM
4

��
0 0 0.

The morphismK
Q
4 → K

M
4 in the bottom row agrees with Suslin’s homomorphism upon taking

sections over finitely generated extensions of the base fieldby Lemma3.8(while the quoted lemma
appears to implicitly assume thatn is odd, that assumption was only necessary in order to define the
homomorphism; in the situation under consideration we observe explicitly a factorization through
η and the same proof then applies here as well). Similarly, we already observed that the forgetful
homomorphism is induced by the morphismBSp∞ →֒ BGL∞ coming from the inclusionSp2n →֒
GL2n and therefore, since the morphismKSp

4 → K
Q
4 in the bottom row is induced by stabilization,

it follows that this morphism is precisely the forgetful homomorphism.
By performing a diagram chase, we observe thatS

′′
4 is an extension ofS′

4 by the image of
η : KMW

5 → K
MW
4 . To finish, observe that it follows from the description of [Mor04, Theorem

5.3] that the image ofη : KMW
5 → K

MW
4 is preciselyI5.

Remark3.18. Our guess is that the morphismI5 → S
′′
4 is injective.

Lemma 3.19. If the base fieldk is assumed to have characteristic unequal to2, there is a surjective
morphismK

M
4 /12 → S

′
4.

Proof. In Section4 we write f4,2 : K
Sp
4 → K

Q
4 for the forgetful homomorphism. With this

notation, by definition, we have an exact sequence of sheaves

K
Sp
4

ϕ4◦f4,2 // KM
4

// S′
4

// 0.

Now, for any fieldF , there is a natural homomorphism of groupsKM
4 (F ) → KQ

4 (F ) in-
duced by the isomorphismKM

1 (F )
∼

−→ KQ
1 (F ) and the ring structures. This yields a morphism

of sheavesξ4 : K
M
4 → K

Q
4 . In Section4, we will also introduce the hyperbolic morphism

H4,2 : K
Q
4 → K

Sp
4 . To prove the lemma, it suffices to show that there is an epimorphism of

K
M
4 /12 to the cokernel of the composition

ϕ4 ◦ f4,2 ◦H4,2 ◦ ξ4 : K
M
4 → K

M
4 .
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In view of [Sus84, Corollary 4.4], this follows from the commutative diagram

K
Q
4

f4,2◦H4,2 // K
Q
4

K
M
4 ·2

//

ξ4

OO

K
M
4

ξ4

OO

induced by Lemma4.3.

The next result, which gives the second part of Theorem4, follows immediately by combining
Theorem2.9, and Lemmas3.17and3.19.

Theorem 3.20.If the base fieldk is assumed to be infinite perfect and to have characteristic unequal
to 2, then there are short exact sequences of the form

0 −→ S
′′
4 −→ π

A1

2 (GL2) −→ K
Sp
3 −→ 0

and
I
5 −→ S

′′
4 −→ S

′
4 −→ 0,

whereS′
4 is a quotient ofKM

4 /12.

Remark3.21. The stabilization sequence forSp2n gives the exact sequence

π
A1

2n(BSp2n−2) −→ π
A1

2n(BSp2n) −→ π
A1

2n−1(Sp2n/Sp2n−2)

−→ π
A1

2n−1(BSp2n−2) −→ π
A1

2n−1(BSp2n) −→ 0.

We knowπ
A1

2n−1(Sp2n/Sp2n−2) ∼= K
MW
2n andπA1

2n(BSp2n) ∼= K
Sp
2n . By the compatibility of fiber

sequences of Corollary3.15, we know that the morphismπA1

2n(BSp2n) → π
A1

2n−1(Sp2n/Sp2n−2)
fits into a commutative diagram of the form

π
A1

2n(BSp2n−2) //

��

π
A1

2n(BSp2n) //

��

π
A1

2n−1(Sp2n/Sp2n−2)

��

π
A1

2n(BSL2n−1) //
π
A1

2n(BSL2n) //
π
A1

2n−1(SL2n/SL2n−1)

Results of Hutchinson-Tao [HT10, Theorem 1.1] give stabilization results for the homology of the
special linear group which are very similar to Suslin’s stabilization theorem3.3. In addition to
only being proven for fields having characteristic0, one main difference between these results and
Suslin’s involves the appearance ofKMW

n . In particular, Hutchinson and Tao construct an exact
sequence of the form

H2n(BSL2n−1,•(L),Z) −→ H2n(BSL2n,•(L),Z) −→ KMW
n (L) −→ 0
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One can then construct a homomorphismKSp
2n (L) → KMW

2n (L) as follows. Consider the com-
posite

KSp
2n (L) := π2n(BSp+∞) −→ H2n(BSp∞,Z) −→ H2n(BSL∞,Z)

−→ H2n(BSL2n,Z) −→ KMW
2n (L)

(3.6)

An argument similar to that of Lemma3.8, will then show that the induced homomorphismKSp
2n →

K
MW
2n factors through a Hurewicz style homomorphism just like Suslin’s [Sus84, §4]. Unfortu-

nately, we do not know a result analogous to Suslin’s result [Sus84, Corollary 4.4] regarding the
image of this map.

4 Grothendieck-Witt groups

In this section, we begin by recalling some basic facts aboutGrothendieck-Witt groups. These
are a Waldhausen-style version of hermitianK-theory. The general reference here is the work of
M. Schlichting ([Sch10a], [Sch10b]). The main goal is to prove Theorem4.11, which will give
a description of the third cohomology of the sheafK

Sp
3 (which appears as one term in the exact

sequence of Theorem3.20).

Definitions

LetX be a smooth scheme with2 ∈ OX(X)× (we keep these assumptions throughout the section,
though it is not necessary for some of the arguments). LetP(X) be the category of coherent locally
freeOX -modules andChb(X) be the category of bounded complexes of objects inP(X). It carries
the structure of an exact category, by saying that an exact sequence of complexes is exact if it is exact
in P(X) degreewise.

For any line bundle onL on X, the dualityHomOX
( ,L) on P(X) induces a duality♯L on

Chb(X) and the canonical identification of a coherent locally free module with its double dual
gives a natural isomorphism of functors̟L : 1 → ♯L♯L. One can also define a weak-equivalence
in Chb(X) to be a quasi-isomorphism of complexes. This shows that(Chb(X), qis, ♯L,̟L) is
anexact category with weak-equivalences and (strong) duality in the sense of [Sch10b, §2.3] (see
also loc. cit., §6.1]). The (left) translation functorT : Chb(R) → Chb(R) yields new dualities
♯nL := T n ◦ ♯L and canonical isomorphisms̟nL := (−1)n(n+1)/2̟L.

To any exact category with weak-equivalences and duality, Schlichting associates a spaceGW
and defines the (higher) Grothendieck-Witt groups to be the homotopy groups of that space [Sch10b,
§2.11]. More precisely:

Definition 4.1. For i ≥ 0, we denote byGW j
i (X,L) the groupπiGW(Chb(X), qis, ♯jL,̟

j
L). If

L = OX , we writeGW j
i (X) for GW j

i (X,OX ).

One can extend further the definition of Grothendieck-Witt groups by considering a spectrum
GW (Chb(X), qis, ♯jL,̟

j
L) [Sch10b, §10]. The negative Grothendieck-Witt groups are defined as

GW j
−i(X,L) := π−iGW (Chb(X), qis, ♯jL,̟

j
L) for i > 0.
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For anyj ∈ Z, the groupGW j
0 (X,L) coincides with the Grothendieck-Witt group defined by

Balmer-Walter of the triangulated categoryDb(P(X)) of bounded complexes of coherent locally
freeOX -modules endowed with the corresponding duality ([Sch11, Lemma 8.2], [Wal03, Theorem
5.1]), and negative Grothendieck-Witt groups coincide with triangular Witt groups as defined by P.
Balmer (see, e.g., [Bal05]) under the formulaGW j

−i(X,L) = W i+j(X,L).
The Grothendieck-Witt groups defined above coincide with hermitian K-theory as defined by

M. Karoubi ([Kar73], [Kar80]) in the case of affine schemes, at least when2 is invertible (see
[Sch10a, Remark 4.16], see also [Hor02]). In particular, given a smoothk-algebraR we have the
identifications

GW 0
i (R) = KiO(R)

GW 2
i (R) = KiSp(R).

There are identificationsGW 1
i (R) = −1Ui(R) andGW 3

i (R) = Ui(R), where the groupsUi(R)
and−1Ui(R) are Karoubi’sU groups, andGW n

i is 4-periodic inn. Comparing [PW10, Theorem
8.2] with the above definitions yields a description of the sheavesKSp

i from the previous section.
We summarize this observation in the following result.

Proposition 4.2. The sheafKSp
i is the Nisnevich sheafification of the functor onSmk defined by

X 7→ GW 2
i (X).

Functoriality

Let k be a field having characteristic unequal to2, and supposeX is a smoothk-scheme. By
definition, these groups are contravariantly functorial inthe input space, i.e., given a morphism
f : X → Y of smooth schemes and a line bundleL onY , there are pullback homomorphisms

f∗ : GW j
i (Y,L) −→ GW j

i (X, f∗L).

These pullback morphisms satisfy a number of the “usual” properties, which we now discuss.
If i : U → X is an open immersion with closed complementZ := X \ U , then one defines

the Grothendieck-Witt groups with support onZ using the exact categoryCHb(X)Z of complexes
supported onZ. In this setup, there is an associated long exact localization sequence:

. . . // GW j
i,Z(X,L) // GW j

i (X,L) // GW j
i (U,L)

// GW j
i−1,Z(X,L) // . . . .

Note, however, that in general there is no “dévissage” isomorphism comparing the Grothendieck-
Witt theory ofZ with the theory supported onZ. We will return to this issue when we discuss
transfers.

The higher Grothendieck-Witt groups also areA1-homotopy invariant. More precisely, given
a vector bundlep : E → X (or, more generally, a Nisnevich locally trivial morphism with affine
space fibers), the induced morphismp∗ is an isomorphism.

One can compare QuillenK-theory with higher Grothendieck-Witt groups with the hyperbolic
morphismsHi,j : Ki(X) → GW j

i (X,L) and forgetful morphismsfi,j : GW j
i (X,L) → Ki(X)
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defined for anyi, j ∈ N and any line bundleL overX. The hyperbolic and forgetful morphisms are
connected by means of theKaroubi periodicityexact sequences

. . . // Ki(X)
Hi,j // GW j

i (X,L)
ηi,j // GW j−1

i−1 (X,L)
fi−1,j−1// Ki−1(X)

Hi−1,j// GW j
i−1(X,L) // . . . ,

whereηi,j are certain connecting homomorphisms.
The compositionfi,j ◦Hi,j is in general difficult to understand, but the situation is slightly better

whenX is taken to be a field. For any fieldF , the identificationξ1 : KM
1 (F ) → KQ

1 (F ), induces
a (functorial inF ) homomorphismξi : KM

i (F ) → KQ
i (F ) using the ring structures on both sides.

Lemma 4.3. For any fieldF having characteristic unequal2, and for any integersi, j ≥ 0, the
following diagram commutes:

KQ
i (F )

fi,j◦Hi,j // KQ
i (F )

KM
i (F )

(1+(−1)i+j )Id
//

ξi

OO

KM
i (F ).

ξi

OO

Proof. Let (E , ω, ♯, η) be an exact category with weak-equivalences and duality in the sense of
[Sch10b, §2.3]. With any exact category with weak-equivalences, one can associate the hyper-
bolic category(HE , ω) ([Sch10b, §2.15]). Its objects are pairs(X,Y ) of objects ofC, a morphism
(X,Y ) → (X ′, Y ′) is a pair(a, b) of morphisms ofC with a : X → X ′ andb : Y ′ → Y . Such
a morphism is a weak-equivalence ifa and b are. The switch(X,Y ) 7→ (Y,X) yields a dual-
ity ⋆ on HE and there is an obvious identificationid : 1 →⋆⋆. Thus(HE , ω,⋆ , id) is an exact
category with weak-equivalences and duality. The Grothendieck-Witt spaceGW(HE , ω,⋆ , id) is
naturally homotopic to theK-theory spaceK(E , ω) [Sch10b, Proposition 2.17]. In this context,
the forgetful functorF reads asF (X) = (X,X♯) for anyX in E . On the other hand the hyper-
bolic functorH : HE → E is defined byH(X,Y ) = X ⊕ Y ♯ ([Sch10a, §3.9]). The composition
FH : (HE , ω,⋆ , id) → (HE , ω,⋆ , id) is then given byFH(X,Y ) = (X ⊕ Y ♯,X♯ ⊕ Y ♯♯). In
particular, this composition is the same for(E , ω, ♯, η) and(E , ω, ♯,−η).

Consider now(Chb(F ), qis, ♯j ,̟j). We have an involution onGL(F ) defined byG 7→
(Gt)−1. This involution induces a ring homomorphismτ : Ki(F ) → Ki(F ) (which is the identity
onK0). Using [Sch10b, Proposition 8.4] and our description ofFH, we see that the compositions

Ki(F )
Hi,j // GW j

i (F )
fi,j // Ki(F )

are equal to1 + (−1)jτ . Now τ corresponds toId onK0(F ) and multiplication by−1 onK1(F ).

The Gersten-Grothendieck-Witt spectral sequences

In analogy with QuillenK-theory, one can define a coniveau spectral sequence on Grothendieck-
Witt groups [FS09], but the situation is a bit more complicated since one has totake into account the
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relevant dualities. Nevertheless, there exists for anyn ∈ N and any line bundleL overX a spectral
sequenceE(n,L)p,q converging toGW n

n−p−q(X,L) whose terms at page2 are

E(n,L)p,q2 :=
⊕

xp∈X(p)

GW n−p
n−p−q(k(xp), ω

L
xp
).

Here,ωL
xp

denotes the duality onChb(k(xp)) defined onk(xp)-vector spaces by

ωL
xp
(V ) = Homk(xp)(V,Ext

p
OX,xp

(k(xp),L ⊗OX,xp)).

Since the Gersten conjecture holds for Grothendieck-Witt groups [FS09, Remark 27], any lineq ∈ Z

at page2 gives a flasque resolution of the sheaf associated with the presheaf

U 7→ ker(GW n
n−q(k(U), ωL

x0
) −→

⊕

x1∈U (1)

GW n−1
n−1−q(k(x1), ω

L
x1
));

one typically refers to elements of this kernel as unramifiedelements inGW n
n−q(k(U), ωL

x0
).

Notation 4.4. If X is a smooth scheme, andL is a line bundle onX, for any i, j ∈ N, write
GW

j
i (L) for the Zariski (or Nisnevich) sheaf associated with the presheaf of unramified elements

in GW j
i (k(X), ωL

x0
).

In particular, takingn = 2 andq = −1, we see that the lineq = −1 in the spectral sequence
E(2)p,q is a flasque resolution of the sheafK

Sp
3 = GW

2
3.

Remark4.5. One useful fact about the Gersten-Grothendieck-Witt spectral sequences is that the
forgetful homomorphismsfi,j : GW j

i (X,L) → Ki(X) and hyperbolic homomorphismsHi,j :

Ki(X) → GW j
i (X,L) induce morphisms of spectral sequences between the Gersten-Grothendieck-

Witt spectral sequence and the Brown-Gersten-Quillen spectral sequence inK-theory (and con-
versely).

Transfers

In this section, we refer to [Gil07a] for more information on the category of complexes of quasi-
coherentOX-modules with coherent and bounded homology, and the duality on it.

Let X be a smooth scheme with2 invertible and letM(X) be the category of quasi-coherent
OX -modules. We denote byChbc(M(OX )) the category of complexes of objects inM(OX) whose
homology is bounded and coherent. We can define a structure ofexact category onChbc(M(OX))
by saying that a sequence of complexes is exact if it is degreewise exact. A weak-equivalence of
complexes is a quasi-isomorphism.

If L is a line bundle overX, we fix an injective resolutionI of L

0 // L // I0 // I−1
// . . . // I−d

// 0

and we consider for any complexM ∈ Chbc(M(X)) the complex♯I(M) := HomOX
(M,I).

There is a canonical isomorphism̟I : 1 → ♯I♯I and then(Chbc(M(X)), qis, ♯I ,̟I) is an exact
category with weak-equivalences and duality. As seen in theprevious section, the translation functor
yields new dualities♯nI and̟n

I and we can define thecoherent Grothendieck-Witt groupsas the
homotopy groups of the spaceGW associated with(Chbc(M(X)), qis, ♯I ,̟I).



31 4 Grothendieck-Witt groups

Definition 4.6. For i ≥ 0, we denote bỹGW
j

i (X,L) the groupπiGW(Chbc(M(X)), qis, ♯I ,̟I).

If L = OX , we simply putG̃W
j

i (X) instead ofG̃W
j

i (X,OX ).

The embeddingP(X) ⊂ M(X) yields a functorι : Chb(X) → Chbc(M(X)) and the choice
of an injective resolutionI of L induces a natural transformation♯I ◦ ι → ι ◦ ♯L which is a duality
preserving functor in the sense of [Sch10b, §2.1]. The functorι is moreover non-singular and exact
and then induces a morphism of spaces

ι : GW(Chb(X), qis, ♯L,̟L) −→ GW(Chbc(M(X)), qis, ♯I ,̟I)

which is a weak-equivalence by means of [Sch10b, Lemma 2].
LetX,Y be smooth schemes, andf : Y → X be a finite morphism. We will assume thatX and

Y are integral and setr = dim(X) − dim(Y ). LetL be a line bundle onX andI be an injective
resolution ofL

0 // L // I0 // I−1
// . . . // I−d

// 0.

Let f : (Y,OY ) → (X, f∗OY ) be the morphism of ringed spaces induced byf . We letf ♯I be
the complexf

∗
(HomOX

(f∗OY ,I)) and we observe thatf ♯I induces a duality onChbc(M(Y ))
[Gil07a, §2.4]. The trace map induces a duality preserving functorf∗ ◦ ♯f♯I → ♯I ◦f∗ and therefore
we get a morphism of spaces

f∗ : GW(Chbc(M(Y )), qis, ♯f♯I ,̟f♯I) −→ GW(Chbc(M(X)), qis, ♯I ,̟I).

Let N be the invertibleOY -modulef
∗
ExtrOX

(f∗OY ,L) [Gil07a, §4.3]. Then♯f♯I is an injective
resolution ofN (shifted−r times) by [Gil07a, §4.3] and thereforef∗ induces a morphism of spaces

f∗ : GW(Chbc(M(Y )), qis, ♯−r
f♯I

,̟−r
f♯I

) −→ GW(Chbc(M(X)), qis, ♯I ,̟I)

giving homomorphismsf∗ : GW j−r
i (Y,N ) → GW j

i (X,L) for any i ≥ 0 and anyj ∈ Z. If
f : Y → X is a closed immersion, observe that, by construction,f∗ factorizes through the groups
onX supported onY .

A finite morphism preserves the filtration by codimension of support, and then induces mor-
phisms of Gersten-Grothendieck-Witt spectral sequences (see, for instance, [Fas08, Lemma 5.3.2]).
These observations allow one to prove the following “dévissage” result:

Proposition 4.7. LetX be a smooth scheme and letY ⊂ X be a closed smooth subscheme. Let
L be a line bundle overX andN := f

∗
ExtrOX

(f∗OY ,L). Letr = dim(X) − dim(Y ). Then the
transfer homomorphisms

f∗ : GW j−r
i (Y,N ) −→ GW j

i,Y (X,L)

are isomorphisms for anyi, j ∈ N.

Proof. Our argument is along the same lines as [Gil02, §4]. We know thatf∗ induces a morphism
between the corresponding Gersten-Grothendieck-Witt spectral sequences and it suffices to prove
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that it is an isomorphism at page2 to prove the result. After dévissage [FS09, Proposition 28],f∗
induces a homomorphism

f∗ : GW n−p
n−p (k(yp), ω

N
yp) −→ GW n−p

n−p (k(yp), ω
L
yp)

for anyyp ∈ Y (p), whereωN
yp = Homk(yp)(V,Ext

p
OY,yp

(k(yp),N ⊗ OY,yp)) for any vector space

V andωL
yp = Homk(yp)(V,Ext

p+r
OX,yp

(k(yp),L ⊗ OX,yp)). The morphismf∗ is induced by the

canonical identification

ExtpOY,yp
(k(yp),N ⊗OY,yp) ≃ Extp+r

OX,yp
(k(yp),L ⊗OX,yp)

and is therefore an isomorphism.

Computation of H3
Nis(X,K

Sp
3 )

Our aim in this section is the computation ofH3
Nis(X,KSp

3 ). As seen in the section on the Gersten-
Grothendieck-Witt spectral sequences, the lineq = −1 at page2 in the spectral sequenceE(2)p,q

provides a flasque resolution ofKSp
3 in the Zariski topology. Since Grothendieck-Witt groups of

smooth schemes are homotopy invariant, the sheafK
Sp
3 is strictlyA1-invariant and thus its Zariski

cohomology coincides with its Nisnevich cohomology by, e.g., [Mor12, Corollary 5.43]. We are
thus reduced to the study of the Gersten resolution ofK

Sp
3 whose last terms look as follows:

⊕

x2∈X(2)

GW 0
1 (k(x2), ωx2)

//
⊕

x3∈X(3)

GW 3
0 (k(x3), ωx3)

// H3(X,KSp
3 ) // 0.

To understand the right-hand cohomology group, we first compute the groupsGW 0
1 (F ) andGW 3

0 (F )
for any fieldF (again, we assume thatF has characteristic unequal to2). Observe that by definition
GW 0

1 (F ) = K1O(F ).

Lemma 4.8 ([FS08, Lemma 4.1]). LetF be a field with2 ∈ F×. The hyperbolic functorH0,3 :
K0(F ) → GW 3(F ) yields an isomorphismZ/2 → GW 3

0 (F ).

Lemma 4.9 ([Bas74, Corollary 4.7.7]). Let F be a field with2 ∈ F×. The determinantdet :
K1O(F ) → Z/2 and the spinor normSn : K1O(F ) → F×/(F×)2 induce an isomorphism

K1O(F )
∼
−→ Z/2⊕ F×/(F×)2

More precisely, the factorF×/(F×)2 is the image of the hyperbolic functor

H1,0 : K1(F ) −→ GW 0
1 (F )

while the factorZ/2 is the image of the homomorphismη1,0 : GW 0
1 (F ) → GW 3(F ).

Notation 4.10. We will denote byChn(X) the groupCHn(X)/2, whereCHn(X) is the Chow
groups of codimensionn cycles inX.
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By means of functoriality of the Gersten resolutions, we obtain a commutative diagram of the
form

⊕

x2∈X(2)

K1(k(x2))/2 //

H
��

⊕

x3∈X(3)

K0(k(x3))/2 //

H
��

Ch3(X) //

��✤
✤

✤

✤

0

⊕

x2∈X(2)

GW 0
1 (k(x2), ωx2)

//

��

⊕

x3∈X(3)

GW 3
0 (k(x3), ωx3)

//

��

H3(X,KSp
3 ) //

��

0

⊕

x2∈X(2)

Z/2 // 0 // 0 // 0

,

and combining Lemmas4.9and4.8with the discussion of the last paragraph, the first two columns
are short exact sequences. A diagram chase then yields an exact sequence of the form

⊕

x2∈X(2)

Z/2
χ // Ch3(X) // H3(X,KSp

3 ) // 0.

Now, the commutative diagram

⊕

x1∈X(1)

GW 1
2 (k(x1), ωx1)

η2,1

��

//
⊕

x2∈X(2)

GW 0
1 (k(x2), ωx2)

η1,0

��⊕

x1∈X(1)

GW 0
1 (k(x1), ωx1)

//
⊕

x2∈X(2)

GW 3
0 (k(x2), ωx2)

⊕

x1∈X(1)

K1(k(x1))/2 //

H1,0

OO

⊕

x2∈X(2)

K0(k(x2))/2

H0,3

OO

shows that the map
⊕

x2∈X(2) Z/2 → Ch3(X) actually factors through a mapCh2(X) → Ch3(X)
that we still denote byχ.

Next, recall from [Bro03, §8] that one can define Steenrod square operationsSq2 : Chn(X) →
Chn+1(X) for anyn ∈ N satisfying reasonable functorial properties. In particular, if f : Y → X
is a proper morphism of smooth connected schemes, we have [Bro03, 8.10, 8.11, 9.4]:

Sq2(f∗[Y ]) = c1(ωX/k)f∗([Y ])− f∗(c1(ωY/k)),

whereωX/k (resp.ωY/k) is the canonical sheaf ofX overSpec k (resp.Y overSpeck).
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Theorem 4.11.If X is a smooth scheme of dimension3 over a fieldk having characteristic different
from2, then there is an exact sequence of the form

Ch2(X)
Sq2 // Ch3(X) // H3(X,KSp

3 ) // 0.

Proof. Let A be a Dedekind domain, andL be an invertibleA-module. We computeGW 0
0 (A,L)

using two different methods. Karoubi periodicity yields anexact sequence of groups for anyn ∈ N

GW n
0 (A,L)

f0,n // K0(A)
H0,n+1// GW n+1

0 (A,L) // W n+1(A,L) // 0

where the last term on the right is the triangular Witt group defined by P. Balmer (see [Bal05]).
Using the fact thatW 3(A,L) = 0 becauseA is of dimension1 [BW02, Theorem 10.1], we get
a surjective mapH0,3 : K0(A) → GW 3

0 (A,L). Using the exact sequence once again, we get an
exact sequence

K0(A)
f0,3◦H0,3// K0(A)

H0,0 // GW 0
0 (A,L)

// W 0(A,L) // 0.

To computef0,3 ◦H0,3, recall that there is an isomorphismϕ : Z ⊕ Pic(A) → K0(A) defined by
ϕ(m,N) = (m − 1)[A] + [N ] for anym ∈ N andN ∈ Pic(A). If M is a projectiveA-module,
then(f0,3 ◦H0,3)([M ]) = [M ]− [M∨ ⊗L]. Usingϕ, we see that the composite morphism

f0,3 ◦H0,3 : Z⊕ Pic(A) −→ Z⊕ Pic(A)

is given by(f0,3 ◦H0,3)(m,N) = (0, N⊗2 ⊗ (L∨)⊗m). We therefore get an exact sequence

0 // Z⊕ Ch1(A)/〈L〉
H0,0 // GW 0

0 (A,L)
// W 0(A,L) // 0.

We now use the Grothendieck-Witt spectral sequenceE(0)p,q to computeGW 0
0 (A,L). Setting

Y = Spec(A) and writingK for the field of fractions ofA, we see that the lineq = 0 at page1
takes the form

GW 0
0 (K,L)

d //
⊕

y1∈Y (1)

W (k(y1), ω
L
y1) ,

while the lineq = −1 takes the form

GW 0
1 (K,L)

d //
⊕

y1∈Y (1)

GW 3
0 (k(y1), ω

L
y1).

We first analyze the lineq = 0. SinceK is a field, there is an exact sequence

0 // Z
H // GW 0

0 (K,L) // W (K,L) // 0 ,



35 4 Grothendieck-Witt groups

which yields a commutative diagram

Z //

H

��

0

��

GW 0
0 (K,L)

d //

��

⊕

y1∈Y (1)

W (k(y1), ω
L
y1)

W (K,L)
d //

⊕

y1∈Y (1)

W (k(y1), ω
L
y1)

where the columns are short exact sequences, the middle lineis the lineq = 0 in the spectral
sequenceE(0)p,q and the bottom line is the lineq = 0 in the Gersten-Witt spectral sequence. The
kernel of the bottom map isW 0(A,L) by [BW02, Corollary 10.3] and we get an exact sequence

0 // Z // H0(A,GW
0
0(L)) // W 0(A,L) // 0.

We now analyze the lineE(0)p,−1
2 . Lemmas4.8and4.9yield a commutative diagram

K1(K)/2 //

H

��

⊕

y1∈Y (1)

K0(k(y1))/2

H
��

GW 0
1 (K,L)

d //

��

⊕

y1∈Y (1)

GW 3(k(y1), ω
L
y1)

��
GW 3(K,L) // 0

where the columns are short exact sequences. Thus, just as inthe discussion subsequent to Notation
4.10, we obtain an exact sequence of the form

Z/2
g // Pic(A)/2 // H1(A,GW

0
1
(L)) // 0

where the mapg has yet to be identified. To understandg, observe that the spectral sequence yields
an extension (sincedim(A) = 1, the spectral sequence collapses at page2)

0 // H1(A,GW
0
1(L)) // GW 0

0 (A,L)
// H0(A,GW

0
0(L)) // 0.

Using again our computation ofGW 3(k(y1), ω
L
y1), we see that the composition

Pic(A)/2 // H1(A,GW
0
1(L)) // GW 0

0 (A,L)
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is equal toH0,0 (restricted to the Picard group). Looking at our first computation ofGW 0
0 (A,L),

we therefore see thatg is such thatg(1) = [L].
With these results in hand, we now return to the original problem. Letx2 ∈ X(2) and letY be

the normalization of the closureZ of x2 in X. Observe that the compositionf : Y → Z ⊂ X is a
finite morphism. To compute the composition

GW 0
1 (k(x2), ωx2) //

⊕

x2∈X(2)

GW 0
1 (k(x2), ωx2)

d //
⊕

x3∈X(3)

GW 3
0 (k(x3), ωx3)

it suffices by definition to compute the component corresponding to the summandGW 3
0 (k(x3), ωx3)

for anyx3 ∈ X(3). We can then assume thatX = Spec(OX,x3) and thatY is an essentially smooth
curve with a finite number of closed points. Moreover, we havek(Y ) = k(x2) by definition, and
we letL := ωY/k ⊗ f∗ω∨

X/k = f
∗
Ext2OX

(f∗OY ,OX). The morphismf∗ induces a commutative
diagram

GW 0
1 (k(x2), ωx2)

dX // GW 3
0 (k(x3), ωx3)

GW 0
1 (k(Y ), ωL

y0) dY
//
⊕

y1∈Y (1)

GW 3
0 (k(y1), ω

L
y1)

f∗

OO

and the differentialdY on the componentZ/2 of GW 0
1 (k(Y ), ωL

y0) can be computed using our

analysis in the case of Dedekind rings. Projecting
⊕

y1∈Y (1)

GW 3
0 (k(y1), ω

L
y1) ontoCH1(Y ), we find

dY (1) = c1(L) in Ch1(Y ).
We find therefore

f∗dY (1) = f∗c1(ωY/k ⊗ f∗ω∨
X/k) = Sq2(1)

and the theorem is proved.

Remark4.12. Let X be a smooth scheme of dimensiond over a fieldk with 2 ∈ k×. The same
proof as above shows thatHd(X,GW

d−1
d ) = coker(Sq2 : Chd−1(X) → Chd(X)).

5 Vanishing theorems

In this section, we review some basic properties of the contraction construction, which is useful
in giving explicit descriptions of the terms of Gersten resolutions. Together with these facts, we
prove a number of cohomological vanishing results that willbe used in Section6 to provide explicit
descriptions of sets of isomorphism classes of vector bundles.

Contractions

SupposeG is a stronglyA1-invariant sheaf of groups. For any smoothk-schemeU , the unit ofGm

defines a morphismGm → Gm × U . Recall thatG−1 is the sheaf

G−1(U) = ker(G(Gm × U) → G(U))
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Iterating this construction one definesG−i.

Remark5.1. The projection mapGm × U → U is split by the inclusionU → Gm × U given by
taking the product with the identitySpec k → Gm. SupposeA is a strictlyA1-invariant sheaf of
groups. ApplyingA to the projection gives a homomorphismA(U) → A(Gm×U), which is split
injective since the compositionU → Gm×U → U is the identity onU . This observation allows us
to identify its cokernel with the contraction just mentioned. We will use this alternative presentation
for contractions later.

If we restrict()−1 to the category of strictlyA1-invariant sheaves of groups, it is an exact functor
(see, e.g., [Mor12, Lemma 7.33] or, more precisely, its proof).

Theorem 5.2([Mor12, Theorem 6.13]). If (X , x) is a pointedA1-connected space, then for every
pair of integersi, j ≥ 1,

π
A1

i (RΩj
Gm

X ) = π
A1

i (X )−j .

Lemma 5.3. For any integersi, j ≥ 0 and any integern > 0, there are canonical isomorphisms

(KM
i /n)−j

∼=

{
K

M
i−j/n if j ≤ i

0 if j > i
, and

(KQ
i )−j

∼=

{
K

Q
i−j if j ≤ i

0 if j > i
.

Remarks on the proof.The proofs of these two statements can be obtained by the samemethod as
that of Proposition5.4, which is a bit more delicate, so we will prove that statementinstead.

To describe the contractions ofGW
j
i , it is more convenient to identify(GW

j
i )−1 as the coker-

nel of the morphism (see Remark5.1)

p∗ : GW
j
i −→ GW

j
i (−×Gm)

wherep∗ is induced by the projectionp : X ×Gm → X.

Proposition 5.4. For anyi, j ∈ N, we have(GW
j
i )−1 = GW

j−1
i−1 .

Proof. It suffices to prove that for any local ringA we have an exact sequence of groups

0 // GW
j
i (X)

p∗ // GW
j
i (X ×Gm) // GW

j−1
i−1 (X) // 0

whereX = Spec(A). Denote byC the lineq = j − i at page2 of the Gersten-Grothendieck-Witt
spectral sequenceE(j)pq and byC′ the lineq = j− i at page2 of the spectral sequenceE(j−1)pq.
Since the Gersten conjecture holds for Grothendieck-Witt groups,C provides a flasque resolution of
the sheafGW

j
i while C′ provides a flasque resolution ofGW

j−1
i−1 . Arguing as [Mor12, Theorem

5.38], we see that the projectionp′ : X × A1 → X induces for anyn ∈ N an isomorphism
(p′)∗ : Hn(X, C) → Hn(X × A1, C). SinceX is local, we then haveH1(X × A1, C) = 0 and the
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long exact sequence in cohomology associated with the open embeddingi : X ×Gm → X × A1

reads as

0 // H0(X × A1, C)
i∗ // H0(X ×Gm, C) // H1

X×{0}(X × A1, C) // 0.

The proof of Proposition4.7 shows that the closed embeddingj : X × {0} → X × A1 induces
isomorphismHn(X, C′) → Hn+1

X×{0}(X × A1, C) for anyn ∈ N (here we trivialize the invertible

modulej
∗
Ext1OX×A1

(j∗OX ,OX×A1) using the Koszul complex associated with the global section

t ∈ k[t]). Thus we get an exact sequence

0 // GW
j
i (X)

p∗ // GW
j
i (X ×Gm) // GW

j−1
i−1 (X) // 0

and therefore(GW
j
i )−1 = GW

j−1
i−1 .

Cohomology ofKMW
j

For anyn ∈ Z, we denote byIn the unramified sheaf (in the Nisnevich or Zariski topology) of the
n-th power of the fundamental ideal as considered for instance in [Fas09]. If L is a line bundle
over a smoothk-schemeX, we denote byIn(L) the sheaf twisted byL (denoted byInL in [Fas09]).
The next result, which uses the affirmation of the Milnor conjecture on quadratic forms [OVV07],
follows from [Mor04, Theorem 5.3].

Theorem 5.5(Morel). SupposeX is a smoothk-scheme. For anyn ∈ Z and any line bundleL on
X, there is a short exact sequence of sheaves on the small Nisnevich site ofX of the form

0 // In+1(L) // KMW
n (L) // KM

n
// 0.

Proposition 5.6. LetX be a smooth scheme of dimensiond over a fieldk with cd2(k) = r < ∞
and letL be a line bundle onX. Then the Zariski sheafIn(L) = 0 for anyn ≥ r + d+ 1.

Proof. By definition of In(L) it is sufficient to prove thatIn(k(X),L ⊗ k(X)) = 0. Choosing a
generator ofL ⊗ k(X) yields an isomorphismIn(k(X)) ≃ In(k(X),L ⊗ k(X)) and we can thus
suppose thatL is trivial. Consider the quotient groupI

n
(k(X)) := In(k(X))/In+1(k(X)). The

affirmation of the Milnor conjecture yields an isomorphismI
n
(k(X)) ≃ Hn

Gal(k(X), µ⊗n
2 ). The

latter is trivial sincecd2(k(X)) ≤ r + d by [Ser94, §4.2, Proposition 11]. It follows then from
[AP71, Korollar 2] thatIn(k(X)) = 0.

Corollary 5.7. LetX be a smooth scheme of dimensiond over a fieldk with cd2(k) = r < ∞ and
let L be a line bundle onX. ThenH i

Nis(X, In(L)) = 0 for anyi ∈ N and anyn ≥ r + d+ 1.

Proof. The sheafIn(L) admits a Gersten resolution by [Gil07b, Corollary 7.7]. It follows that its
Nisnevich cohomology coincides with its Zariski cohomology, and therefore the result follows from
the above proposition.

We now prove a yet stronger vanishing statement forI
d+r(L).
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Proposition 5.8. LetX be a smooth affine scheme of dimensiond over a fieldk with cd2(k) = r <
∞ and letL be a line bundle onX. If d ≥ 1, thenHd

Nis(X, Ij(L)) = 0 for anyj ≥ d+ r. If d ≥ 2
then we haveHd−1

Nis (X, Ij(L)) = 0 for anyj ≥ d+ r.

Proof. Once again, the cohomology of the sheafI
j(L) computed in the Zariski topology coincides

with the corresponding computation in the Nisnevich topology. We therefore prove the result for
cohomology computed in the Zariski topology. By Proposition 5.6, we are reduced to the case
j = d+ r. The exact sequence of sheaves [Fas09, §2.1]

0 // Id+r+1(L) // Id+r(L) // I
d+r // 0

yields a long exact sequence in cohomology and Proposition5.6shows thatH i(X, Id+r+1(L)) = 0
for anyi ∈ N. Therefore, for anyi ∈ N, one obtains isomorphisms

H i(X, Id+r(L)) −→ H i(X, I
d+r

)

and it suffices to prove the result forH i(X, I
d+r

).
For any smooth schemeX and anyq ∈ N, let Hq be the sheaf associated with the presheaf

U 7→ Hq
ét(U, µ

⊗q
2 ). The Bloch-Ogus spectral sequence ([BO74]) converges to the étale cohomology

groupsH∗
ét(X,µ⊗q

2 ) and its groups at page2 are the groupsHp
Zar(X,Hq). These are computed via

the Gersten complex

Hq(k(X), µ⊗q
2 )

d0 //
⊕

x1∈X(1)

Hq−1(k(x1), µ
⊗q−1
2 ) // . . . .

The affirmation of Milnor’s conjecture on quadratic forms [OVV07] shows that this complex is
isomorphic to the complex

I
q
(k(X))

d0 //
⊕

x1∈X(1)

I
q−1

(k(x1)) // . . . ,

which is a flasque resolution of the sheafI
q
. It follows that the two sheaves are isomorphic and

therefore thatH i(X, I
q
) ≃ H i(X,Hq) for anyi ∈ N. The proof of Proposition5.6shows that the

linesq ≥ r+ d+1 are trivial in the Bloch-Ogus spectral sequence. This showsthat we have an iso-
morphismHd

Zar(X,Hd+r) ≃ H2d+r
ét (X,µ2) and a surjective homomorphismH2d+r−1

ét (X,µ2) →

Hd−1
Zar (X,Hd+r). The result therefore follows if we can show thatH i

ét(X,µ2) = 0 for i ≥ d+r+1.
If k is separably closed, this is [Mil80, Chapter VI, Theorem 7.2]. In general, it suffices to use the
Hochschild-Serre spectral sequence ([Mil80, Chapter III, Theorem 2.20], see also [Mil80, Remark
2.21(b)]) and the result for separably closed fields.

Corollary 5.9. If k is a quadratically closed field,X is a smooth affinek-scheme of dimension
d ≥ 2, andL is a line bundle onX, for any pair of integersi, j ≥ d− 1, there are isomorphisms

H i
Nis(X,KMW

j (L))
∼

−→ H i
Nis(X,KM

j ).
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Proof. Use the long exact sequence in cohomology associated with the short exact sequence of
sheaves

0 −→ I
j+1(L) −→ K

MW
j (L) −→ K

M
j −→ 0

and Proposition5.8.

A vanishing result for cohomology ofKM
n /m

Proposition 5.10. Let X be a smooth affine variety of dimensiond over a fieldk. If there exists
an integerm > 0 such that for any closed pointx ∈ X the groupk(x)× is m-divisible, then
Hd(X,KM

d+1/m) = 0.

Proof. The Gersten resolution for the sheafK
M
d+1/m gives an exact sequence of the form

⊕

x∈X(d)

(KM
d+1/m)−d(k(x)) −→ Hd

Nis(X,KM
d+1/m).

Furthermore(KM
d+1/m)−d = K

M
1 /m, andKM

1 /m(k(x)) = k(x)×/(k(x)×)m = 0 by assumption.

6 Obstruction theory and classification results

In this section, we begin by reviewing aspects of obstruction theory involving the Postnikov tower
in A1-homotopy theory. We combine the results of the previous sections with obstruction theory for
the Postnikov tower ofBGLn to obtain information about vector bundles. The section closes with
some additional information. Specifically, using the discussion of contractions, we provide some
statements relating our computations ofA1-homotopy sheaves from Section3 to ordinary homotopy
groups of the unitary groups by means of the complex realization functor.

The Postnikov tower inA1-homotopy theory

If G is a (Nisnevich) sheaf of groups, andA is a (Nisnevich) sheaf of abelian groups on which
G acts, there is an induced action ofG on the Eilenberg-Mac Lane spaceK(A, n) that fixes the
base-point. In that case, we setKG (A,n) := EG×G K(A, n). The projection onto the first factor
defines a morphismKG (A, n) → BG that is split by the inclusion of the base-point.

Just as simplicial homotopy classes of maps[X ,K(A, n)]s are in bijection with elements of
Hn

Nis(X,A), there is a corresponding classification theorem in this “twisted” setting. A mapX →
KG (A, n) gives, by composition, a morphismX → BG , which yields aG -torsor P → X by
pullback. Then, the morphism of the previous sentence can beinterpreted as aG -equivariant map
P → K(A,n), i.e., aG -equivariant degreen cohomology class onX with coefficients inA. The
following result summarizes the form of the Postnikov towerwe will use; this result is collated from
a collection of sources including [GJ09, Chapter VI.5], [MV99] and [Mor12, Appendix B].

Theorem 6.1. If (Y , y) is any pointedA1-connected space, then there are a sequence of pointed
spaces(Y (i), y), morphismspi : Y → Y (i), and morphismsfi : Y (i+1) → Y (i) such that
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i) Y (i) is i+ 1-truncated, i.e.,πA1

j (Y , y) = 0 for j > i,

ii) the morphismpi induces an isomorphism on homotopy sheaves in degree≤ i,

iii) the morphismfi is anA1-fibration, and the homotopy fiber offi is aK(πA1

i+1(Y ), i+ 1),

iv) the induced morphismY → holimi Y (i) is anA1-weak equivalence.

Furthermore,fi is a twistedA1-principal fibration, i.e., there is a unique (up toA1-homotopy)

ki+1 : Y (i) −→ Kπ
A
1

1 (Y )(πA1

i+1(Y ), i + 2)

such thatY (i+1) is theA1-homotopy fiber of this morphism, and the action ofπ
A1

1 (Y ) on the higher
A1-homotopy sheaves is the usual conjugation action induced by change of base-points.

Remark6.2. When we apply this theorem,πA1

1 (Y , y) will be a sheaf of abelian groups.

If G = 1, then the word “twisted” can be dropped in the above statement. In that case, given
anA1-principal fibrationE → B classified by a morphismB → F ′ (hereF ′ is an Eilenberg-Mac
Lane space), a morphismX → B lifts to E if and only if the composite morphismX → F ′ is
homotopically constant. Moreover, the simplicial function object preserves fibrations [MV99, §2
Lemma 1.8.3], so there is a fibration

S(X ,E) −→ S(X ,B)

whose fiber isS(X ,Ω1
sF ′). Thus, the space of lifts over a given mapX → B is isomorphic to

S(X ,Ω1
sF ′).

In the special case whereF ′ is an Eilenberg-MacLane sheaf, the obstruction to lifting is the
pullback of the “universal” class onB given byB → F ′ to X . Furthermore, the loop space in
question is again an Eilenberg-MacLane sheaf, and the spaceof lifts of a given mapX → B is
parameterized (as a set) by a corresponding cohomology set.

WhenG acts non-trivially, the setup is similar, but one worksG -equivariantly. In that case,
the obstruction to lifting is given by anequivariantcohomology class onX , which is pulled back
from the “universal” classB → F ′. Note that, in this case, the homotopy fiber is an ordinary
Eilenberg-Mac Lane space (rather than a twisted one). In practice, we will use the Postnikov tower
to factor a space as a sequence of twistedA1-principal fibrations and then deduce an (inductively
defined) sequence of obstructions to lifting: each subsequent obstruction is defined after choosing a
lift, whose existence is guaranteed by vanishing of the previous obstruction.

The universal primary obstruction vanishes

The primary obstruction to existence of vector bundles can be analyzed by means of the discussion
of the previous section: in this case, the situation is particularly simple. To begin, recall thatBSLn

is A1-1-connected for anyn ≥ 2 by Theorem2.9. We also know thatπA1

2 (BSLn) = π
A1

1 (SLn)
and the latter isKMW

2 for n = 2, andKM
2 for n > 2.

The second stage of the Postnikov tower forBSLn gives rise to a (principal) fiber sequence of
the form

BSL(2)
n −→ BSL(1)

n −→ K(πA1

2 (BSLn), 3).
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SinceBSLn,• is A1-1-connected,BSL
(1)
n,• = ∗, and the mapBSL

(1)
n,• −→ K(πA1

2 (BSLn), 3) is
trivial. We summarize this in the following result.

Lemma 6.3. The universal obstruction classBSL
(1)
n → K(πA1

2 (BSLn), 3) is trivial.

We know that the mapBSLn → BGLn induced by the inclusion ofSLn into GLn is, up
to A1-homotopy, aGm-torsor and consequently anA1-covering space [Mor12, Definition 7.1 and
Lemma 7.5] (we can replaceBSLn with the modelBgmSLn of [MV99, §4.2] using the standard
representation ofSLn, and this space is evidently aGm-torsor overGrn,∞). This presentation
allows us to deduce an action ofπA1

1 (BGLn) = Gm onπ
A1

i (BSLn) for i ≥ 2. In this case, the
twisted Eilenberg-MacLane spaceKGm(πA1

i (BGLn), j) is the quotient sheaf

KGm(πA1

i (BGLn), j) := EGm ×Gm K(πA1

i (BGLn), j),

as discussed in [Mor12, §B.2]; this furthermore completely determines the second stage of theA1-
Postnikov tower forBGLn.

Remark6.4. The action ofGm onπ
A1

2 (BGL2) ∼= K
MW
2 is non-trivial and gives rise to an action

of Gm on the spaceK(KMW
2 , 2). The homotopy fiber of the mapBGL

(2)
2 → BGm is also a

K(KMW
2 , 2).

Proposition 6.5. The universal obstruction classBGL
(1)
n → KGm(πA1

2 (BGLn), 3) factors through
the constant mapBGm → KGm(πA1

2 (BGLn), 3) induced by inclusion of the base-point ofK(πA1

2 (BGLn), 3).

Proof. First, identifyBGL
(1)
n = BGm. The mapBGL

(1)
n → KGm(πA1

2 (BGLn), 3) is then a
mapBGm → KGm(πA1

2 (BGLn), 3). However, this map comes from aGm-equivariant map

BSL
(1)
n → K(πA1

2 (BSLn), 3). The aforementioned map is homotopically trivial by Lemma6.3.
As a consequence of this, the action ofGm on a representing class is also trivial.

Corollary 6.6. If X is any smooth scheme over a fieldk, then the primaryA1-homotopy theoretic
obstruction to existence of a rankn vector bundle onX with given determinant line bundleξ lies in
cohomological degree> 3.

Proof. We want to build a mapX → BGLn by inductively working up the (twisted) Postnikov
tower. We begin with a constant mapX → BGL

(0)
n = ∗. We then choose a liftX → BGL

(1)
n ,

which, sinceBGL
(1)
n = BGm, corresponds to fixing a line bundleξ onX. The primary obstruction

to lifting this class to a mapX → BGL
(2)
n is the pullback of the universal obstructionBGL

(1)
n →

KGm(KMW
n , 3); since the latter map is homotopically the constant mapBGm → BGm by Propo-

sition 6.5, it follows that precomposing with the mapX → BGL
(1)
n is simply the mapξ. We may

therefore fix a lift of this class to the second stage of the Postnikov tower ofBGLn, and the next
potentially non-trivial obstruction lies in degree≥ 4.

Lifting classes versus Chern classes

As we saw above, theA1-Postnikov tower forBGLn gives rise to a sequence of morphisms
BGLn → BGL

(i)
n . If we consider the identity mapBGLn → BGLn, since each induced map
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BGLn → BGL
(i−1)
n lifts to a morphismBGLn → BGL

(i)
n , the identity map factors through

a morphismBGLn,• → K(πA1

i (BGLn), i) for eachi. Since fori < n we have identifications
π
A1

i (BGLn) ∼= K
Q
i , these classes can be identified with elements of[BGLn,K(KQ

i , i)]A1 . These
classes admit the following geometric description.

First, using theA1-weak equivalenceGrn,∞ → BGLn, we can view these classes as canonical
elements inH i(Grn,∞,KQ

i ). The spaceGrn,∞ is a filtering colimit of finite-dimensional grass-
manniansGrn,n+N . By Bloch’s formula,H i(Grn,n+N ,KQ

i )
∼= CH i(Grn,n+N ). In particular,

these groups are isomorphic toZ independent ofN for i ≤ n. Therefore, the limitCH i(Grn,n+N )

only depends onn and, as a consequence,H i(Grn,∞,KQ
i ) = Z. The calculation of the cohomol-

ogy of the grassmannian gives us a canonical generatorci of H i(Grn,∞,KQ
i ). It follows that our

obstruction class is a multiple ofci.
Wheni = n, the situation is just a bit more complicated. In that case, repeating the discussion

of the previous paragraph, one obtains a canonical class inon,n ∈ Hn(BGLn,π
A1

n (BGLn)). If n
is odd, then Theorem3.9gives rise to a long exact sequence of the form

Hn
Nis(Grn,∞,πA1

n (BGLn,∞)) −→ Hn
Nis(Grn,∞,KQ

n ) −→ Hn+1
Nis (Grn,∞,Sn+1)

The image ofon,n ∈ Hn
Nis(Grn,∞,KQ

n ) = Z is a multiple ofcn.

Remark6.7. In [Pet59, Lemma 4.5], an explicit relationship is given betweencn andon,n. Using
this and compatibility of our constructions with complex realization, one deduces a more precise
relationship betweenon,n andcn.

For n ≤ 3, the lifting classes can be defined analogously, and we can beeven more explicit.
For n = 1, BGL1

∼= BGm = K(KM
1 , 1) ando1,1 ∈ H1(BGm,KM

1 ). Forn = 2, we can give
the lifting class a slightly different description. Instead of considering the identity mapBGL2 →
BGL2, we consider the identity mapBSL2 → BSL2, which isGm-equivariant. In that case,
we can identify the lifting class canonically asGm-equivariant cohomology class sinceBSL

(2)
2 =

K(KMW
2 , 2). More precisely, the lifting class is a canonical elemento2,2 ∈ H2

Gm
(BSL2,K

MW
2 ) =

H2(BGL2,K
MW
2 (det ξ)): here the action ofπ1(BGLn) = Gm onK(KMW

2 , 2) is indicated by
the notation (and depends on fixing a determinant line bundle). However, the image of this lifting
class inH2(BGL2,K

M
2 ) induced by the epimorphismKMW

2 (det ξ) → K
M
2 is independent of

these choices.

Proposition 6.8. If n = 1 or n = 2, thenon,n = cn.

Proof. If n = 1, thenBGL1
∼= BGm = K(KQ

1 , 1) as mentioned above, so there is nothing to
check. Ifn = 2, this statement is the content of the last paragraph of [Mor12, Remark 7.22].

The action ofGm = K
Q
1 on K

Q
n

As we observed above, the sheafπ
A1

1 (BGLn) = Gm acts onπA1

i (BGLn) for anyn ≥ 1. When
i < n, the sheavesπA1

i (BGLn) are in the stable range, and the action ofGm on these sheaves
coincides with the action ofGm onπ

A1

i (BGL∞) = K
Q
i .

Lemma 6.9. For anyi > 0, the action ofGm onKQ
i induced by the identificationsπA1

1 (BGL∞) =

Gm andπA1

i (BGL∞) is trivial.
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Proof. The action in question is determined by a morphism of sheavesGm → Hom(KQ
i ,K

Q
i ).

Since both sheaves are stronglyA1-invariant, so it suffices to prove the induced maps on sections
over fields is trivial. IfL is a field, identifyingKQ

i (L) asπi(BGL∞(L)), the result follows from
the definition of the plus construction.

Classification of rank 2 bundles

Henceforth, we assume thatk is algebraically closed and has characteristic unequal to2. In that
case, we can assumeX(k) is non-empty, and we will fix a basek-point. AssumeX is a smooth
affine k-scheme. Here is the structure to which proofs of all resultsbelow will conform. IfX is
of small dimension, by means of theA1-Postnikov tower, and Theorems2.9, 3.20, or 3.9, we can
describeA1-homotopy classes ofpointedmaps[(X,x), BGLi]A1 . The set of isomorphism classes
of vector bundles of rankn on X is described by the set ofunpointedhomotopy classes of maps
(see Theorem2.3). To set of unpointed homotopy classes of maps[X,BGLi]A1 can be obtained by
factoring out the the conjugation action ofπ

A1

1 (BGLn)(k) = Gm(k) on [(X,x), BGLi]A1 .

Theorem 6.10. If k is an algebraically closed field having characteristic unequal to 2, andX is
a smooth affine3-fold, the map sending a vector bundle of rank2 to its Chern classes determines
a bijection between the pointed set of isomorphism classes of rank 2 vector bundles onX and
CH1(X)× CH2(X).

Proof. As observed in Corollary6.6, the primary obstruction to existence of a rank2 vector bundle
on X vanishes. Fix a classξ ∈ Pic(X). Since the primary obstruction vanishes, the first lifting
class is an element ofH2(X,πA1

2 (BGL2)), which by the descriptions of homotopy sheaves (and in
the notation) given above is isomorphic toH2

Nis(X,KMW
2 (ξ)). The short exact sequence of sheaves

onX of the form
0 −→ I

3(ξ) −→ K
MW
2 (ξ) −→ K

M
2 −→ 0.

Taking cohomology of this short exact sequence gives rise tothe sequence

−→ H2(X, I3(ξ)) −→ H2(X,KMW
2 (ξ)) −→ H2(X,KM

2 ) −→ H3(X, I3(ξ)) −→ · · · .

Sincek is algebraically closed,H2(X, I3(ξ)) andH3(X, I3(ξ)) vanish by Proposition5.8, so the
morphism in the middle is an isomorphism. By Bloch’s formula, H2(X,KM

2 ) = CH2(X). As a
consequence, the primary lifting class is uniquely determined by an element ofCH2(X). Moreover,

sinceBGL
(2)
2 = KGm(K

MW
2 , 2), the discussion above shows that the lifting class is exactly an

element ofCH2(X).
The secondary lift is an element ofH3(X,πA1

3 (BGL2)). We know thatπA1

3 (BGL2) is an
extension ofKSp

3 by S
′′
4 , and the latter is an extension ofS′

4 by I
5(ξ); we also know that the

former is a quotient ofKM
4 /12. By Corollary 5.7, the sheafI5(ξ) is trivial and therefore the

sheavesS′′
4 andS

′
4 are isomorphic. For reasons of cohomological dimension, there is a surjec-

tive mapH3
Nis(X,KM

4 /12) → H3
Nis(X,S′

4). The first group vanishes by Proposition5.10 and
thereforeH3

Nis(X,S′
4) = 0. Thus, the long exact sequence in cohomology gives rise to anisomor-

phismH3
Nis(X,πA1

3 (BGL2)) → H3
Nis(X,KSp

3 ). By Theorem4.11, H3
Nis(X,KSp

3 ) is a quotient of
CH3(X)/2. SinceX is affine,CH3(X) is uniquely divisible by [Sri89] and thereforeCH3(X)/2
is trivial.
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Given the above data, we have built a pointedA1-homotopy class of mapsX → BGL2. The
action ofGm on π

A1

i (BGL2) is induced by change of base-points. Fori = 2, this action is not
trivial, but we only care about the induced action ofGm(k) onH2

Nis(X,KMW
2 (ξ)). However, since

k is algebraically closed, as explained above, the action factors through an action onH2
Nis(X,KM

2 ).
The morphismGm → K

M
2 is induced by the stabilization, and Lemma6.9 shows the action is

trivial in the stable setting. SinceH3(X,πA1

3 (BGL2)) is trivial, the action ofGm(k) on this group
is also trivial. Thus, pointed and unpointed homotopy classes of maps coincide. Finally, we identify
the lifting classes with the Chern classes by means of Proposition 6.8. The map(c1, c2) : V2(X) →
CH1(X) × CH2(X) is therefore a bijection: it is injective since the arguments above show that a
vector bundle is uniquely determined by its lifting classes, alias Chern classes, and it is surjective
since, given the data of Chern classes, we can build a mapX → BGL

(2)
2 by the obstruction theory

arguments above, and such a map extends uniquely to a vector bundle onX.

Classification of rank 3 bundles

Theorem 6.11. If k is an algebraically closed field having characteristic unequal to 2, andX is a
smooth affine3-fold, then the map sending a rank3 vector bundle to its Chern classes determines
a bijection between the pointed set of isomorphism classes of rank 3 bundles onX and the set
CH1(X)× CH2(X)× CH3(X).

Proof. Again, we fix a classξ : X → BGL
(1)
3 = BGm, which corresponds to a class inCH1(X).

As in the proof of Theorem6.10, the obstruction classes vanish, so it suffices to understand the
relevant lifts. The next lift is an element ofH2(X,πA1

2 (BGL3)) = H2(X,KQ
2 ) = CH2(X). The

subsequent lift is an element ofH3(X,πA1

3 (BGL3)). However, we know thatπA1

3 (BGL3) is an
extension ofKQ

3 by S4, whereS4 is a quotient ofKM
4 /6. We know thatH3(X,KM

4 /6) vanishes
by Proposition5.10, and for reasons of cohomological dimension, it follows that H3(X,S4) = 0.
Therefore, there is an isomorphismH3(X,πA1

3 (BGL3))
∼
→ H3(X,KQ

3 ) = CH3(X).
Thus, the set of pointedA1-homotopy classes of maps is in bijection with the set in the state-

ment. We claim that the induced action ofGm(k) onCH i(X) is trivial for i = 1, 2, 3. To see this,
observe that for eachi, sincek is algebraically closed, the action ofGm(k) onH i(X,πA1

i (BGL3))

factors throughH i(X,KQ
i ) and this factorization is induced by the stabilization mapπ

A1

i (BGL3) →

π
A1

i (BGL3+j). Thus, it suffices to check that the action is trivial in the stable setting, in which case
the triviality follows from6.9.

The identification of the first two lifting classes with Chernclasses follows from Proposition
6.8. In-so-far as the third Chern class is concerned, we proceedas follows. We knowo3,3 is a
multiple ofc3 in the universal setting and since the lifting class onX is a pull-back ofo3,3 by means
of anA1-homotopy class of mapsf : X → BGL3 we deduce thatf∗o3,3 is a fixedmultiple of
f∗(c3). SinceX is a smooth affine3-fold andk is algebraically closed, we know thatCH3(X) is
uniquely divisible (again, see [Sri89]). Therefore, by dividing by the fixed multiple if necessary, we
can replace the third lifting class byc3. Given these observations, the proof can be concluded as
in the rank2 case: the map(c1, c2, c3) : V3(X) → CH1(X) × CH2(X) × CH3(X) is injective
since the Chern classes uniquely determine the lifting classes, and surjectivity follows since, given
the data of Chern classes, obstruction theory tells us how tobuild a pointed mapX → BGL3 with
prescribed lifting classes.
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Remark6.12. Supposek is algebraically closed and has characteristic unequal to2. Assumed ≥ 3
is an odd integer. With more care in the description of the lifting classes, it should be possible to
obtain classification results for rankd vector bundles on smooth affinek-folds of dimensiond. In
particular, if there is no(d − 1)!-torsion inCH∗(X), it should be the case that vector bundles of
rankd are determined by their Chern classes.

Isomorphism vs. stable isomorphism

As a corollary of the above results, we get the following statement which is a strengthening of
[Fas11, Theorem 5.4].

Corollary 6.13. LetX be a smooth affine3-fold and letE andE′ be two vector bundles overX.
ThenE andE′ are stably isomorphic if and only if they are isomorphic.

Proof. We have to prove that stably isomorphic vector bundles are indeed isomorphic. IfE has
rank one, this is obvious. IfE has rank≥ 2, then sinceE andE′ are stably isomorphic, they have
the same Chern classes. WhenE has rank2, the required isomorphism follows from Theorem6.10.
WhenE has rank3, the required isomorphism follows from Theorem6.11. WhenE has rankn ≥ 4,
then the resulting homotopy sheaves are already in the stable range. SinceE andE′ are stably iso-
morphic, the composite of the classifying mapsX → BGLn become isomorphic when composed
with the stabilization morphismBGLn → BGL∞. Pick a base-point ofX arbitrarily. The same
obstruction theory arguments as above show that[(X,x), BGLn]A1 −→ [(X,x), BGL∞,∞] is a
bijection forX of homotopy dimension≤ 3. This follows inductively from the observation that the
A1-homotopy fiber of the morphismBGLn → BGLn+1 is GLn+1/GLn, which isA1-(n − 1)-
connected by Theorem2.6.

A On the sheafSn

Recall that in Section3 we defined the sheafSn as the cokernel of a morphism of sheavesK
Q
n →

K
M
n . Lemma3.8 showed that, assume our base fieldF was infinite, upon taking sections over an

extension fieldL/F , the morphism of the previous sentence coincides with the (functorial inL)
homomorphismKQ

n (L) → KM
n (L) defined by Suslin (see3.1). Since both sheaves are strictly

A1-invariant, it followed from this observation that there was an epimorphism

K
M
n /(n − 1)! → Sn.

To prove this epimorphism is an isomorphism, it is necessaryand sufficient to check that this is the
case on sections over finitely generated extensions ofF , i.e., the above morphism is an isomorphism
if and only if, for every finitely generated extensionL/F , Suslin’s homomorphismKQ

n (L) →
KM

n (L) has image precisely equal to(n− 1)!KM
n (L); the question of whether this is so is what we

will refer to as Suslin’s question (in degreen).
In what follows, we will study Suslin’s homomorphism in greater detail by considering the

canonical homomorphismKM
n (L) → KQ

n (L). Under the identification of Milnor K-theory with an
appropriate motivic cohomology group, this latter homomorphism can be thought of as an edge map
in the motivic spectral sequence, as was observed originally (to our knowledge) by T. Geisser and M.
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Levine. One can give explicit conditions under which Suslin’s homomorphism has image precisely
equal to(n − 1)!KM

n , but these hypotheses are rather cumbersome except for small values ofn.
We describe an “absolute rigidity conjecture” for a certainmotivic cohomology group, apparently
posed by Suslin, that, as Sasha Merkurjev explained to us, guarantees thatS4

∼= K
M
4 /6.

The motivic spectral sequence

Recall that there is a spectral sequence withEp,q
2 = Hp−q(SpecL,Z(−q)) that converges to

KQ
−p−q(L) [Sus03, FS02, Lev08]. Here, since the complexesZ(−q) are trivial for−q < 0, and

sinceHp−q(SpecL,Z(−q)) vanishes ifp− q > −q, it follows that this is a third quadrant spectral
sequence. The complexZ has cohomology in degree0 only, and the complexZ(1) has cohomology
only in degrees0 and1. Since the motivic cohomology groupsHn(SpecL,Z(n)) = KM

n (L), it
follows thatE0,−n

2 = KM
n (L).

Because of the Voevodsky-Rost solution [Voe03, Voe11] to the Bloch-Kato conjecture, which
implies the Beilinson-Lichtenbaum conjecture by work of Suslin-Voevodsky, much more is known
about the groups that appear in theE2-page of the motivic spectral sequence.

Lemma A.1. If p− q ≤ 0, thenEp,q
2 is uniquely divisible (except forp = q = 0).

Proof. The coefficient sequenceZ →֒ Q → Q/Z induces morphisms of motivic cohomology

H i−1,j(X,Q/Z) −→ H i,j(X,Z) −→ H i,j(X,Q) −→ H i,j(X,Q/Z)

Now, Q/Z is isomorphic to the product of itsp-primary components. Thep-primary components
is the direct limit ofZ/pn. Now, if i < j, the Bloch-Kato conjecture says that motivic cohomology
with Z/pn coefficients is isomorphic to étale cohomology. Ifi < 0, then the corresponding étale
cohomology group vanishes since étale cohomology in negative degrees is trivial. Applying these
observations, we deduce thatEp,q is uniquely divisible forp− q < 0 and torsion free forp− q ≤ 0.
It remains to prove that whenp− q = 0 thatEp,q is divisible.

The universal coefficient theorem gives a commutative diagram of the form

0 // H0,q(L,Z)/ℓ //

��

H0,q(L,Z/ℓ)

��
0 // H0,q(L,Zℓ)/ℓ // H0,q(L,Z/ℓ)

where the horizontal maps are injective and the right vertical map is an equality.
We may assume without loss of generality thatL is finitely generated over the prime field

[MVW06, Lemma 3.9]. Now, the Beilinson-Lichtenbaum conjecture implies that the mapZℓ(i) →
Bℓ(i) is a quasi-isomorphism (the latter is a limit of truncationsof µℓ restricted to the Nisnevich
site). In particular, sinceL has only finitely many roots of unity, it follows thatH0(L,Bℓ(q)) = 0.
As a consequence,H0,q(L,Zℓ) = 0. It follows thatH0,q(L,Z) is ℓ-divisible, and sinceℓ was
arbitrary, it follows thatH0,q(L,Z) is divisible.
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Thus, theE2-page of the spectral sequence then takes the form

0 0 0 0 0 Z

0 0 0 0 0 KM
1 (L)

E−5,−2 E−4,−2 E−3,−2 E−2,−2 E−1,−2 KM
2 (L)

E−5,−3 E−4,−3 E−3,−3 E−2,−3 E−1,−3 KM
3 (L)

E−5,−4 E−4,−4 E−3,−4 E−2,−4 E−1,−4 KM
4 (L)

where all the termsEp,q
2 on and above the linep = q are uniquely divisible.

The next result is a consequence of the multiplicative structure of the motivic spectral sequence,
which is established in [FS02, Theorem 15.5]; the result was originally established in [GL00, Propo-
sition 3.3].

Lemma A.2 (Geisser-Levine). The edge homomorphismKM
n (L) → KQ

n (L) is the homomorphism
induced by the natural isomorphismKM

1 (L)
∼
→ KQ

1 (L) and compatibility with products.

Suslin’s question in degree4 and motivic cohomology

We now consider Suslin’s question whenn = 4. In that case, Suslin’s question has a positive
answer, i.e., the mapKM

4 (L)/6 → S4(L) is an isomorphism, if and only if the reduction modulo6
mapKQ

4 (L)/6 → KM
4 (L)/6 is the trivial map. Using the motivic spectral sequence, we will factor

this map through a different motivic cohomology group.
To unburden the already suffering notation, we drop the superscriptQ used to denote Quillen

K-theory. The description of the motivic spectral sequenceabove implies that the filtration onK4

has3 non-trivial steps:F−2K4(L)/F
−1K4(L) = E−2,−2

∞ , F−1K4(L)/F
0K4(L) = E−1,−3

∞ , and
F 0K4(L)/F

1K4(L) ∼= E0,−4
∞ .

From the above picture it is clear thatKM
4 (L) surjects ontoE0,−4

∞ . To analyze the remaining
terms we will need some additional information about the differentials in the motivic spectral se-
quence. Classically, it is known that the differentials in the Atiyah-Hirzebruch spectral sequence are
torsion, and Soulé established a motivic analog of this fact. More precisely, Soulé constructed an
action of Adams operations on the motivic spectral sequencethat is compatible with the differentials
(see [GS99, §7.1] for one construction).

Lemma A.3 (Soulé [Sou]; see, e.g., [PW01, Lemma 1.3]). For any givenr, there exists an integer
M , independent ofp andq such thatM · drp,q = 0.

The only differential incident onE−1,−3
2 comes fromE−3,−2

2 , and all outgoing differentials are
trivial. By LemmaA.1 E−3,−2

2 is a uniquely divisible group, so by LemmaA.3 the differential
incident onE−1,−3

2 is trivial. All higher differentials are trivial, and as a consequence we deduce
thatH2,3(L,Z) = E−1,−3

2 = E−1,−3
∞ . Similarly, the groupE−2,−2

2 is uniquely divisible, again by
LemmaA.1. There are no non-trivial incoming differentials, and the outgoing differential is trivial
by LemmaA.3. All higher differentials are trivial and thereforeE−2,−2

2 = E−2,−2
∞ .

The image of the homomorphismKM
4 (L) → K4(L) is preciselyF 0K4(L), which is a subgroup

of F−1K4(L). The composite mapKM
4 (L) → K4(L) → KM

4 (L) is trivial when reduced modulo
6 by Suslin’s theorem. Therefore, the mapK4(L)/6 → KM

4 (L)/6 induced by reducing Suslin’s
homomorphism modulo6 factors through(F−2K4(L)/F

0K4(L))/6.
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Now, there is a short exact sequence of the form

0 −→ H2,3(L,Z) −→ F−2K4(L)/F
0K4(L) −→ H0,2(L,Z) −→ 0.

Since the groupH0,2(L,Z) is uniquely divisible, reducing modulo6 yields an isomorphism

H2,3(L,Z)/6
∼
−→ F−2K4(L)/F

0K4(L)/6.

and so the morphismK4(L)/6 → KM
4 (L)/6 factors through a morphism

H2,3(L,Z)/6 −→ KM
4 (L)/6.

Therefore, the homomorphismK4(L)/6 → KM
4 (L)/6 is trivial if and only if the factored map

H2,3(L)/6 → KM
4 (L)/6 is trivial.

Suslin’s question in degree4: number fields

We now show that Suslin’s question has a positive answer for “small” fields.

Lemma A.4. If F is a number field, the canonical mapK4(F )/6 → KM
4 (F )/6 is trivial. In

particular, the factorized mapH2,3(F )/6 → KM
4 (F )/6 is trivial.

Proof. If F is a number field, then writer for the number of real embeddings ofF . The maps
F → R induced by the various real embeddings yield a morphism

KM
i (F ) −→

∏

r

KM
i (R).

Now, by results of Bass-Tate, we know that fori ≥ 3, thatKM
i (F ) is finitely generated and that

the above homomorphism induces an isomorphismKM
4 (F ) ∼= (Z/2)r [BT73, Theorem II.2.1]. In

particular, the reduction modulo6 map determines an isomorphism

KM
i (F )/6

∼
−→

r∏

i=1

KM
i (R)/6 ∼= (Z/2)r.

On the other hand, we know thatK4(R) is uniquely divisible [Wei12, Chapter VI.3] soK4(R)/6
is the trivial group. By functoriality of Suslin’s homomorphism, it follows that the mapK4(F )/6 →
KM

4 (F )/6 factors through
∏r

i=1K4(R)/6 = 0. The second statement is an immediate consequence
of the first by the discussion above.

Suslin’s question in degree4 and absolute rigidity

If L is a field, letLc denote the algebraic closure of the prime field inL (the fieldLc is sometimes
called thefield of absolute constants ofL). If we fix a base fieldF , we will say that a (covari-
ant) functorF on the category of finitely generated extensionsL/F is absolutely rigidif the map
F(Lc) → F(L) is an isomorphism. Sasha Merkurjev attributed the following question about ab-
solute rigidity to Suslin, though it has not appeared in print; for additional context, the reader may
consult, e.g., [Sus87a, Conjecture 5.4], where related questions are posed in the context of the study
of K3.
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Question A.5(Suslin). If F is a fixed base-field, is the functorL 7→ H2,3(L,Z) on the category of
finitely generated extensionsL/F absolutely rigid?

Since we have established that Suslin’s question in degree4 has a positive answer in the case
of a number field, a positive answer to the absolute rigidity conjecture implies a positive answer
to Suslin’s question in degree4 in general. More precisely, the next result is an immediate corol-
lary of functoriality of the homomorphismH2,3(L,Z)/6 → KM

4 (L)/6 with respect toL and the
computations we recalled above for finite fields or number fields.

Corollary A.6. If F is a fixed base-field (assumed to have characteristic0) and the functorL 7→
H2,3(L,Z) is absolutely rigid, then for any fieldL, Suslin’s homomorphismK4(L) → KM

4 (L) has
image precisely6KM

4 (L).

RemarkA.7. By the universal coefficient sequence, there is a short exactsequence of the form

0 −→ H2,3(L,Z)/6 −→ H2,3(L,Z/6) −→ H3,3(L,Z)6 −→ 0.

The groupH2,3(L,Z/6) is, by the Beilinson-Lichtenbaum conjecture (really, we just need weight
3), isomorphic toH2

ét(L, µ
⊗3
6 ). If L contains sixth roots of unity, then this group can be identified

with the6-torsion in the Brauer group ofL and is therefore non-trivial in general. Note also that
H3,3(L,Z) is KM

3 (L). Furthermore, the map on the right hand side is induced by theintegral
Bockstein homomorphismH2,3(L,Z/6) → H3,3(L,Z).

RemarkA.8. Finally, we close with one comment about Suslin’s question aboutSn. SupposeL is
any field having characteristic coprime ton!, then the Bloch-Kato conjecture gives an isomorphism

KM
n+1/n!(L)

∼
−→ Hn+1

ét (L, µ⊗n+1
n! ).

Thus, ifL has étale2- and3-cohomological dimension< n + 1, then it follows thatKM
n+1/n!(L)

is trivial. Thus,Sn+1(L) is trivial under these hypotheses.
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Ann. Sci.École Norm. Sup. (4), 35(6):773–875, 2002.47, 48

[FS08] J. Fasel and V. Srinivas. A vanishing theorem for oriented intersection multiplicities.Math. Res. Lett.,
15(3):447–458, 2008.32

[FS09] J. Fasel and V. Srinivas. Chow-Witt groups and Grothendieck-Witt groups of regular schemes.Adv. Math.,
221(1):302–329, 2009.6, 29, 30, 32

[Gil02] S. Gille. On Witt groups with support.Math. Ann., 322(1):103–137, 2002.31
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