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Abstract

We discuss the relationship between theA1-homotopy sheaves ofAn \ 0 and the problem
of splitting off a trivial rank1 summand from a rankn-vector bundle. We begin by comput-
ing π

A
1

3 (A3 \ 0), and providing a host of related computations of “non-stable” A1-homotopy
sheaves. We then use our computation to deduce that a rank3 vector bundle on a smooth affine
4-fold over an algebraically closed field having characteristic unequal to2 splits off a trivial
rank 1 summand if and only if its third Chern class (in Chow theory) is trivial. This result
provides a positive answer to a case of a conjecture of M.P. Murthy.
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1 Introduction

This paper is motivated in part by the following classical question: ifX is a smooth affine variety
of dimensiond over a fieldk, under what conditions does a rankr vector bundle onX split as the
direct sum of a rankr − 1 vector bundle and a free module of rank1 (briefly: when does a rankr
vector bundle split off a rank1 trivial summand)? The main idea of this paper, which is the third in
a series after [AF12b] and [AF12a], is to applyA1-homotopy theory to provide some new results
regarding this splitting problem.
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2 1 Introduction

The answer to the question posed in the previous paragraph depends on the relationship between
r andd. For example, in 1958, Serre proved that ifX is a connected affine scheme of Krull dimen-
siond, then any vector bundle onX of rankr > d is the direct sum of a vector bundle of rankd and
a free module [Ser58, Théorème 1]. Answering the question whenr = d led to a torrent of work. It
follows from the results of [MS76] that if X is a smooth affine surface over an algebraically closed
field, then a rank2 bundle onX splits off a trivial rank1 summand if and only if its second Chern
class inCH2(X) is zero. In [KM82, Corollary 2.4] Murthy and Mohan Kumar showed that ifX is
a smooth affine threefold over an algebraically closed field,then a rank3 bundleE splits off a trivial
rank1 summand if and only if0 = c3(E) ∈ CH3(X). This result was subsequently generalized
by Murthy [Mur94, Remark 3.6 and Theorem 3.7]: he showed (in particular) thatif X is a smooth
affine variety of dimensiond over an algebraically closed fieldk, and ifE is a rankd bundle onX,
thenE splits off a trivial rank1 summand if and only if0 = cd(E) ∈ CHd(X).

In [Mor12], Morel revisited the splitting problem in terms of obstruction theory in the setting of
A
1-homotopy theory. Using his classification theorem for vector bundles on smooth affine schemes,

he was able to recast the splitting problem in terms precisely analogous to the classical theory of the
Euler class studied, e.g., in Milnor-Stasheff [MS74]. In particular, he showed that over an arbitrary
perfect fieldk, there is an “Euler class” obstruction to splitting a trivial rank 1 summand off a
bundle with trivial determinant (see also [Fas08] and [FS09] for d = 2, 3). When the base field
k is algebraically closed, this Euler class is precisely the top Chern class of the bundle. Rankd
vector bundles on smooth affined-folds are “at the edge of the stable range.” More precisely,over
an algebraically closed fieldk, it follows from the computations of [AF12b, AF12a] that rankd
vector bundles are determined by data that is essentially K-theoretic in nature (in fact, such a vector
bundle can be specified by a sequence of elements in the Chow groups ofX, though these elements
are necessarily not arbitrary).

Vector bundles of rankr < d on general smooth affined-folds are “outside the stable range”
even ifk is algebraically closed.A priori, one might not expect to be able to make any reasonable
statements about the structure of such vector bundles. Nevertheless, Murthy wrote that he did not
know an example of a vector bundleE of rankd− 1 on a smooth affined-fold over an algebraically
closed fieldk such thatcd−1(E) = 0 ∈ CHd−1(X) that does not split off a trivial rank1 summand
[Mur99, p. 173]. Following a long established tradition, we reformulate this observation as a
conjecture.

Conjecture 1 (Murthy’s splitting conjecture). If X is a smooth affined-fold over an algebraically
closed fieldk and E is a vector bundle of rankd − 1 overX, thenE splits off a trivial rank1
summand if and only ifcd−1(E) = 0 in CHd−1(X).

With one exception, we were not aware of any general (algebro-geometric) results regarding
splitting vector bundles outside the stable range. In [AF12b] we proved that, given an algebraically
closed fieldk and a smooth affine threefold overk, there is a unique rank2 vector bundle onX
with given c1 and c2; consequently, a rank2 vector bundle on such a variety splits off a trivial
rank1 summand if and only ifc2 is trivial. In particular, Conjecture1 is true under the additional
assumptions thatk has characteristic unequal to2 andd = 3. In this work, we provide a solution to
Conjecture1 under the additional assumptions thatk has characteristic unequal to2 andd = 4.
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Theorem 2. If X is a smooth affine4-fold over an algebraically closed fieldk having characteristic
unequal to2 and if E is a rank3 vector bundle onX, thenE splits off a trivial rank1 summand if
and only if0 = c3(E) ∈ CH3(X).

This result and the one mentioned in the previous paragraph were deduced by the link between
the splitting problem andA1-homotopy theory. To explain this, writeBGLn for the classifying
space forGLn-torsors (the reader is encouraged to think of an appropriate infinite Grassmannian).
Write H (k) for the Morel-VoevodskyA1-homotopy category. Given any smooth schemeX, we
write [X,BGLn]A1 for the set of morphisms inH (k) from X to BGLn. Morel showed [Mor12]
that the pointed set[X,BGLn]A1 is canonically in bijection with the setVn(X) of isomorphism
classes of rankn vector bundles onX (providedX is affine).

There is a canonical morphismBGLn−1 → BGLn corresponding to the inclusion mapGLn−1 →
GLn sending an invertible matrixM to the block diagonaln×n-matrix with blocksM and1. This
morphism induces a map[X,BGLn−1]A1 → [X,BGLn] that sends a rankn − 1 vector bundle
E to the rankn vector bundleE ⊕ OX . Therefore, the splitting problem is equivalent to the fol-
lowing lifting question: given an element of[X,BGLn]A1 , when can it be lifted to a morphism
[X,BGLn−1]A1? By standard topology, the obstructions to existence of such a lift are governed
by the structure of the (A1-)homotopy fiber of the above mapBGLn−1 → BGLn. Morel then
explicitly identified thisA1-homotopy fiber by proving the existence of anA

1-fiber sequence:

A
n \ 0 −→ BGLn−1 −→ BGLn.

By obstruction theory, understanding the lifting questionis then tantamount to understanding the
(unstable)A1-homotopy theory ofAn \ 0. To provide a positive answer to Murthy’s question for
a given integerd, the above approach requires as input sufficiently detailedinformation about the
d − 1stA1-homotopy sheaf ofAd−1 \ 0. In particular, in [AF12b] we computedπA

1

2 (A2 \ 0). In
this paper, we deduce the above result from a computation ofπ

A1

3 (A3 \ 0). For completeness, we
record this computation here.

Theorem 3 (See Theorem3.7 and Proposition4.1). If k is an infinite perfect field having charac-
teristic unequal to2, there is a short exact sequence of the form

0 −→ F5 −→ π
A1

3 (A3 \ 0) −→ GW
3
4 −→ 0,

whereGW
3
4 is a sheafification of a certain KaroubiU -theory group for the Nisnevich topology, and

F5 is a quotient of the sheafT5 introduced in[AF12a, Theorem 2.3]which is itself a fiber product
of the form

T5
//

��

I
5

��
S5

// KM
5 /2,

andS5 admits an epimorphism fromKM
5 /24. Moreover, the epimorphismT5 → F5 becomes an

isomorphism after4-fold contraction.
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The spaceAd \ 0 is a motivic sphere, and the computation above, together with the parallels
in algebraic topology, hint at an extraordinarily rich structure in its unstableA1-homotopy sheaves.
The results above exemplify how this structure is reflected in the splitting problem for projective
modules. We draw the reader’s attention to some tantalizingfeatures of the above computation.
The Grothendieck-Witt sheafGW

3
4 that appears corresponds to the part of theA

1-homotopy sheaf
detected by the “degree” homomorphism in Hermitian K-theory, though we defer a detailed ex-
planation of this connection to a subsequent paper [AF12c]. On the other hand, the kernel of the
surjective map to the Grothendieck-Witt sheaf is closely related to the motivic version of the clas-
sicalJ-homomorphism (see Theorem4.17). In a sense we will make precise (see Proposition4.1
and Corollary4.2), the24 that appears is the “same” factor of24 that intervenes in the third stable
homotopy group of the classical sphere spectrum (see [Hu59, Theorem 16.4]): our computation
therefore mixes together topological information about the unstable homotopy groups of spheres
and arithmetic information about the base-field and its finitely generated extensions!

The factor ofI5 appearing in Theorem3 appears to be a purely unstable phenomenon (see
Corollary 4.4 and Remark4.5); detailed analysis of this phenomenon is deferred to [AF12d]. Up
to this factor, the sheafπA1

3 (A3 \ 0) is an extension of two sheaves that are of “stable” provenance
(in the sense of stableA1-homotopy theory [Mor04a]). While we cannot yet compute the groups
π
A1

d (Ad \ 0) for d > 3, based on the analogy with classical unstable homotopy groups of spheres,
we still expect these sheaves to exhibit similar behaviors:they should be an extension of a (subsheaf
of a) Grothendieck-Witt sheaf by an appropriate Milnor K-theory sheaf modulo24. Moreover, the
phenomenon thatπA1

d (Ad\0) is an extension of two “stable” pieces in the known examples,together
with computations from classical unstable homotopy theory[Tod62, Mah67], hint at the existence
of a meta-stable range forA1-homotopy sheaves ofAd \ 0.

Detailed description of contents

The computation ofπA1

3 (A3 \ 0) involves a number of ingredients, some of which are established
in greater generality than actually required for the applications to projective modules envisioned
in this paper. We begin with a review of Bott periodicity in orthogonal algebraic K-theory. The
motivic spectrumKO is known to be(8, 4)-periodic [Hor05]; and because of this periodicity, one
constructsKO out of 4 cohomology theories. Two of these cohomology theories are “geometri-
cally understood”, i.e., orthogonal K-theory is known to begeometrically representable by work
in progress of Schlichting-Tripathi [ST12], and symplectic K-theory is known to be geometrically
representable by work of [PW10a]. However, to the best of our knowledge, no one has written down
“geometric” models for the other cohomology theories that appear. Section2 produces the required
geometric models.

Section3 details variousA1-fiber sequences attached to some classical groups and theirhomo-
geneous spaces, includingGL2n/Sp2n andSp2n. In each case, we describe the first non-stable
A
1-homotopy sheaf and discuss the connections with corresponding calculations in classical topol-

ogy. Only the computation of the first non-stable homotopy sheaf ofGL4/Sp4 (really SL4/Sp4)
is necessary for proof of Theorem3. Nevertheless, this section derives some of its length fromthe
detailed computations of the first non-stableA

1-homotopy sheaf ofSp2n and also ofSp2n/GLn,
which we will use in subsequent work.

Section4 is devoted to analyzing the computation ofπ
A1

3 (A3 \ 0) in greater detail. The results
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of this section are not used in the remainder of the paper, butwe feel they are integral because
they illuminate some of the more mysterious aspects of the computation and shape our expectations
about the structure ofπA1

d (Ad \ 0). The fiber sequences of Section3 identify π
A1

3 (A3 \ 0) as an
extension of a Grothendieck-Witt sheaf byF5. The main goal of this section is to understand the
origins of theF5 factor. In a sense we make more precise, the factor ofF5 is “generated” by a map
we call δ. We then define an algebro-geometric version of Hopf mapν and study its properties,
and use this to show thatδ is stably non-trivial. We believe, but are unable to prove, thatδ actually
coincides with an appropriate suspension ofν.

Finally, Section5 is devoted to analyzing the problem of splitting a trivial rank 1 summand off a
vector bundle by means of the techniques of obstruction theory. We give a detailed treatment of the
primary obstruction to splitting, which complements Morel’s discussion of the Euler class. For rank
d − 1 vector bundles on a smooth affined-fold, we formulate a general cohomological vanishing
conjecture that implies Murthy’s splitting conjecture. Theorem2 is then proven by establishing the
vanishing theorem alluded to above in the cased = 4. This calculation depends on the explicit form
of the computation ofπA1

3 (A3 \ 0) given in Section3.
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2 Grothendieck-Witt sheaves and geometric Bott periodicity

In this section, we begin by reviewing some notation regarding A
1-homotopy theory. We then

discuss some aspects ofA1-representability of Grothendieck-Witt theory includingsome results
about Bott periodicity at the space level. Throughout, we assumek is a field having characteristic
unequal to2. The results should be familiar, though the proofs are, in a sense, backwards: they are
deduced from known representability statements for various flavors of K-theory. We refer to [Sch10]
and [Sch12] as general references for higher Grothendieck-Witt theory of schemes; [Hor05] for a
discussion in the context ofA1-homotopy theory, and [AF12b, §4] for a discussion in the context of
the present work.

Classifying spaces

As usual, ifG is a Nisnevich simplicial sheaf of groups, we writeB•G for a fibrant model of the
the usual simplicial classifying space ofG (see [MV99, §4.1]). If G is a linear algebraic group,
then by [MV99, §4 Proposition 1.15], the spaceB•G classifies Nisnevich locally trivialG-torsors
in H Nis

s (k). In particular, ifP → X is a Nisnevich locally trivialG-torsor over a smooth scheme
X, there is a (well-defined up to simplicial homotopy) morphism X → B•G such thatP is the
pullback of the universalG-torsor overB•G.
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Grassmannians and Stiefel manifolds

If V is a finite dimensionalk-vector space of dimensionn, we writeGrm(V ) for the Grassmannian
parameterizingm-dimensional subspaces ofV . Upon fixing ak-point of Grm(V ), there is an
isomorphismGrm(V ) ∼= GLn/Pm wherePm is a parabolic subgroup ofGLn with Levi factor
GLn−m × GLm. (Since we will always work with based spaces, it will be convenient to have a
base-point fixed from the beginning.) An inclusionV →֒ V ′ determines a morphismGrm(V ) →
Grm(V

′) and we writeGrm for colimnGrm(k
⊕n), where the transition morphisms are induced by

the inclusionsk⊕n → k⊕n+1 as the firstn-factors.
Consider the inclusionGLm →֒ GLm+1 obtained by sending an invertiblem×m matrixM to

the block(m+ 1)× (m+ 1)-matrix
(

M 0
0 1

)

.

Taking the product of this morphism with the identity map, this inclusion yields a mapGLn−m ×
GLm → GLn−m × GLm+1, that can be extended to a morphism of parabolic subgroups ofGLn
and therefore to a morphismGrm,n → Grm+1,n+1. These morphisms are compatible with the
transition morphisms corresponding to increasingn and yield morphismsGrm → Grm+1 upon
taking the colimit, and we writeGr for colimmGrm. Finally, we writeKGL for the spaceZ×Gr.
The importance of the spaceKGL is that it represents algebraic K-theory inH (k) by [MV99, §4
Theorem 3.13].

WriteH for the trivial symplectick-vector space(k⊕2,

(

0 1
−1 0

)

). WriteH⊕n for then-fold

orthogonal direct sum ofH with itself. The quaternionic GrassmannianHGrm(H⊕n) is the open
subscheme ofGr(2m,H⊕n) parameterizing subspaces to which the symplectic form restricts non-
degenerately. Upon choosing a base-pointHGrm(H

⊕n) becomes isomorphic toSp2n/(Sp2(n−m)×

Sp2m). Any inclusionH⊕n → H⊕n′
determines a morphismHGrm(H⊕n) → HGrm(H

⊕n′
) and

we writeHGrm for colimnHGrm(H
⊕n) (for the morphism induced by the inclusion as the firstn

summands).
The inclusionsH⊕n → H⊕n+1 yield morphismsSp2n → Sp2n+2 and there are corresponding

morphismsHGrm,n → HGrm+1,n+1. As above, using these maps, one defines a morphism of
spacesHGrm → HGrm+1, and we writeHGr for colimmHGrm andKSp for the spaceZ ×
HGr. The importance of the spaceKSp is that, ifk is a field having characteristic unequal to2, it
represents symplectic K-theory inH (k) by [PW10a, Theorem 8.2].

The forgetful map

The inclusionfm,n : HGrm,n → Gr2m,2n is compatible with the various transition maps relating
(quaternionic) Grassmannians for different values ofm andn. As a consequence, there are induced
morphismsfm : HGrm → Gr2m andf : HGr → Gr that arise by taking the various colimits.
Taking the product with the multiplication by2 : Z → Z, we obtain a mapf : KSp → KGL that
we call the forgetful map.

Remark2.1. The inclusionSp2n →֒ GL2n yields a morphismB•Sp2n → B•GL2n and by taking
the colimit with respect ton (for appropriate inclusions) one obtainsB•Sp → B•GL. We will,
presently, compare this morphism to the one studied in the previous paragraph. Given a smooth
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schemeX and a simplicial homotopy class of mapsX → B•Sp2n, the composite map toB•GL2n

by means of the above inclusion yields a vector bundle of rank2n. The multiplication by2 ap-
pearing in the last line of the previous paragraph encodes the fact that the rank of the vector bundle
underlying a symplectic bundle is even.

We want to identify theA1-homotopy fibers of the mapsfm and the resulting maps obtained
by taking the relevant colimits. To this end, we will replacethe mapHGrm → Gr2m by anA1-
homotopy equivalent map whose homotopy fiber (almost) coincides with the point-set fiber.

First, we construct a candidate for the homotopy fiber: consider the homogeneous spaceGL2n/Sp2n.
There are induced morphisms of homogeneous spacesGL2n/Sp2n → GL2n+2/Sp2n+2 and we set

GL/Sp := colimnGL2n/Sp2n

We now relate theA1-homotopy type ofGL/Sp to the Grassmannians above.
Let us describe the candidate replacement forHGrm. Let Vm,n be the variety parameterizing

m-dimensional subspaces of ann-dimensionalk-vector space equipped with a basis, i.e., the Stiefel
variety ofm-frames in ann-dimensionalk-vector space. The canonical morphismVm,n → Grm,n
that forgets the basis is aGLm-torsor. The inclusionSp2m →֒ GL2m then determines a mor-
phismV2m,2n/Sp2m → V2m,2n/GL2m of quotients (the quotientV2m,2n/Sp2m exists as a smooth
scheme), which is precisely the projection map in the following contracted product:

V2m,2n ×
GL2m GL2m/Sp2m −→ V2m,2n/GL2m.

As the associated fiber bundle of aGLm-torsor, this sequence is anA1-fiber sequence by [Wen11,
Proposition 5.2]; in particular, the canonical map from theactual fiber to theA1-homotopy fiber is
anA1-weak equivalence.

There are mapsV2m,2n → V2m,2(n+1) and the collection of such spaces and maps yields an
admissible gadget (overSpeck) in the sense of [MV99, §4 Definition 2.1]. These transition maps
yield morphisms

V2m,2n/Sp2m −→ V2m,2(n+1)/Sp2m.

We setHGr′m := colimn V2m,2n/Sp2m with respect to these morphisms, and we writef ′m :
HGr′m → Gr2m for the colimit of the morphisms from the previous paragraph. The goal of the
next few paragraphs is to identify theA1-homotopy type ofHGr′m.

The Sp2m-torsor V2m,2n → V2m,2n/Sp2m is classified by a morphism (well defined up to
simplicial homotopy)

V2m,2n/Sp2m −→ B•Sp2m,

and theGL2m-torsorV2m,2n/GL2m is classified by a morphismGr2m → B•GL2m.
These classifying maps are compatible with the transition maps relating Stiefel manifolds for

different values ofm andn and yield a morphism

π′m : HGr′m −→ B•Sp2m.

On the other hand, the quotientSp2n/Sp2(n−m) → HGrm,n is also anSp2m-torsor and is there-
fore also classified by a mapHGrm,n → B•Sp2m. Taking the colimit with respect ton yields a
classifying morphism (well defined up to simplicial homotopy)

πm : HGrm −→ B•Sp2m.
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The basic geometric fact about these classifying morphismsis summarized in the following state-
ment.

Lemma 2.2. The morphismsπm andπ′m areA
1-weak equivalences. Ifim : Sp2m → GL2m is the

obvious inclusion map, andi′m : B•Sp2m → B•GL2m is the induced morphism then the following
diagram is homotopy commutative:

HGr′m

f ′m
��

π′
m // B•Sp2m

im′

��

HGrm
πmoo

fm
��

Gr2m // B•GL2m Gr2m,oo

where the bottom horizontal morphisms are the classifying maps for the universalGL2m-torsors
V2m → Gr2m.

Proof. That the mapπ′m is anA1-weak equivalence follows from the results of [MV99, §4 Propo-
sition 2.3, Lemma 2.5 and Proposition 2.6], which shows thatcolimn V2m,2n is A

1-contractible.
Panin and Walter show [PW10a] thatπm is anA1-weak equivalence by showing that the spaces

Sp2n/Sp2(n−m) and the obvious inclusion maps form an acceptable gadget in the sense of [PW10a,
Definition 8.3]; this allows one to conclude thatcolimn Sp2n/Sp2(n−m) isA1-contractible and then
identifyHGrm as the quotient of anA1-contractible space by a free action ofSp2m.

The homotopy commutativity follows by unwinding the definitions of the various maps.

Our next goal is to identify theA1-homotopy fiber of the mapHGr′m → Gr2m. Because the
mapsGL2m/Sp2m → hofib(V2m,2n/Sp2m → V2m,2n/GL2m) are allA1-weak equivalences, we
conclude that the induced map

GL2m/Sp2m −→ colimn hofib(V2m,2n/Sp2m → V2m,2n/GL2m)

is also anA1-weak equivalence. Note that since we are taking a filtered colimit here the obvious
map from the homotopy colimit to the colimit is anA1-weak equivalence [MV99, §2 Corollary
1.21]; we use this observation repeatedly below to identifythe space level colimit as a model for the
homotopy colimit.

Now, we “commute the filtered homotopy colimit past the homotopy fiber” (in the sequel, we
will simply use this phrase to stand for the argument of the next few lines). More precisely, there is
a canonical morphism

colimn hofib(V2m,2n/Sp2m → V2m,2n/GL2m) −→ hofib(HGr′m → V2m,2n/GL2m),

that we claim is anA1-weak equivalence. SinceA1-fibrant replacement is functorial, we can replace
all the mapsV2m,2n/Sp2m → V2m,2n/GL2m byA1-fibrations ofA1-fibrant spaces. In that case, the
set-theoretic fiber of each such map coincides with theA

1-homotopy theoretic fiber. To check that
the above morphism is anA1-weak equivalence, we can check this stalkwise. Each stalk is a fibrant
(Kan) simplicial set, and in the category of fibrant simplicial sets, we can commute filtered colimits
past fiber products (this follows from the corresponding fact in the category of sets [ML98, IX.2
Theorem 1]), i.e., afterA1-fibrant replacement, the above map is stalkwise anA

1-weak equivalence.
Combining these observations, we have established the following result.
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Lemma 2.3. The morphismGL2m/Sp2m → hofib(HGr′m → Gr2m) is anA1-weak equivalence.

Using theA1-weak equivalence fromHGrm → colimn V2m,2n/Sp2m, we get anA1-fiber se-
quence of the form

GL2m/Sp2m −→ HGrm −→ Grm.

Now, we take the colimit with respect tom. In particular, using the same argument commuting the
filtered homotopy colimits past the homotopy fiber, we deducethatGL/Sp = colimmGL2m/Sp2m
is precisely theA1-homotopy fiber of the mapHGr → Gr. Since the fiber over the base-point only
depends on the connected component of the identity, we can summarize the discussion so far with
the following statement.

Lemma 2.4. The mapGL/Sp → hofib(KSp→ KGL) constructed above is anA1-weak equiva-
lence.

Remark2.5. As we explain at the beginning of Section3, it is possible to define directly a (A1-
homotopy associative) multiplication map

GL2n/Sp2n ×GL2m/Sp2m −→ GL2(n+m)/Sp2(n+m)

that is compatible with stabilization (up toA1-homotopy). Thus, one obtains a multiplication on
GL/Sp by taking an appropriate colimit. Presumably this multiplication underlies an infinite loop
space structure onGL/Sp making the above result into a homotopy fiber sequence of (simplicial)
infinite loop spaces.

The hyperbolic morphism

Consider the inclusionγm : GLm → Sp2m given by sending an invertiblem×m-matrixM to the
matrix

(

M 0

0 MT−1

)

,

which is symplectic with respect to the standard symplecticform. If B•GLm is a simplicially fibrant
model of the simplicial classifying space forGLm, then the morphismγm induces a morphism

hm : B•GLm −→ B•Sp2m.

The importance of this map is summarized in the following result.

Proposition 2.6. For any smooth schemeX, the morphism

[X,B•GLm]s → [X,B•Sp2m]s

induced byhm is precisely the map sending a rankn vector bundleE onX to the symplectic bundle
E ⊕ E∨ equipped with the standard symplectic form.

Proof. It suffices to check this in the universal case. In that case, if W is the standard2n-dimensional
representation ofSp2n, andV is the standardn-dimensional representation ofGLn, then we have
ResSp2nGLn

(W ) ∼= V ⊕ V ∨. Translating this into statements about associated vectorbundles: the
pullback of the vector bundle obtained by twisting the universalSp2m-torsor viaW along the map
B•GLm → B•Sp2m is the direct sum of the universal vector bundle onB•GLm and its dual.
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Our goal is to identify theA1-homotopy fiber ofhm and, to this end, we begin by constructing
a candidate for theA1-homotopy fiber. The inclusionGLm →֒ GLm+1 and the inclusionSp2m →֒
Sp2m+2 studied above are compatible withγm and together yield a morphism

Sp2m/GLm −→ Sp2m+2/GLm+1.

We set
Sp/GL := colimm Sp2m/GLm

with respect to the above morphisms.
Next, we construct a geometric model for the above hyperbolic map where theA1-homotopy

fiber is easier to understand. The spaceSp2n/Sp2(n−m) is anSp2m-torsor overHGr(m,n). The
inclusionGLm →֒ Sp2m studied above yields aGLm-action onSp2n/Sp2(n−m), and a quotient of
Sp2n/Sp2(n−m) by this action exists as a smooth scheme. The inclusionGLm →֒ GLm+1 yields a
commutative square of the form

Sp2n/(Sp2(n−m)×GLm) //

��

HGrm,n

��
Sp2n+2/(Sp2(n−m) ×GLm+1) // HGrm+1,n+1.

We then setGr′m := colimm Sp2n/(Sp2(n−m) × GLm), and there is an induced morphismh′m :
Gr′m → HGrm.

Since the quotient morphismSp2n/Sp2(n−m) → Sp2n/(Sp2(n−m) × GLm) is aGLm-torsor,
there is a (well-defined up to simplicial homotopy) morphism

Sp2n/(Sp2(n−m) ×GLm) −→ B•GLm,

classifying thisGLm-torsor. There is an induced morphism

ψm : Gr′m −→ B•GLm.

We already saw that the classifying mapπ′m : HGrm → B•Spm is anA
1-weak equivalence.

Analogously, we have the following result.

Lemma 2.7. The morphismψm is anA1-weak equivalence, and ifτ is the morphism of simplicial
classifying spaces induced by the group homomorphismGLm → Sp2m described in the beginning
of this section, the following diagram is homotopy commutative:

Gr′m
ψm //

h′m
��

B•GLm

hm
��

HGrm
π′
m

// B•Sp2m,

whereh′m is the map on quotients induced byhm.
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Proof. The spacesSp2n/Sp2(n−m) form an acceptable gadget in the sense of [PW10a, Definition
8.3]. In particular,colimn Sp2n/Sp2(n−m) is A

1-contractible. If we consider thĕCech simplicial
object associated withψm, the proof follows in the same way as the proof of Lemma2.2above. The
homotopy commutativity is clear from the construction.

Now, the mapSp2n/(Sp2(n−m) × GLm) → HGr(m,n) is the projection morphism of the
following associated fiber space:

Sp2m/GLm −→ Sp2n/Sp2(n−m) ×
Sp2m Sp2m/GLm −→ HGrm,n

and so provides anA1-fiber sequence by [Wen11, Proposition 5.2]. In particular, the map

Sp2m/GLm −→ hofib(Sp2n/(Sp2(n−m)×GLm) → HGr(m,n))

is anA1-weak equivalence for anym. As in the previous section, since a filtered colimit ofA
1-weak

equivalences is again anA1-weak equivalence, the map

Sp2m/GLm −→ colimn hofib(Sp2n/(Sp2(n−m)×GLm) → HGr(m,n)),

induced by taking colimits is anA1-weak equivalence. Again, commuting the filtered homotopy
colimit past the homotopy fiber we obtain anA1-weak equivalence

colimn hofib(Sp2n/(Sp2(n−m)×GLm) → HGrm,n) ∼=

hofib(Gr′m → HGrm).

Thus, combining the observations above, and taking the colimit with respect ton, we have deduced
the following result.

Lemma 2.8. The morphism above yields anA1-weak equivalence

Sp2m/GLm −→ hofib(colimn Sp2n/(Sp2(n−m) ×GLm) → HGrm).

Combining the two lemmas above, yields anA
1-fiber sequence of the form

Sp2m/GLm −→ Grm −→ HGrm

We can then take the colimit with respect tom and, using the fact thatcolimm Sp2m/GLm =
Sp/GL, and once more commuting the filtered homotopy colimits pastthe homotopy fiber, we
deduce the following result.

Lemma 2.9. The mapSp/GL → hofib(KGL → KSp) constructed above is anA1-weak equiva-
lence.
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Algebraic avatars of Bott periodicity

Let f : KSp → KGL andh : KGL → KSp be the morphisms constructed above. We al-
ready know thatKGL represents algebraic K-theory by [MV99, §4 Theorem 3.13] and thatKSp
represents symplectic K-theory by [PW10a, Theorem 8.2]. Following the conventions of higher
Grothendieck-Witt groups, we write[ΣisX+,KSp]A1 = GW 2

i (X). In that case, for any smooth
k-schemeX, the mapsf andh yield morphisms

f∗ : GW
2
i (X) −→ Ki(X) andh∗ : Ki(X) −→ GW 2

i (X),

which are functorial inX. Presently, our goal is to identify these morphisms.

Proposition 2.10. The morphismsf∗ andh∗ coincide with the forgetful and hyperbolic morphisms
on Grothendieck-Witt groups.

Proof. To establish this fact, we need to show thatf∗ andh∗ induce maps of cohomology theories;
we will do this by showing thatf andh arise from morphisms ofΓ-spaces. To this end, recall
that the morphismGLn ×GLm → GLn+m given by block-sum of matrices yields a morphism of
classifying spacesB•GLn × B•GLm → B•GLn+m, and that these morphisms can be collected
together into a monoid

∐

n≥0B•GLn. Similar considerations for the symplectic group yield a
monoid structure on

∐

n≥0B•Sp2n. The construction explained in [Seg74, §2; p. 299] shows that
each of these monoids is part of aΓ-space in the category of simplicial sheaves. The point is that
because of the explicit nature of theΓ-space construction, the sequences of group homomorphisms
im : Sp2m → GL2m andγm : GLm → Sp2m yield morphisms ofΓ-spaces corresponding to the
above monoids, and therefore to morphisms of the corresponding cohomology theories.

Morel and Voevodsky explain that the group completionRΩ1
sB(

∐

n≥0B•GLn) represents al-
gebraic K-theory [MV99, §4 Proposition 3.9] in the simplicial homotopy category and they con-
struct anA1-weak equivalence

Z×B•GL∞ −→ RΩ1
sB(

∐

n≥0

B•GLn).

As Hornbostel remarks [Hor05, Remark 3.8], the analogous proof withB•GLn replaced byB•Sp2n
(replace references to Thomason’s results in [MV99] by the corresponding results due to Schlichting
in [Sch10] and use the fact thatSp2n is a special group, i.e., that allSp2n-torsors over smooth
schemes are Zariski locally trivial) provides a corresponding model of symplectic K-theory.

Theorem 2.11. If F is a field having characteristic unequal to2, and ifX is a smoothF -scheme,
then for any integeri ≥ 0, there are canonical isomorphisms

[ΣisX+, Sp/GL]A1
∼

−→ GW 1
i (X), and

[ΣisX+, GL/Sp]A1
∼

−→ GW 3
i+1(X).

Proof. We have anA1-homotopy fiber sequence of the form

GL/Sp −→ KSp
f

−→ KGL.
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For any smooth schemeX, there is an associated long exact sequence obtained by applying [X+, ]A1 .
Since in Proposition2.10we have identified the mapf∗ : [ΣisX+,KSp]A1 → [ΣisX+,KGL]A1 as
the forgetful map on symplectic K-theory, the result follows by comparison with Schlichting’s Bott
sequence [Sch12, Theorem 8.11] via [Sch12, Theorem 9.3]. The result for the hyperbolic functor is
analogous.

For anyi, j ∈ N, let GW
j
i be the Nisnevich sheaf associated to the presheafU 7→ GW j

i (U);
we refer to these sheaves as Grothendieck-Witt sheaves. In view of the above theorem, the proof of
the following corollary is a straightforward consequence of sheafification.

Corollary 2.12. For any integeri ≥ 0, we have canonical isomorphisms

π
A1

i (Sp/GL)
∼

−→ GW
1
i

π
A1

i (GL/Sp)
∼

−→ GW
3
i+1.

Contracted sheaves

LetG be a Nisnevich sheaf of abelian groups. Recall from thatG is called strictlyA1-invariant if the
mapH i

Nis(X,G) → H i
Nis(X × A

1,G) induced by the projection is an isomorphism for anyi ∈ N

[Mor12, Definition 7].
For any smoothk-schemeU , the unit mapSpeck → Gm yields a morphismU → U × Gm.

The sheafG−1 is then defined by

G−1(U) = ker(G(Gm × U) → G(U)).

We can then inductively defineG−n := (G−n+1)−1 for any integern ≥ 1; we callG−n then-th
contraction ofG. It turns out that contraction is an exact functor (see, e.g., [Mor12, Lemma 7.33]).
If (X , x) is a pointedA1-connected space, theA1-homotopy sheaves ofGm-loop spaces ofX are
related to those ofX by the following result of Morel.

Theorem 2.13([Mor12, Theorem 6.13]). If (X , x) is a pointedA1-connected space, then for every
pair of integersi, j ≥ 1

π
A1

i,j (X ) := π
A1

i (RΩj
Gm

X ) = π
A1

i (X )−j .

In the sequel, we will need computations of contractions of various strictlyA1-invariant sheaves;
the results we use are summarized in the following statement.

Proposition 2.14. For any integersi, n ≥ 0 and anyj ∈ Z, we have

i) (KQ
i )−n = K

Q
i−n.

ii) (KM
i )−n = K

M
i−n.

iii) (KMW
i )−n = K

MW
i−n .

iv) (Ii)−n = I
i−n.
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v) (GW
j
i )−n = GW

j−n
i−n .

Proof. The identifications in (i) and (ii) follow from [AF12b, Lemma 5.3], while that in (v) is
[AF12b, Proposition 5.4]. The identification in (iii) is a direct consequence of [Mor12, Theorem
2.24]. For (iv), first observe that there is an exact sequenceof strictly A

1-invariant sheaves

0 // Ii // KMW
i−1

// KM
i−1

// 0

for anyi ∈ Z [Mor04b, Corollaire 5.4]. The identification of (iv) is then an immediate consequence
of exactness of the contraction construction.

3 Some homotopy sheaves of classical groups and symmetric spaces

The goal of this section is, after establishing an appropriate stable range, to compute the first non-
stableA1-homotopy sheaves ofGL2n/Sp2n, Sp2n andSp2n/GLn. The computation of the first
non-stable homotopy sheaf ofGL2n/Sp2n will, in particular, give the computation ofπA1

3 (A3 \ 0)
mentioned in the introduction. However, the more general computation has other applications,
e.g., to obstructions to existence of algebraic symplecticstructures on smooth varieties. We will
also discuss compatibility of our computations with complex realization. The topological results
corresponding to our computations are classical and can be found, e.g., in [Har63] and [MT64].

Geometry ofGL2n/Sp2n

LetW2n be the2n-dimensional standardk-rational representation ofGL2n, and consider the vec-
tor space(∧2W2n)

∨ of anti-symmetrick-bilinear forms onW2n. TheGL2n-representation car-
ried by (∧2W2n)

∨ yields an action ofGL2n on A((∧2W2n)
∨). There is an open subscheme

A2n ⊂ A((∧2W2n)
∨) consisting of non-degenerate anti-symmetrick-bilinear forms onW2n, and

this subscheme is stable underGL2n.
If we fix a non-degenerate anti-symmetric form onW2n, then the correspondingk-point of

A2n has stabilizer isomorphic toSp2n and this choice yields an identificationA2n
∼= GL2n/Sp2n.

In discussingA1-homotopy theory ofA2n, we will always fix a base-point and, for that reason,
we prefer to refer toGL2n/Sp2n instead. The determinant mapGL2n/Sp2n → Gm induces a
morphism

Pf : A2n −→ Gm

such if we pick a basis ofW2n, thenA2n can be identified with the space of anti-symmetric2n×2n-
matrices, andPf sends a2n× 2n anti-symmetric matrix to its Pfaffian. We set

Xn := Pf−1(1)

The schemeXn is smooth, and a choice of base-point provides an isomorphismXn
∼= SL2n/Sp2n.

There is a morphism
A2n ×A2m −→ A2(n+m),
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which corresponds in coordinates to block-sum of anti-symmetric matrices (this “multiplication” is
the one referred to in Remark2.5). If H is the standard hyperbolic matrix described at the beginning
of the previous section, then block sum withH determines a stabilization morphism

A2n −→ A2(n+1).

SincePf(H) = 1, it follows that block sum withH yields a stabilization morphism

Xn −→ Xn+1.

We setSL/Sp := colimnXn, where the morphisms defining the colimit are as just specified. One
goal of what follows is to understand theA1-homotopy fiber of the stabilization morphisms.

The first non-stableA1-homotopy sheaf ofGL2n/Sp2n

The goal of this section is to compute the “low-degree” homotopy sheaves ofGL2n/Sp2n. We
will establish a stable range for these homotopy sheaves, and then describe the first non-stableA1-
homotopy sheaf. To establish these results, we will performa series of reductions. First, let us
understand theA1-connected components ofGL2n/Sp2n.

Lemma 3.1. The inclusionsSp2n →֒ SL2n −→ GL2n yield a splitA1-fiber sequence of the form

SL2n/Sp2n −→ GL2n/Sp2n−→Gm;

the splitting is given byt 7→ diag(t, 1 . . . , 1). In particular, the first morphism is the inclusion of
theA1-connected component of the base-point.

Proof. SinceGL2n/Sp2n = GL2n ×
SL2n SL2n/Sp2n the sequence

SL2n/Sp2n −→ GL2n/Sp2n−→Gm

is aA1-fibre sequence by [Wen11, Proposition 5.1]. Now theA1-fiber sequence associated with the
classifying morphism

SL2n −→ SL2n/Sp2n −→ BSp2n

demonstrates that the spaceSL2n/Sp2n is A
1-connected. Since the morphism

GL2n/Sp2n−→Gm

splits, it follows thatπA1

0 (GL2n/Sp2n) = π
A1

0 (Gm) = Gm. This proves the Lemma.

Corollary 3.2. There is a canonical isomorphismπA1

0 (GL/Sp) ∼= Gm, and the induced morphism
SL/Sp→ GL/Sp is the inclusion of theA1-connected component of the base-point.

Proof. The results above show that the determinant yields an isomorphismπ
A1

0 (GL2n/Sp2n) ∼=
Gm for everyn > 0; this is obviously compatible with the inclusion maps. For the second state-
ment, since the following diagram commutes

SL2n/Sp2n //

��

GL2n/Sp2n

��
SL2n+2/Sp2n+2

// GL2n+2/Sp2n+2,

the result follows by taking the colimit.
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The practical consequence of the above statements is that theA
1-homotopy theory of the map

GL2n/Sp2n → GL/Sp is reduced to studying the mapSL2n/Sp2n → SL/Sp.
In [AF12b, Proposition 3.11], we observed the existence of a fiber square of the form

(3.1) Sp2n //

��

Sp2n+2

��
SL2n+1

// SL2n+2.

SinceSp2n+2 acts transitively onSL2n+2/SL2n+1, and the stabilizer of the identity coset isSp2n,
we conclude the existence of an isomorphism of schemesSL2n+2/SL2n+1

∼= Sp2n+2/Sp2n. Anal-
ogously, we can deduce the following result.

Lemma 3.3. For any integern ≥ 1, there is a canonical isomorphism of schemesSL2n+1/Sp2n ∼=
Xn+1.

Lemma 3.4. The sequences of closed immersion group homomorphisms

i) Sp2n →֒ SL2n →֒ SL2n+1,

ii) Sp2n →֒ SL2n+1 →֒ SL2n+2, and

iii) Sp2n →֒ Sp2n+2 →֒ SL2n+2

yieldA
1-fiber sequences of the form

i) SL2n/Sp2n → SL2n+1/Sp2n → SL2n+1/SL2n,

ii) SL2n+1/Sp2n → SL2n+2/Sp2n → SL2n+2/SL2n+1, and

iii) Sp2n+2/Sp2n → SL2n+2/Sp2n → SL2n+2/Sp2n+2.

Proof. In each case, these fiber sequences are the associated fiber bundles to Zariski locally trivial
SLn or Sp2n-torsors for appropriate values ofn; we then apply [Wen11, Proposition 5.2].

The following result provides a description of the connectivity of theA
1-homotopy fiber of the

stabilization mapXn → Xn+1, together with some complements.

Proposition 3.5. For anyn ≥ 1, there is anA1-fiber sequence of the form

Xn −→ Xn+1 −→ SL2n+1/SL2n.

In particular, Xn → Xn+1 is (2n − 2)-A1-connected,Xn → SL/Sp is (2n − 2)-A1-connected,
and there is an exact sequence of the form

π
A1

2n(GL/Sp) −→ K
MW
2n+1 −→ π

A1

2n−1(Xn) −→ π
A1

2n−1(GL/Sp) −→ 0.
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Proof. For the first statement, combine Lemmas3.4(i) and3.3. The second statement follows im-
mediately from the first sinceSL2n+1/SL2n isA1-weak equivalent toA2n+1 \0 which is(2n−1)-
A
1-connected. The third statement follows from the second by induction onn, and the fourth

statement follows from the previous three together with Corollary 3.2 by looking at the long ex-
act sequence in homotopy sheaves attached to the statedA

1-fiber sequence and using the fact that
π
A1

2n(SL2n+1/SL2n) ∼= K
MW
2n+1 by [Mor12, Theorem 5.40].

By means of Corollary2.12, the exact sequence in Proposition3.5 takes the form

GW
3
2n+1

χ2n+1
−→ K

MW
2n+1 −→ π

A1

2n−1(Xn) −→ GW
3
2n −→ 0,

and we set
F2n+1 := coker(GW

3
2n+1

χ2n+1
−→ K

MW
2n+1).

Our goal in what follows is to describeF2n+1 (hereF stands for “forgetful”).
Since the morphismGW

3
2n+1 → K

MW
2n+1 is induced by the morphismXn+1 → SL2n+1/SL2n

by means of the identificationXn+1
∼= SL2n+1/Sp2n, we can consider the composite morphism

SL2n+1 → Xn+1 → SL2n+1/SL2n.

This composite is precisely the projection morphism of theSL2n-torsorSL2n+1 → SL2n+1/SL2n.
As a consequence, the morphismψ2n+1 : πA1

2n(SL2n+1) → K
MW
2n+1 factors through a morphism

K
Q
2n+1 → 2KM

2n+1 ⊂ K
MW
2n+1 by [AF12b, Lemma 3.2] and the image of this homomorphism

contains(2n)!KM
2n+1 by [AF12b, Lemma 3.8].

Since the morphismπA1

2n(SL2n+1) → π
A1

2n(Xn+1) can be factored through stabilization to a
morphismK

Q
2n+1 → GW

3
2n+1, the results of the previous section identify this homomorphism

with the hyperbolic homomorphismH3,2n+1, and we deduce that the following diagram commutes

K
Q
2n+1

H3,2n+1//

ψ2n+1

��

GW
3
2n+1

χ2n+1

��
Im(ψ2n+1) // KMW

2n+1.

(3.2)

In particular, sinceT2n+1 = coker(ψ2n+1) by definition (see [AF12a, Theorem 2.3] for a more
detailed discussion of this sheaf), we obtain an epimorphism T2n+1 → F2n+1.

Theorem 3.6. The canonical morphismGL2n/Sp2n → GL/Sp is (2n − 2)-A1-connected, and
there is a short exact sequence of the form

0 −→ F2n+1 −→ π
A1

2n−1(GL2n/Sp2n) −→ π
A1

2n−1(GL/Sp) −→ 0,

whereF2n+1 is a quotient ofT2n+1.

Takingn = 2 and using the fact (from Lemma3.3) thatX2
∼= SL3/SL2, which isA1-weakly

equivalent toA3 \ 0, Theorem3.6yields the following result.



18 3 Some homotopy sheaves of classical groups and symmetric spaces

Theorem 3.7. There is a short exact sequence of the form

0 −→ F5 −→ π
A1

3 (A3 \ 0) −→ GW
3
4 −→ 0,

whereF5 is a quotient ofT5.

The computation of Theorem3.7can be refined to provide more detailed information aboutF5:
the next result shows that the epimorphismT5 −→ F5 becomes an isomorphism after repeated
contraction.

Lemma 3.8. The epimorphismT5 → F5 induces an isomorphism(T5)−4 → (F5)−4 and there is
a cartesian square of the form:

(T5)−4
//

��

I

��
K
M
1 /24

// I.

Proof. Fix n = 2, and consider Diagram (3.2) above. Contracting this diagram4-times and using
Proposition2.14, yields a cartesian square

K
Q
1

H3,1 //

(ψ5)−4

��

GW
3
1

χ2n+1

��
Im(ψ5)−4

// KMW
1 .

In order to show that(T5)−4 → (F5)−4 is an isomorphism, it therefore suffices to prove thatH3,1

is surjective. This surjectivity statement follows from [FRS12, Lemma 2.3]. The fact that(T5)−4

sits in the Cartesian square
(T5)−4

//

��

I

��
KM

1 /24
// I.

is a direct consequence of [AF12a, Theorem 2.3 and Lemma 2.9].

Lemma 3.9. The spaceXm isA1-simply connected for arbitrarym.

Proof. Whenm = 1, the spaceSL2/Sp2 is a single point, so we can assume thatm ≥ 2. In that
case, we know thatXm → Xm+1 is a(2m− 2)-A1-connected by Theorem3.6. As a consequence,
it suffices to prove thatSL/Sp isA1-1-connected. SinceπA1

1 (SL/Sp) ∼= GW
3
2 by Corollary2.12,

it suffices to observe that ifF is a field, thenGW
3
2(F ) is trivial by, e.g., [FRS12, Lemma 2.2]. In

what amounts to the same thing, one can also consider the portion of the long exact sequence

π
A1

1 (Sp) → π
A1

1 (SL) −→ π
A1

1 (SL/Sp) −→ 0

in A
1-homotopy sheaves. There are identificationsπ

A1

1 (Sp) = K
MW
2 andπA1

1 (SL) = K
M
2 , and

the mapKMW
2 → K

M
2 is the natural epimorphism.
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Remark3.10. In classical topology, the first few non-stable homotopy groups ofXn(C) were com-
puted in [Har63]. In particular, ifn is even, thenπ4n(Xn(C)) = Z/(2n!), while if n is odd, then
π4n(Xn(C)) = Z/((2n!)/2). Complex realization gives a morphism

π
A1

2n−1,2n+1(Xn) −→ π4n(Xn(C)).

The groupπA1

2n−1,2n+1(Xn) can be computed by contracting the result of Theorem3.6 (2n + 1)

times. Since(GW
3
2n)−2n−1 = W

1−2n is trivial by [BW02], it follows that πA1

2n−1,2n+1(Xn) =
(F2n+1)−2n−1, and furthermore there is an epimorphism from(T2n+1)−2n−1 onto this group. The
latter contraction was discussed in detail in [AF12a, Theorem 4.5], where it was established that
(T2n+1)−2n−1 = Z/(2n!). The classical computation suggests that, whenn is even, the homomor-
phismF2n+1 → T2n+1 is an isomorphism, while ifn is odd then it has a non-trivial kernel.

Remark3.11. The above results provide a non-trivial obstruction to existence of an algebraic sym-
plectic structure on a smooth algebraic variety of dimension 2d. Indeed, ifY is a smooth algebraic
variety of dimension2d with trivial (co)tangent bundle, we can fix such a trivialization and therefore
obtain anA1-homotopy class of mapsY → BSL2d classifying this structure. The existence of an
algebraic symplectic structure yields a reduction of the structure group for the tangent bundle from
SL2d to Sp2d, i.e., a lift of the given mapY → BSL2d to a mapY → BSp2d. Whether such
a lift exists is governed by the homotopy fiber of the map, which is preciselyXd. We know that
π
A1

i (Xd) = GW
3
i+1 for i ≤ 2d−2, and the results above computeπ

A1

2d−1(Xd). SinceπA1

1 (Xd) = 0
for anyd ≥ 1, the inductively defined obstructions to existence of an algebraic symplectic structure
lie in the (untwisted) groupsH i+1(X,πA1

i (Xd)). The sheavesπA1

i (Xd) are stable fori ≤ 2d − 2,
in which case they coincide withGW

3
i+1 as we observed above. Thus, we obtain an inductively

defined sequence of elements ofH i+1(Y,GW
3
i+1) for i ≤ 2d − 2. If all of these obstructions

vanish, then there is a final obstruction inH2d(Y,π2d−1(Xd)). We will revisit this interpretation in
subsequent work.

The first non-stableA1-homotopy sheaf ofSp2n

In this section, we describe the first non-stableA
1-homotopy sheaf ofSp2n (the stable range was

identified by Wendt; see [Wen11, AF12b]). There are two approaches to identifying this sheaf: ei-
ther we can generalize the approach to the computation ofπ

A1

2 (Sp2) provided in [AF12b, Theorem
3.20], or we can use the results of the previous section regarding the first non-stable homotopy sheaf
of Xm; we follow the first approach and describe the second approach in slightly more detail later.

To begin, observe that the long exact sequence inA
1-homotopy sheaves associated with the

A
1-fiber sequence arising from theSp2n-torsorSp2n+2 → Sp2n+2/Sp2n yields an exact sequence

of the form

π
A1

2n+1(Sp2n+2)
ψ2n+2
−→ π

A1

2n+1(Sp2n+2/Sp2n) −→ π
A1

2n(Sp2n) −→ π
A1

2n(Sp2n+2) −→ 0.

The sheaves involvingSp2n+2 are already in the stable range, and since there is anA
1-weak equiv-

alenceSp2n+2/Sp2n −→ A
2n+2 \ 0, we obtain an exact sequence of the form

K
Sp
2n+2

ψ2n+2
−→ K

MW
2n+2 −→ π

A1

2n(Sp2n) −→ K
Sp
2n+1 −→ 0.
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If we set
S
′′
2n+2 := coker(KSp

2n+2

ψ2n+2
−→ K

MW
2n+2),

then our goal is to describeS′′
2n+2 explicitly.

To this end, we again use the morphism of fiber sequences associated with the fiber square
3.1 (see [AF12b, Corollary 3.12]), to obtain a commutative diagram of long exact sequences in
A
1-homotopy sheaves of the form:

K
Sp
2n+2

ψ2n+2 //

��

π
A1

2n+1(A
2n+2 \ 0) //

π
A1

2n(Sp2n)
//

��

K
Sp
2n+1

��

π
A1

2n+1(SL2n+2) //
π
A1

2n+1(A
2n+2 \ 0) //

π
A1

2n(SL2n+1) // K
Q
2n+1.

Now, the sheafπA1

2n+1(SL2n+2) was computed in [AF12a, Theorem 2.3]. In particular, we observed

in [AF12a, Lemma 2.2] that the homomorphismπA1

2n+1(SL2n+2) → K
MW
2n+2 factors through the sta-

bilization homomorphismπA1

2n+1(SL2n+2) → K
Q
2n+2, and throughKQ

2n+2 → 2KM
2n+2 ⊂ K

MW
2n+2.

Since the above diagram indicates thatψ2n+2 factors throughπA1

2n+1(SL2n+2), it follows that

the homomorphismψ2n+2 factors throughKQ
2n+2. Moreover, since the stabilization homomor-

phism in question is induced by the compositeSp2n+2 → SL2n+2, it follows that the induced
homomorphismKSp

2n+2 → K
Q
2n+2 is precisely the forgetful homomorphism.

Let ψ′
2n+2 be the composite of the forgetful morphismKSp

2n+2 → K
Q
2n+2 and the morphism

K
Q
2n+2 → 2KM

2n+2 described above, and set

S
′
2n+2 := coker(KSp

2n+2

ψ′
2n+2
−→ 2KM

2n+2).

The discussion above also yields an epimorphismS
′′
2n+2 → S

′
2n+2, but the kernel of this morphism

can be understood more precisely using the techniques of theproof of [AF12a, Theorem 2.3]
We have the fiber product presentation (see [AF12a, §2] for a discussion):

K
MW
∗

//

��

I
∗

��
K
M
∗

// KM
∗ /2.

The composite morphismKQ
2n+2 → K

MW
2n+2 → I

2n+2 is trivial, while the composite morphism

K
Q
2n+2 → K

M
2n+2 is precisely the one described above (it has image containedin 2KM

2n+2). We
therefore obtain an induced morphismS′

2n+2 → K
M
2n+2/2. On the other hand, the morphism

K
Sp
2n+2 → K

MW
2n+2 induces a morphism toI2n+2. Since this morphism factors throughKQ

2n+2, it
follows that this composite map is trivial, and we obtain a morphismS

′′
2n+2 → I

2n+2. The next
result is an immediate consequence of this discussion.
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Proposition 3.12. There is a fiber product diagram of the form

S
′′
2n+2

//

��

I
2n+2

��
S
′
2n+2

// KM
2n+2/2,

where the morphisms in the fiber product are those defined above.

Finally, we understand the order in the torsion of the sheafS
′
2n+2.

Lemma 3.13. If the base fieldk is assumed to have characteristic unequal to2, there is an epimor-
phismK

M
2n+2/(2(2n + 1)!) → S

′
2n+2.

Proof. This is proven in a fashion identical to [AF12b, Lemma 3.19]. It suffices to understand what
happens on the “symbolic part” ofKSp

2n+2(F ) for any finitely generated field extensionk ⊂ F .

To understand this, recall that we have the hyperbolic morphismKQ
2n+2(F ) → KSp

2n+2(F ) and the

natural homomorphismKM
2n+2(F ) → KQ

2n+2(F ). The composite map

KM
2n+2(F ) → KQ

2n+2(F ) → KM
2n+2(F )

is multiplication by−(2n+ 1)! by Suslin’s result [Sus84, Corollary 4.4], and the composite map

KM
2n+2(F ) −→ KQ

2n+2(F ) −→ KSp
2n+2(F ) −→ KQ

2n+2(F ) −→ KM
2n+2(F )

is multiplication by−2(2n + 1)! from the above fact combined with [AF12b, Lemma 4.3].

For convenient reference, we summarize the above results inthe following statement.

Theorem 3.14.There is an exact sequence of the form

0 −→ S
′′
2n+2 −→ π

A1

2n(Sp2n) −→ K
Sp
2n+1 −→ 0,

and a fiber product diagram

S
′′
2n+2

//

��

I
2n+2

��
S
′
2n+2

// KM
2n+2/2

whereS′′
2n+2 andS′

2n+2 are defined above, andS′
2n+2 is a quotient ofKM

2n+2/(2(2n + 1)!).

As in the previous section, more precise statements regarding the structure of the sheafS′′
2n+2

can be made after sufficiently many contractions. The following results show that the structure of
the sheafS′′

2n+2 depends on the parity ofn.
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Lemma 3.15. If n is an even integer, then the morphism of sheaves

K
M
2n+2/(2(2n + 1)!) −→ S

′
2n+2

induces an isomorphismKM
2 /((2n+1)!) → (S′

2n+2)−2n. Moreover, there is a cartesian square of
the form

(S′′
2n+2)−2n

//

��

I
2

��
K
M
2 /((2n + 1)!) // KM

2 /2.

Proof. Recall that the sheafS′′
2n+2 is the cokernel of the composite map

K
Sp
2n+2 = GW

2
2n+2

F2,2n+2// K
Q
2n+2

// 2KM
2n+2

whereF2,2n+2 is the forgetful homomorphism. Contracting2n times and using Proposition2.14,
we obtain a composite

GW
2−2n
2

F2−2n,2// K
Q
2

// 2KM
2

whose cokernel is(S′′
2n+2)−2n. We know from [AF12a, Lemma 2.9] that the cokernel of the mor-

phismK
Q
2 → 2KM

2 is preciselyKM
2 /((2n + 1)!) and it suffices to show thatF2−2n,2 is onto to

conclude.
Sincen is even, we can identifyGW

2−2n
2 = GW

2
2 and the forgetful mapF2,2 is the natural

morphismGW
2
2 = K

MW
2 → K

M
2 , which is surjective by construction.

Lemma 3.16. If n is an odd integer, then the morphism of sheaves

K
M
2n+2/(2(2n + 1)!) → S

′
2n+2

induces an isomorphismKM
1 /(2(2n+1)!) → (S′

2n+2)−2n−1. Moreover, there is a cartesian square
of the form

(S′′
2n+2)−2n−1

//

��

I

��
K
M
1 /((2n + 1)!) // KM

1 /2.

Proof. Arguing as in the previous lemma, we obtain a composite morphism

GW
1−2n
1

F1−2n,1// K
Q
1

// 2KM
1

whose cokernel is(S′′
2n+2)−2n−1. The cokernel ofKQ

1 → 2KM
1 is K

M
1 /((2n + 1)!) by [AF12a,

Lemma 2.9] and it remains to show that the image ofGW
1−2n
1 → K

Q
1 is 2KQ

1 . Sincen is odd, we
can identifyGW

1−2n
1 = GW

3
1. Combining [FRS12, Lemma 2.3] and [AF12b, Lemma 4.3] yields

the required statement regarding the image.
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Remark3.17. The complex realization ofSp2n is the groupSp2n(C), which is homotopy equivalent
to the compact symplectic groupSp2n. On the other hand, the real realization ofSp2n is the real
Lie groupSp2n(R), which is homotopy equivalent to its maximal compact subgroup U(n). It is
known thatπ4n+2(Sp2n) isZ/(2n+1)! if n is even andZ/(2(2n+1)!) if n is odd [Har63]. There
is a canonical morphism fromπA1

2n,2n+2(Sp2n)(C) → π4n+2(Sp2n). In view of the two lemmas
above, this morphism is an isomorphism for arbitraryn since, in each case, one can explicitly lift a
generator.

The first non-stableA1-homotopy sheaf ofSp2n/GLn

As above, we can study theA1-connectivity of the morphismSp2n/GLn → Sp/GL. The next
result is established in exactly the same way as Lemma3.4.

Lemma 3.18. The sequences of closed immersion group homomorphisms

i) GLn →֒ Sp2n →֒ Sp2n+2, and

ii) GLn →֒ GLn+1 →֒ Sp2n+2

yieldA
1-fiber sequences of the form

i) Sp2n/GLn → Sp2n+2/GLn → Sp2n+2/Sp2n, and

ii) GLn+1/GLn → Sp2n+2/GLn → Sp2n+2/GLn+1.

Using the above fiber sequences, we can study the first non-stableA1-homotopy sheaf ofSp2n/GLn.
To state the result, we first make two definitions.

Theorem 3.19. The morphismSp2n/GLn → Sp2n+2/GLn+1 is (n − 1)-A1-connected. For any
integern ≥ 2, there is a short exact sequence of the form

0 −→ Vn+1 −→ π
A1

n (Sp2n/GLn) −→ GW
1
n −→ 0,

where ifn is even, thenVn+1 is the cokernel of the morphismGW
1
n+1 → K

MW
n+1 , while ifn is odd,

thenVn+1 is the cokernel of a morphismGW
1
n+1 → K

M
n+1, and, in each case, the morphism in

question factors through the forgetful morphismGW
1
n+1 −→ K

Q
n+1.

Proof. For the first statement, we factor the inclusionSp2n/GLn → Sp2n+2/GLn+1 through
Sp2n+2/GLn. From Lemma3.18, we see thatSp2n/GLn → Sp2n+2/GLn is (2n − 1)-A1-
connected (sinceSp2n+2/Sp2n is A

1-weak equivalent toA2n+2 \ 0), and thatSp2n+2/GLn →
Sp2n+2/GLn+1 is (n− 1)-A1-connected.

For the second statement, the fiber sequences in Lemma3.18yield isomorphisms

π
A1

n+1(Sp2(n+1)/GLn+1)
∼

−→ π
A1

n+1(Sp2(n+2)/GLn+1), and

π
A1

n (Sp2n/GLn)
∼

−→ π
A1

n (Sp2(n+1)/GLn).
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Applying these identifications in the long exact sequence inA
1-homotopy sheaves associated with

the second fiber sequence in Lemma3.18, and combining this with the long exact sequence inA
1-

homotopy sheaves associated with the first fiber sequence in the same lemma withn replaced by
n+ 1 yields the following diagram

π
A

1

n+1(GLn+2/GLn+1)

��
π

A
1

n+1(Sp2n+4/GLn+1) //

��

π
A

1

n
(GLn+1/GLn) //

π
A

1

n
(Sp2n+2/GLn) //

π
A

1

n
(Sp2n+2/GLn+1) // 0

π
A

1

n+1(Sp2n+4/GLn+2)

��
0

By the first statement there are isomorphisms of the formπ
A1

n (Sp2n+2/GLn+1) ∼= π
A1

n (Sp/GL)
and alsoπA1

n+1(Sp2n+4/GLn+2) ∼= π
A1

n+1(Sp/GL), and these homotopy sheaves were identified
with GW

1
n andGW

1
n+1 by Corollary2.12.

The map
π
A1

n+1(Sp2n+4/GLn+1) → π
A1

n (GLn+1/GLn)

factors throughπA1

n+1(GLn+1) by definition and we have a commutative diagram

π
A1

n+1(Sp2n+4/GLn+1) //

��

π
A1

n (GLn+1)

��

π
A1

n+1(Sp2n+4/GLn+2) //
π
A1

n (GLn+2).

Under the identificationsπA1

n+1(Sp2n+4/GLn+2) = GW
1
n+1 andπA1

n (GLn+2) = K
Q
n+1, the bot-

tom map is the forgetful homomorphism. The composite

π
A1

n+1(GLn+2/GLn+1) → π
A1

n+1(Sp2n+4/GLn+1) → π
A1

n (GLn+1)

is precisely the connecting homomorphism in the long exact sequence of homotopy groups induced
by the fiber sequence

GLn+1 → GLn+2 → GLn+2/GLn+1,
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and therefore we get a commutative diagram with exact columns

π
A1

n+1(GLn+2/GLn+1)

��

π
A1

n+1(GLn+2/GLn+1)

�� ))❚❚❚
❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

π
A1

n+1(Sp2n+4/GLn+1) //

��

π
A1

n (GLn+1)

��

//
π
A1

n (GLn+1/GLn)

GW
1
n+1

//

��

K
Q
n+1

��
0 0

We can understand the two right-hand columns as in [AF12b, proof of Lemma 3.2] (ifn is odd) and
[AF12a, proof of Lemma 2.2] (ifn is even). In particular, the diagonal map

π
A1

n+1(GLn+2/GLn+1) → π
A1

n (GLn+1/GLn)

is multiplication byη if n is odd and trivial ifn is even. Consequently, the morphismGW
1
n+1 →

K
MW
n+1 described above factors as

GW
1
n+1 −→ K

Q
n+1 −→ K

M
n+1

if n is odd, and
GW

1
n+1 −→ K

Q
n+1 −→ K

MW
n+1

if n is even; in each case, the first morphism is the forgetful morphism. The second morphism forn
odd was described in [AF12b, §3], and forn even was described in [AF12a, §2].

Remark3.20. Suppose thatn is even. Then we can study the map

GW
1
n+1 −→ K

Q
n+1 −→ K

MW
n+1

as follows. We precompose with the hyperbolic mapK
Q
n+1 → GW

1
n+1 and we observe that the

composite
K
Q
n+1 → GW

1
n+1 → K

Q
n+1

is multiplication by2 on the symbolic part ofKQ
n+1 ([AF12b, Lemma 4.3]). Thus we get an epi-

morphism of sheavesKM
n+1/2(n!) ×KM

n+1/2
I
n+1 → Vn+1.

Arguing as in the previous section, we can show that the sheaf(Vn+1)−n depends on the class
of n modulo4. If n ≡ 2 (mod 4), the epimorphism of sheaves

K
M
1 /2(n!) ×KM

1 /2 I → (Vn+1)−n

is in fact an isomorphism. It induces an isomorphismKM
1 /(n!) ×KM

1 /2 I → (Vn+1)−n if n ≡ 0

(mod 4).
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If n is odd, things are even simpler. Indeed, we claim that the mapK
M
n+1 → Vn+1 yields an

isomorphismKM
1 → (Vn+1)−n providedn 6= 1. If n ≡ 3 (mod 4), then this follows from the fact

that then-th contraction of the forgetful homomorphismGW
1
1+n → K

Q
n+1 is trivial becauseGW

2
1

is trivial. If n ≡ 1 (mod 4), then-th contraction of the forgetful homomorphismGW
1
1+n →

K
Q
n+1 is the forgetful homomorphismGW

0
1 → K

Q
1 whose image is the constant subsheaf±1 by

[FRS12, Lemma 2.4]. The contraction of the mapKQ
1 → K

M
1 is multiplication byn! and thus the

compositeGW
0
1 → K

Q
1 → K

M
1 is trivial if n 6= 1.

In casen = 1, the arguments above prove that the mapK
M
2 → V2 induces an isomorphism

K
M
1 /(±1) → (V2)−1.

4 The Hopf mapν and π
A1

3 (A3 \ 0)

In the previous section, we described the sheafπ
A1

3 (A3 \ 0) as an extension of the Grothendieck-
Witt sheafGW

3
4 by a sheaf we calledF5. The goal here is to provide a better understanding of

the “topological” origin of the sheafF5 and the factor of24 that appears in the Milnor K-theory
sheaf that contributes toF5. We will see that the24 appearing in the description ofF5 is the
“same” as the24 the appears in the third stable homotopy group of spheres. Weplace the word
“topological” in quotes because the initial computations we make are purely algebraic. To begin,
we study what happens under real and complex realization. Finally, we give a purely algebraic proof
of the stable non-triviality ofν (see Theorem4.17). One consequence of this is thatP

1-suspensions
of ν contribute toπA1

n (An \ 0) for n ≥ 4 as well.

Contracted homotopy sheaves

Precomposing with elements ofπA1

3,5(Σ
3
sG

∧5
m ) givesπA1

3,5(X ) aKMW
0 (k)-module structure for any

pointed spaceX , and this module structure is covariantly functorial inX by construction. In partic-
ularπA1

3,5(A
3 \ 0) admits the structure of aKMW

0 (k)-module.
The suspension morphism yields a map

Σ3
sG

∧5
m −→ Ω1

sΣ
4
sG

∧5
m

∼= Ω1
sSL5/SL4.

We saw above that the connecting morphism in theA
1-fiber sequenceX2 → X3 → SL5/SL4 was

a morphismδ : Ω1
sSL5/SL4 → X2 = SL4/Sp4 ∼= A

3 \ 0. Abusing notation, we will write

δ : Σ3
sG

∧5
m −→ Ω1

sSL5/SL4 −→ X2

for the composite map.
By Morel’s A

1-Freudenthal suspension theorem, since the spaceΣ3
sG

∧5
m is 2-A1-connected (by

Morel’s unstableA1-connectivity theorem), the suspension morphism induces an isomorphism upon
applyingπ3,j for anyj ≥ 0. In particular, the morphism

K
MW
0 = π

A1

3,5(Σ
3
sG

∧5
m ) −→ π

A1

3,5(Ω
1
sSL5/SL4)

is an isomorphism. Using this notation, we can now describe theKMW
0 (k)-module structure of

π
A1

3,5(A
3 \ 0)(k).
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Proposition 4.1. There is a canonical isomorphism

π
A1

3,5(A
3 \ 0) ∼= Z/24×Z/2 W,

andπA1

3,5(A
3 \ 0)(k) is generated as aKMW

0 (k)-module byδ.

Proof. By Theorem3.7, we know thatπA1

3 (A3 \ 0) is an extension ofGW
3
4 by F5. By [Mor12,

Theorem 6.13], we know thatπA1

3,5(A
5 \ 0) ∼= π

A1

3 (A5 \ 0)−5. SinceπA1

3,5(X3) = (GW
3
4)−5 = 0,

it follows from the long exact sequence inA1-homotopy sheaves associated with the fiber sequence
X2 → X3 → A

5 \ 0 that the morphism

K
MW
0 = π

A1

3,5(Ω
1
sSL5/SL4) −→ π

A1

3,5(A
3 \ 0)

is an epimorphism. In other words,πA1

3,5(A
3 \ 0) is generated as aKMW

0 (k)-module by the con-
necting homomorphismδ.

By exactness of contractions, and the fact that(GW
3
4)−5 = 0, it follows that

π
A1

3,5(A
3 \ 0) ∼= (F5)−5.

The result follows then from Lemma3.8.

Complex realization

If k = C, then we can apply the complex realization functor to theA1-fiber sequence

X2 −→ X3 −→ SL5/SL4

to obtain (after shifting) the topological fiber sequence

Ω1S9 −→ S5 −→ SU(6)/Sp(6).

By precomposing the mapΩ1S9 → S5 by the suspension mapS8 → Ω1Σ1S8, we obtain a map
S8 → S5, which we want to identify. The long exact sequence in homotopy groups of the above
fiber sequence yields:

π8(Ω
1S9) −→ π8(S

5) −→ π8(SU(6)/Sp(6)) −→ 0.

We know thatπ8(SU(6)/Sp(6)) ∼= π8(SU/Sp) = π8(U/Sp), and by Bott periodicity, we know
thatπ8(U/Sp) = π10(O) = π2(O) = 0. In other words, the portion of the long exact sequence
displayed above collapses to the surjection

Z −→ π8(S
5) −→ 0.

One knows thatπ8(S5) isZ/24 generated by the suspension of the Hopf mapν. Since the composite
mapS8 → S5 mentioned above corresponds to the image of1 ∈ Z, it follows that the composite
map isν.
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Corollary 4.2. Under complex realization, the homomorphism

π
A1

3,5(A
3 \ 0)(C) → π8(S

5) = Z/24

is an isomorphism.

Proof. By Proposition4.1, we know thatπA1

3,5(A
3 \ 0) ∼= Z/24 ×Z/2 W(k). As a consequence,

complex realization yields a homomorphismZ/24 −→ Z/24. Moreover, we saw before the state-
ment that the generator of (the topological)Z/24 is precisely the connecting homomorphism in
the fibration associated with the complex points ofX2 → X3 → A

5 \ 0. Since this connecting
homomorphism is algebraically defined, andδ is a generator ofπA1

3,5(A
3 \ 0)(C), it follows that

complex realization maps the algebraic generator to the topological generator and is therefore an
isomorphism.

Remark4.3. We interpret this result as saying that the24 that appears inπA1

3 (A3 \ 0) is the “same”
as that appearing in the third stable homotopy of the spheres.

Real realization

We can compute the homotopy groups of the real points as well to study real realization. We view
this computation as providing an explanation for the appearance ofW in π

A1

3,5(A
3 \ 0). Up to

A
1-homotopy, the fiber sequenceX2 → X3 → SL5/SL4 yields the sequence

A
3 \ 0 −→ SL6/Sp6 −→ A

5 \ 0,

which upon taking real points gives the topological fiber sequence

S2 −→ SO(6)/U(3) −→ S4.

A computation using Bott periodicity shows thatπ3(SO(6)/U(3)) = π3(O/U) = π4(O) = 0. As
a consequence, the mapπ3(Ω1S4) → π3(S

2) in the long exact sequence is an isomorphism. Thus
the composite mapS3 → Ω1S4 → S2 is precisely the classical Hopf mapη.

Corollary 4.4. For any j ≥ 0, real realization defines a surjective mapπA1

3,j(A
3 \ 0)(R) →

π3(S
2) = Z.

Proof. We can computeπA1

3,j(A
3 \ 0) by contractingπA1

3 (A3 \ 0) j-times. To prove surjectivity, we

will consider onlyF5, i.e., the kernel of the mapπA1

3 (A3\0) → GW
3
4. By definition, we know that

F5 admits an epimorphism fromT5, which is a fiber product ofS5 andI5 overKM
5 /2. Moreover,

the mapT5 → F5 is injective onI5. Contracting repeatedly and using the fact thatI
i(R) = Z

for any i ≤ 5 (by conventionIi = W for i ≤ 0), we see thatπA1

3,j(A
3 \ 0)(R) is non-trivial. The

real realization of the connecting homomorphism lifts the generator ofπ3(S2) by the discussion
preceding the statement.

Remark4.5. The above computation shows that the factor ofI
5 is an avatar of the topological Hopf

mapη : S3 → S2. Since the topological Hopf mapη becomes2-torsion inπ4(S3), we expect that
the factor ofI5 appearing inπA1

3 (A3 \ 0) will become trivial after a single simplicial suspension,
i.e., inπA1

4 (P1∧3). In particular, it should follow thatπA1

4,5(P
1∧3) = Z/24.
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TheA
1-homotopy type ofQ4

Let Q4 be the quadric defined byx1y1 + x2y2 = z(z + 1). TheA
1-homotopy type ofQ4 was

effectively described in [AD07]; we review the argument here. Consider the closed subschemeE2

of Q4 defined byx1 = 0, x2 = 0, z = −1. Observe thatE2 is isomorphic toA2. Let Y4 ⊂ Q4

be the (open) complement ofE2. In [AD07], it is observed that there is aGa-torsorA5 → Y4, and
thereforeY4 isA1-contractible (in fact, overSpecZ). There is a cofiber sequence of the form

Y4 −→ Q4 −→ Th(νE2/Q4
) −→ Σ1

sY4 −→ · · · .

The normal bundle toE2 ⊂ Q4 is trivial, and picking a trivialization ofνE2/Q4
yields anA1-weak

equivalenceTh(νE2/Q4
) ∼= P

1∧2
∧E2+. SinceE2 is itselfA1-contractible we see thatE2+

∼= S0
k,

and thereforeTh(νE2/Q4
) ∼= P

1∧2. Thus, there is an induced mapQ4 → P
1∧2. SinceY4 is

A
1-contractible, the next result follows from the fact that pushouts ofA1-weak equivalences along

cofibrations are againA1-weak equivalence, which is a consequence of the construction of theA1-
homotopy category [MV99, §2 Theorem 3.2].

Proposition 4.6(Asok, Doran). For any fieldk, the mapQ4 → P
1∧2 is anA1-weak equivalence.

Remark4.7. More generally, letQ2n be the smooth affine quadric defined by the equation

∑

i

xixn+i = x2n+1(1 + x2n+1).

It is straightforward to check thatQ2
∼= SL2/Gm and is thereforeA1-weakly equivalent toP1. Let

En ⊂ Q2n be the closed subscheme defined byx1 = · · · = xn = 0, z = −1, and letY2n be its
open complement. The same argument as above gives a mapQ2n → P

1∧n. If one knew thatY2n
wasA1-contractible, then it would follow thatQ2n → P

1∧n is anA1-weak equivalence. It is known
thatY2n cannot be the base space of a unipotent group torsor, so the techniques of [AD07] cannot
be applied.

A geometric Hopf map and fibration

Given a pair of2 × 2-matricesA andB consider the equationdetA − detB = 1; the result is a
quadricQ′

7 ⊂ A
8. Letµ :M2 ×M2 →M2 be multiplication of2× 2-matrices. Define a function

hµ(A,B) := (µ(A,B),detB).

Observe that ifdetA−detB = 1, then sincedet(AB) = det(A) det(B), it follows thatdet(AB) =
det(B)(1 + detB), i.e.,hµ restricts to a morphismQ′

7 −→ Q4. If Q7 is the standard quadric de-
fined by the equation

∑4
i=1 xix4+i = 1, then there is an obvious isomorphismQ7

∼= Q′
7 obtained

by changing signs.

Definition 4.8. The Hopf mapν : Q7 → Q4 is the maphµ precomposed with the isomorphism
Q7

∼= Q′
7 described above.
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Define an action ofSL2 on pairs(A,B) by means of the formula

C · (A,B) = (AC,C−1B).

If C ∈ SL2, thendet(AC) − det(C−1B) = det(A) − det(B), so this action preservesQ′
7.

Moreover,µ(AC,C−1B) = µ(A,B) anddet(C−1B) = detB. Therefore,hµ(C · (A,B)) =
hµ(A,B). In fact, this action makesQ′

7 into anSL2-torsor overQ4 (see the proof of [AD08,
Corollary 3.1] for details). BecauseSL2-torsors give rise toA1-fiber sequences, we deduce the
following result.

Proposition 4.9. There is anA1-fibration sequence of the form

Q3 −→ Q′
7 −→ Q4.

Remark4.10. There is a homotopically simpler but less geometric description of the Hopf map.
Indeed, the multiplication mapSL2 × SL2 → SL2 yields a morphismΣ1

sSL2∧SL2 → Σ1
sSL2,

which provides another candidate forν (see [Mor12, p. 189] for more discussion of this map). The
morphism we calledν above and this Hopf map should agree (perhaps up to a sign).

Splitting the geometric Hopf fibration

The fiber sequenceQ3 → Q′
7 → Q4 gives rise to a long exact sequence in homotopy sheaves. The

(pointed) inclusion mapQ3 → Q′
7 gives an element of[Q3, Q

′
7]A1 = π

A1

1,2(Σ
3
sG

∧4
m )(k). However,

sinceπA1

1,2(Σ
3
sG

∧4
m ) = π

A1

1 (Σ3
sG

∧4
m )−2 = 0, it follows that the inclusion mapQ3 → Q′

7 is null-

homotopic. In particular, the induced mapsπ
A1

i,j (Q3) → π
A1

i,j (Q
′
7) are zero for arbitraryi andj.

The suspension homomorphismQ3 → Ω1
sΣ

1
sQ3 together with theA1-weak equivalenceΣ1

sQ3
∼
→ Q4

yields a homomorphism
π
A1

i,j (Q3) → π
A1

i+1,j(Q4)

that provides a splitting of the connecting homomorphismπ
A1

i+1,j(Q4) → π
A1

i,j (Q3) in the long exact
sequence in homotopy sheaves associated with the Hopf fibration. Combining these two facts yields
the following result.

Proposition 4.11. For any integersi, j, the long exact sequence in homotopy sheaves associated
with theA1-fibrationQ3 → Q′

7 → Q4 breaks into split short exact sequences of the form

0 −→ π
A1

i,j (Q7) −→ π
A1

i,j (Q4) −→ π
A1

i−1,j(Q3) −→ 0.

Taking i = 3 in the above proposition, using the fact thatπ
A1

3 (Q′
7) = K

MW
4 , contracting4

times, and replacingSL2 byBSL2 via an index shift yields the following split short exact sequence:

0 −→ K
MW
0

ν∗−→ π
A1

3,4(P
1∧2) −→ π

A1

3,4(BSL2) −→ 0.

Evaluating onk, and precomposing with elements of[Q7, Q7]A1 defines aKMW
0 (k)-module struc-

ture on each term of the exact sequence and since the morphisms are compatible with thisKMW
0 (k)-

module structure, the above sequence is a split short exact sequence ofKMW
0 (k)-modules.
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Remark4.12. It is possible to identify more explicitly theKMW
0 (k)-module structure onπA1

3,4(BSL2)(k)

using the computation ofπA1

2 (SL2) in [AF12b] and [AF12a]. Indeed, contracting four times, we
saw thatπA1

2,4(SL2) ∼= Z/12 ×Z/2 W in [AF12a]. Moreover, sinceπA1

2,4(Sp4) = (KSp
3 )−4 = 0,

the connecting homomorphismξ : Ω1
sSp4/SL2 → SL2 in the long exact sequence of the fiber

sequence
SL2 → Sp4 → Sp4/SL2

yields a surjective homomorphismKMW
0 → π

A1

2,4(SL2). This surjective homomorphism provides

aKMW
0 (k)-module generator ofπA1

2,4(SL2) = π
A1

3,4(BSL2) that we also refer to asξ. From these
facts, one can deduce that

π
A1

3,4(P
1∧2)(k) ∼= KMW

0 (k)ν ⊕ (Z/12×Z/2 W (k))ξ.

The cone ofν

If η : A2 \0 → P
1 is the Hopf map given by the usual projection morphism, it is aclassical fact that

the cone ofη, computed inH•(k) is isomorphic toP2. To see this, one takesP2 and considers the
standard open cover by two open sets isomorphic toA

2 andP2 \0. The inclusion of the intersection
gives a mapA2 \ 0 → P

2 \ 0 that under theA1-weak equivalenceP2 \ 0 → P
1 coincides with the

Hopf map. SinceA2 is contractible, the Mayer-Vietoris square gives the required computation of
the cone. The benefit of this computation is that the cohomology of P2 is well understood.

We now provide an analogous computation forν. To this end, consider the spacesHPi defined
by Panin and Walter in [PW10b]. In terms of the notation of quaternionic Grassmannians introduced
at the beginning of Section2, we have

HPn = HGr(1, n + 1).

The spaceHPn is a smooth affine scheme of dimension4n that behaves in a fashion very similar to
the quaternionic projective spaces one considers in topology.

Remark4.13. One can check thatHP1 coincides with the quadricQ4 we considered. The varieties
HPn can all be constructed as quotients of the split smooth affinequadricQ4n+3 by a free action of
SL2, generalizing the construction ofQ4 as a quotient ofQ7 by a free action ofSL2. In fact, the
varietiesHPn can all be seen to be smooth overSpecZ.

Roughly speaking,HPn admits a “cell decomposition” with cells of dimension4i. More pre-
cisely, there exist smooth locally closed (in general, quasi-affine) subschemesZ2i in HPn of codi-
mension2i, such i)Z2n = A

2n, ii) eachZ2i is anA1-contractible variety realized as the quotient
A
4n−2i+1 by a free action ofGa, and iii) the closureZ2i is a vector bundle of rank2i overHPn−i

[PW10b, Theorem 1.1]. Given this notation, we can state the computation.

Proposition 4.14. The cone ofν in H•(k) isHP2.

Proof. We know thatHP2 has a cell-decomposition with cellsZ0, Z2 andZ4, whereZ2i has codi-
mension2i, and the closure ofZ2 is a rank2 vector bundle overQ4 = HP1 [PW10b, Theorem 3.2].
SinceZ0 isA1-contractible, with complementZ2, the Thom isomorphism theorem, combined with
the cofiber sequence attached to the inclusionZ0 →֒ HP2 yields anA1-weak equivalence

HP2 ∼= Th(NZ2/HP2).
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Now, by definition the Thom space ofNZ2/HP2 is the quotientNZ2/HP2/N◦
Z2/HP2 , whereN◦

Z2/HP2

denotes the complement of the zero section. We now describe these spaces more explicitly.
The total spaceNZ2/HP2 is a rank2 vector bundle overZ2, which is itself a rank2 vector bundle

overHP1. Therefore, the composite map yields anA
1-weak equivalence

NZ2/HP2 −→ HP1.

On the other hand, the spaceN◦
Z2/HP2 admits the following description. The spaceZ2 is affine and

A
1-weakly equivalent toQ4. If ν is the Hopf map, thenν is anSL2-torsor overQ4, and we can

form the associatedA2 \ 0-bundleZ := Q7 ×
SL2 A

2 \ 0 −→ Q4. The map

Q7
∼= Q7 ×

SL2 SL2 −→ Q7 ×
SL2 A

2 \ 0

is Zariski locally trivial with fibers isomorphic toA1 and is therefore anA1-weak equivalence.
Therefore, the induced mapZ → Q4 coincides withν up toA

1-homotopy. One can check that
N◦
Z2/HP2 is precisely the pullback ofZ toZ2 along the vector bundleZ2 → Q4.

Combining these two facts, we see that, up toA
1-weak equivalence, the inclusion of the com-

plement of the zero section of the normal bundle toZ2 into the total space isν.

Stable non-triviality of ν

Sinceν gives a morphismQ7 → Q4, Tate suspension ofν yields, up toA1-homotopy, a map

ΣGm
ν : Σ3

sG
∧5
m −→ A

3 \ 0.

Therefore,ΣGm
ν is an element ofπA1

3,5(A
3 \ 0). By Proposition4.1, it follows immediately that

ΣGm
ν is a multiple ofδ (for theKMW

0 (k)-module structure). To show thatδ is stably non-trivial,
we will show thatν is stably non-trivial.

If k is a field having characteristic zero, then stable non-triviality of δ follows from complex
realization, but it is possible to give a purely algebraic argument for this fact. The purely algebraic
argument is, unsurprisingly to anyone familiar with the classical topological story, related to the
Hopf invariant. Recall that, in topology, given a mapg : S4n−1 → S2n, one can form theCW
complexC(g) = D4n ∪f S

2n, which has two cells of dimension4n and2n. If g is homotopically
trivial, this complex is simplyS4n ∨ S2n, and this completely determines (say) the cohomology of
C(g) (even, say, as modules over the Steenrod algebra). One way todetect thatC(g) is non-trivial
is to study its cohomology ring or Steenrod operations.

In algebraic geometry, one may replaceC(g) by the cone of the mapg and perform all the same
arguments. Suppose given an element off ∈ [A2n \ 0,P1∧n]A1 . We can form the coneC(f) in
H•(k). If f is A

1-homotopically constant, thenC(f) ∼= P
1∧n ∨ Σ1

sA
2n \ 0. In particular, we have

H̃∗,∗(P1∧n ∨ Σ1
sA

2n \ 0,Z/2) ∼= H̃∗,∗(P1∧n,Z/2)⊕ H̃∗,∗(Σ1
sA

2n \ 0,Z/2).

where we writeH̃∗,∗(−,Z/2) for reduced motivic cohomology withZ/2-coefficients. IfA∗,∗ is
the (mod2) motivic Steenrod algebra studied in [Voe03, §11], thenH̃∗,∗(−,Z/2) is a module over
A∗,∗, and the above direct sum decomposition is a decomposition as modules overA∗,∗.
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Note thatH∗,∗(Σ1
sA

2n \0,Z/2) ∼= H∗,∗(Spec k)[ξ]/ξ2, whereξ is a class of bidegree(4n, 2n),
and thatH∗,∗(P1∧n,Z/2) ∼= H∗,∗(Speck)[τ ]/τ2, whereτ is a class of bidegree(2n, n). For this
reason, we will limit our attention to the subringH2∗,∗(−,Z/2), which we view as aZ/2-vector
space. Now, the algebraA∗,∗ does not preservẽH2∗,∗(−,Z/2). However, if we writeA∗,∗/β for the
quotient ofA∗,∗ by the2-sided ideal generated by the Bockstein, thenA∗,∗/β actually does preserve
H̃2∗,∗ (see [Bro03, §11] for a discussion of this fact, in our context it follows from [Voe03, Theorem
10.2] upon observing thatSq2i+1 = βSq2i). The action ofA∗,∗/β on H̃2∗,∗(−,Z/2) is Z/2-linear
by construction.

If f ∈ [A2n \ 0,P1∧n]A1 is A
1-homotopically constant, then theA∗,∗/β-module structure on

H̃2∗,∗(Σ1
sA

2n \ 0,Z/2) is trivial, since every Steenrod operation acts trivially on ξ. Similarly,
theA∗,∗/β-module structure oñH∗,∗(P1∧n,Z/2) is trivial. Thus, to prove non-triviality off , it
suffices to prove that the action ofA∗,∗/β onC(f) is non-trivial. Since the operations we consider
are all stable with respect to both simplicial andGm-suspension, it follows that if theA∗,∗/β-
module structure onC(f) is non-trivial, thenf remains non-trivial after both simplicial andGm-
suspension, so is non-trivial in the stableA1-homotopy category ofP1-spectra (see [Mor04a] for
details regarding the latter category).

Remark4.15. One would like to just describe theA∗,∗-module structure on the motivic cohomol-
ogy of H∗,∗(Spec k)[ξ]/ξ2 directly, but there are some technical difficulties preventing an easy
statement. The main problem is that ifX is a scheme, the action ofA∗,∗ on H̃∗,∗(X,Z/2) is not
H∗,∗(Spec k,Z/2)-linear (see [Voe03, p. 41]). This is the reason we considerA∗,∗/β.

Remark4.16. If f ∈ π2n−1,2n(P
1∧n) is as above, and we look atH2∗,∗(C(f),Z) instead, then we

see that
H2∗,∗(C(f),Z) ∼= Z[ξ, τ ]/〈ξ2, ξτ, τ2 − hf ξ〉

with hf ∈ Z for dimensional reasons. One can check that the function

H : πA1

2n−1,2n(P
1∧n) −→ Z

given by the assignmentf 7→ hf is actually a group homomorphism, just as in topology and defines
a motivic analog of the classical Hopf invariant [Whi50]. Since this invariant depends only the ring
structure of the motivic cohomology ofC(f), it is an unstable invariant.

Loosely following the notation of Morel [Mor04a, §5], we write

π
sA1

i,j (S0k) := colimn π
A1

i+n,j+n(P
1∧n);

in words, this sheaf is the bidegree(i, j)-stableA1-homotopy sheaf of the motivic sphere spectrum.
IteratedP1-suspension ofν gives rise to an element ofπsA

1

1,2 (S
0
k)(k).

Theorem 4.17.The elementν ∈ π
sA1

1,2 (S
0
k)(k) is non-trivial.

Proof. Sinceν is defined overSpecZ, it suffices by a base-change argument to show that it is non-
trivial over the prime field. Since the prime field is perfect,we can use motivic cohomology to detect
non-triviality. We saw thatC(ν) = HP2 in Proposition4.14. By [PW10b, Theorem 8.1], we know
thatH∗,∗(C(ν),Z/2) ∼= Z/2[ζ]/ζ3, whereζ, a class of bidegree(4, 2), is the first Pontryagin class
of a canonical symplectic line bundle overHP2. In particular,Sq4(ζ) = ζ2 by [Voe03, Lemma 9.8],
soH̃∗,∗(HP2,Z/2) has a non-trivialA∗,∗/β-module structure, and the required stable non-triviality
of ν follows.
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Corollary 4.18. The elementδ is P
1-stably non-trivial.

Proof. Since the elementΣGm
ν is non-trivial by the above argument, it follows thatδ is a non-

trivial multiple of ΣGm
ν. The result follows immediately from Theorem4.17.

Finally, note thatδ can actually be defined overSpecZ. Every indication suggests that the
following conjecture is true.

Conjecture 4.19. The elementsδ andΣGm
ν areA1-weakly equivalent (overSpecZ).

Remark4.20. If one knew that the (pointed) endomorphisms ofA
n \0 (n ≥ 2) in theA1-homotopy

category overSpecZ were given byGW (Z), one could use the two realization computations above
to establish this conjecture for fields having characteristic 0. One can construct a split injective
map fromGW (Z) to the above homotopy endomorphisms, but we do not know how toprove this
map is surjective. Alternatively, as mentioned in Remark4.5, it seems reasonable to expect that
π
A1

4,5(P
1∧3) ∼= Z/24. From this, one could easily deduce thatΣsδ = ΣP1ν in π

A1

4,5(P
1∧3) for any

field having characteristic0 by appealing to complex realization.

5 Obstruction theory and the splitting problem

In this section, we explain in detail the obstruction theoretic computations required to reduce the
splitting problem to the computation ofA1-homotopy sheaves. We then explain how the computa-
tion ofπA1

3 (A3 \ 0) yields the statement of the introduction. By Morel’s results, we know that ifX
is a smooth affinek-scheme, then[X,BGLn]A1 is canonically in bijection with the set of isomor-
phism classes of rankn vector bundles onX. Consider the morphismGLn → GLn+1 that sends an
invertible matrixM to the block diagonal matrix with diagonal blocksM and1. By functoriality,
there is an induced morphismBGLn → BGLn+1.

The image of a vector bundleE onX under the induced morphism

[X,BGLn]A1 −→ [X,BGLn+1]A1

is a vector bundle of the formE ⊕ OX . To understand whether a given vector bundleE ′ onX of
rankn + 1, classified by an elementξ ∈ [X,BGLn+1]A1 splits off a trivial rank1 summand, it
therefore suffices to determine whetherξ lies in the image of[X,BGLn]A1 , and this question can
be studied by means of the Moore-Postnikov tower of the morphismBGLn → BGLn+1.

Remark5.1. Strictly speaking, if we are to work with the Moore-Postnikov factorization, then we
must work in the category of pointed maps. This presents no real difficulty since we can replace
X by X+ and use the fact that the space of pointed maps betweenX+ andBGLn is canonically
identified with the space of unpointed maps betweenX andBGLn. Throughout this section, we
will implicitly make this choice and avoid further discussion of base-points.

The A
1-homotopy fiber ofBGLn → BGLn+1 is preciselyAn \ 0, so the obstructions to

lifting are controlled by homotopy sheaves of this space. However, for any integern, we know
thatπA1

1 (BGLn) = Gm (induced by the determinant homomorphismGLn → Gm), and the sheaf
π
A1

1 (BGLn) acts non-trivially onπA1

i (BGLn) in general, so the obstruction theory is slightly more
complicated.
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We refer the reader to [AF12b, §6] for a general discussion ofA1-Postnikov towers; the Moore-
Postnikov factorization of a morphismf : X → Y of spaces comes from applying theA1-Postnikov
tower discussed there to theA1-homotopy fiber off . The identificationBGL(1)

n = BGm yields a
map[X,BGLn]A1 → [X,BGm]A1 that sends a vector bundle to its determinant line bundle. Given
an elementξ ∈ [X,BGLn+1]A1 , since the action ofπA1

1 (BGLn) = π
A1

1 (BGLn+1) on the total
space and fiber are compatible, there is an induced action ofπ

A1

1 (BGLn+1) on theA1-homotopy
sheavesπA1

i (An+1 \ 0). Therefore, there are inductively defined obstructions

oi,n+1(ξ) ∈ H i+1(X,πA1

i (An+1 \ 0)(det ξ)).

SinceAn+1 \ 0 is (n − 1)-A1-connected, the first potentially non-trivial obstructionis on,n+1(ξ),
which is an element ofHn+1(X,KMW

n+1 (det ξ)). If X has dimensionn + 2, then for reasons of
cohomological dimensions, ifon,n+1(ξ) vanishes, the only further possible non-trivial obstruction is
on+1,n+1 ∈ Hn+2(X,πA1

n+1(A
n+1\0)(det ξ)). Therefore, if we understand the sheafπ

A1

n+1(A
n+1\

0) (together with the inducedGm-action), we completely understand the splitting problem for rank
n+ 1-vector bundles on a smooth affine(n+ 2)-fold.

The primary obstruction and Murthy’s splitting conjecture

Proposition 5.2. If k is an algebraically closed field having characteristic unequal to2, on,n+1(ξ)
vanishes if and only ifcn+1(ξ) = 0.

Proof. In [AF12b, Corollary 5.9], we showed that, under the stated hypotheses, the canonical mor-
phism

Hn+1(X,KMW
n+1 (ξ)) −→ Hn+1(X,KM

n+1) = CHn+1(X)

is an isomorphism. In particular, the elementon,n+1 is canonically determined by an element of
CHn+1(X) (always under the stated hypotheses).

The obstruction class onX is pulled-back from a universal class onBGLn+1, induced by the
identity map onBGLn+1. If ν is the universal bundle onBGLn+1 with determinantdet ν, then
there is a commutative diagram of the form

Hn+1(BGLn+1,K
MW
n+1 (det ν))

//

��

Hn+1(X,KMW
n+1 (det ξ))

��
Hn+1(BGLn+1,K

M
n+1)

// Hn+1(X,KM
n+1).

In particular, sinceon,n+1(ξ) is uniquely determined by its image inHn+1(X,KM
n+1), it suf-

fices to understand the imageon,n+1 of on,n+1(ν) in Hn+1(BGLn+1,K
M
n+1). Now, if we iden-

tify BGLn+1 with the infinite GrassmannianGrn+1, it follows that the image ofon,n+1(ν) in
Hn+1(BGLn+1,K

M
n+1) is given by an element ofHn+1(Grn+1,K

M
n+1) = CHn+1(Grn+1) = Z.

It follows thaton,n+1 is a multiple ofcn+1(ν), which is a generator ofCHn+1(Grn+1).
In fact, we will see thaton,n+1 = cn+1(ν) and it follows by functoriality of the obstruction class

and the Chern class that the same result holds for an arbitrary smooth scheme. Topologically, the
fact that the top Chern class is an Euler class is the definition taken in Milnor-Stasheff [MS74, §14],
and the fact that the Euler class is the obstruction class in question is [MS74, Theorem 12.5].
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First, we use an alternate identification ofcn+1. Up toA
1-weak equivalence, we can identify

BGLn with the complement of the zero section in the universal bundle overBGLn+1. If V(ν) is
the associated geometric vector bundle (we can think of an inductive limit of vector bundles over
finite dimensional Grassmannians), and we writeV(ν) \ 0 for the complement of the zero section,
then there is a cofiber sequence of the form

V(ν) \ 0 −→ V(ν) −→ Th(ν).

Now, the groupHn+1(Th(ν),KM
n+1) is precisely isomorphic toH0(BGLn+1,Z) ∼= Z by means

of the Thom isomorphism, andcn+1 is precisely the image of1 ∈ Z under this morphism.
On the other hand, the obstruction class is an element ofHn+1(BGLn+1,K

MW
n+1 (det ν)). The

cofiber sequence above gives rise to a long exact sequence, a portion of which takes the form:

Hn+1(Th(ν),KMW
n+1 (det ν)) −→ Hn+1(V(ν),KMW

n+1 (det ν)) −→ Hn+1(V(ν)\0,KMW
n+1 (det ν)).

By the identifications discussed in the previous paragraph,up toA1-weak equivalence, the second
arrow (from the left) in the above sequence coincides with the morphism

Hn+1(BGLn+1,K
MW
n+1 (det ν)) −→ Hn+1(BGLn,K

MW
n+1 (det ν))

induced by the inclusionBGLn → BGLn+1. Since the pullback ofν to BGLn splits off a free
rank 1 summand by construction, it follows by functoriality of theobstruction class that the im-
age ofon,n+1 in Hn+1(BGLn,K

MW
n+1 (det ν)) is 0. Therefore,on,n+1 comes from an element of

Hn+1(Th(ν),KMW
n+1 ).

The twisted Thom isomorphism gives an identification

Hn+1(Th(ν),KMW
n+1 (det ν))

∼
−→ H0(BGLn+1,K

MW
0 ) ∼= GW (k)

[AH11, Theorem 4.2.7]. We claim thaton,n+1 is the image of〈1〉 ∈ GW (k) under this map.
Indeed, by the self-intersection formula, the morphismGW (k) → Hn+1(BGLn,K

MW
n+1 (det ν))

sends1 to the (twisted) Euler class ofν, which coincides with the obstruction class by definition.
The canonical homomorphismKMW

n+1 (det ν) → K
M
n+1, when combined with the Thom isomor-

phisms, yields a homomorphism

H0(BGLn+1,K
MW
0 ) → H0(BGLn+1,Z)

that corresponds to the degree homomorphismGW (k) → Z, which is split surjective sending〈1〉
to 1.

As a consequence of this identification of the primary obstruction class, we see that Murthy’s
splitting conjecture is equivalent to a cohomological vanishing statement.

Corollary 5.3. If X is a smooth affine scheme of dimensiond+1 over an algebraically closed field
having characteristic unequal to2, then Murthy’s splitting conjecture holds if and only if forany
rankd vector bundleξ onX, such thatcd(ξ) ∈ CHd(X) = 0,

od,d(ξ) ∈ Hd+1
Nis (X,π

A1

d (Ad \ 0)(det ξ)) = 0.
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Murthy’s splitting conjecture for smooth affine 4-folds

In this section, we will establish Theorem2 from the introduction. In light of Corollary5.3, we
would like to study the groupHd+1

Nis (X,π
A1

d (Ad \ 0)(det ξ)). To this end, we need to understand
the Gersten resolution for the sheafπ

A1

d (Ad \ 0)(det ξ), which is complicated by the non-triviality
of the twist bydet ξ. In the cased = 3, the sheafπA1

3 (A3 \0) is an extension ofGW
3
4 by the sheaf

F5. We will understand theGm-action on each of these components separately.

Lemma 5.4. If X is a smooth affine4-fold over an algebraically closed fieldk having characteristic
unequal to2, andξ is a rank3-vector bundle onX, then the groupH4(X,F5(det ξ)) = 0.

Proof. The sheafF5 is defined as the cokernel ofχ5 : GW
3
5 −→ K

MW
5 . Given a line bundleL, we

can define the sheafKMW
n (L) on the small Nisnevich site ofX. The Gersten resolution of such a

sheaf is described in [Mor12, Remark 5.13], and unwinding the definitions, one sees thatF5(det ξ)
is a quotient ofKMW

5 (det ξ).
There is a short exact sequence of the form

0 −→ I
6(det ξ) −→ K

MW
5 (det ξ) −→ K

M
5 −→ 0,

i.e., the induced action ofdet ξ on the Milnor K-theory quotient ofKMW
5 is trivial. Now, the

description ofF5 we gave in Theorem3.7shows that it admits an epimorphism fromT5, which is
itself a fiber product ofI5 and a quotient ofKM

5 /24.
Sincek is algebraically closed, it follows from [AF12b, Proposition 5.8] thatH4(X, I5(det ξ)) =

0. Likewise, it follows from [AF12b, Proposition 5.10] thatH4(X,KM
5 /24) = 0. Therefore,

H4(X,T5(det ξ)) = 0. For reasons of cohomological dimension, there is a surjective homomor-
phismH4(X,T5(det ξ)) −→ H4(X,F5(det ξ)), and so we conclude that the latter vanishes as
well.

Our next aim is to compute the groupHd(X,GW
d−1
d (det ξ)). We start with two lemmas.

Lemma 5.5. Let F be a field of characteristic different from2 and letL be aF -vector space of
rank one. Then the hyperbolic mapZ = K0(F ) → GW 3(F,L) induces an isomorphism

Z/2 → GW 3(F,L).

Proof. Choosing a generator ofL, we get a commutative diagram

GW 0(F )
f // //

��

K0(F )
H // GW 3(F )

��
GW 0(F,L)

f // // K0(F )
H // GW 3(F,L)

where the vertical maps are isomorphisms. The result follows then from [FS08, Lemma 4.1].

Lemma 5.6. Let F be a field of characteristic different from2 and letL be aF -vector space of
rank one. Then Karoubi periodicity yields a split exact sequence

0 // K1(F )/2
H // GW 0

1 (F,L)
η // GW 3

0 (F,L)
// 0
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Proof. As above, choosing a generator ofL yields an isomorphismF → L and a commutative
diagram

GW 0
1 (F )

η //

��

GW 3
0 (F )

��
GW 0

1 (F,L)
η // GW 3

0 (F,L)

where the vertical maps are isomorphisms. The result follows therefore from [AF12b, Lemma
4.9].

Theorem 5.7. LetX be a smoothd-fold over a fieldk of characteristic different form2 andL be a
line bundle overX. Then there is an exact sequence

Chd−1(X)
Sq2L // Chd(X) // Hd(X,GW

d−1
d (L)) // 0,

whereSq2L is the Steenrod square operation twisted byL, i.e. Sq2L(α) = Sq2(α) + α · l with l the
class ofL in Ch1(X).

Proof. The proof follows the lines of [AF12b, Theorem 4.11]. There, we proved in particular that
if Y is a smooth (connected) curve overk andN is a line bundle overY , thenH1(Y,GW

0
1(N )) is

precisely the cokernel of the map

Sq2N : Ch0(Y ) → Ch1(Y ).

Consider now the Gersten-Grothendieck-Witt spectral sequenceE(d − 1)p,qL twisted byL ([FS09,
§3]). Its groups at page 1 are of the form

E(d− 1)p,qL =
⊕

xp∈X(p)

GW d−1−p
d−1−p−q(k(xp), ω

L
xp)

and it abuts toGW d−1
d−1−p−q(X,L). The Gersten conjecture being true for Grothendieck-Witt groups,

its line q = −1 is a flasque resolution of the sheafGW
d−1
d (L). In particular, we have an exact se-

quence

⊕

xd−1∈X(d−1)

GW 0
1 (k(xd−1), ω

L
xd−1

)
dL //

⊕

xd∈X(d)

GW 3
0 (k(xd), ω

L
xd
) // Hd(X,GW

d−1
d (L)) // 0.

Using Lemmas5.5and5.6, we can argue as in [AF12b, Theorem 4.11] to get an exact sequence

⊕

xd−1∈X(d−1)

Z/2
χL // Chd(X) // Hd(X,GW

d−1
d (L)) // 0

with a mapχL that we have to identify.
Let xd−1 ∈ X(d−1) be any point, and letY be the normalization of the closureZ of xd−1 in X.

Then the morphismF : Y → Z ⊂ X is finite, and we can compute the differentialdL (restricted
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toGW 0
1 (k(xd−1, ω

L
xd−1

))) using the transfer map. IfN := ωY/k ⊗ f∗ω∨
X/k, we get a commutative

diagram

GW 0
1 (k(xd−1), ω

L
xd−1

)
dL
X //

⊕

xd∈X(d)∩Z

GW 3
0 (k(xd), ω

L
xd
)

GW 0
1 (k(y0), ω

(f∗L)⊗N
y0 )

d
(f∗L)⊗N

Y

//
⊕

y1∈Y (1)

GW 3
0 (k(y1), ω

(f∗L)⊗N
y1 )

f∗

OO

and thus a commutative diagram

Z/2
χL // Chd(X)

Z/2 χf∗L⊗N

// Ch1(Y ).

f∗

OO

We find therefore

χL(1) = f∗(χf∗L⊗N (1)) = f∗(c1((f
∗L)⊗N )) = f∗(f

∗l+n) = l · [Y ] + f∗Sq
2(1) = Sq2L([Y ]).

Combining the above results, we can deduce Theorem2 from the introduction.

Proof of Theorem2. By Corollary 5.3 to prove Murthy’s splitting conjecture in dimension4, it
suffices to prove thatH4(X,πA1

3 (A3 \ 0)(λ)) vanishes for an arbitrary line bundleλ on X. By
Lemma5.4 and the long exact sequence in cohomology associated with the extension describing
π
A1

3 (A3 \ 0)(λ), we are reduced to proving vanishing ofH4(X,GW
3
4(L)). However, ifX is

a smooth affine4-fold, we know thatCh4(X) is trivial as a consequence of Roitman’s theorem
on unique divisibility of the Chow group of zero cycles [Sri89]. Combining this observation with
Theorem5.7, we conclude that ifX is a smooth affine4-fold over an algebraically closed field, then
H4(X,GW

3
4(L)) vanishes.
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[Mor04b] F. Morel. Sur les puissances de l’idéal fondamental de l’anneau de Witt.Comment. Math. Helv., 79(4):689–
703, 2004.14

[Mor12] F. Morel. A
1-algebraic topology over a field, volume 2052 ofLecture Notes in Mathematics. Springer,

Heidelberg, 2012.2, 3, 13, 14, 17, 27, 30, 37

[MS74] J. W. Milnor and J. D. Stasheff.Characteristic classes. Princeton University Press, Princeton, N. J., 1974.
Annals of Mathematics Studies, No. 76.2, 35

[MS76] M. P. Murthy and R. G. Swan. Vector bundles over affine surfaces.Invent. Math., 36:125–165, 1976.2

[MT64] M. Mimura and H. Toda. Homotopy groups of symplectic groups. J. Math. Kyoto Univ., 3:251–273,
1963/1964.14

[Mur94] M. P. Murthy. Zero cycles and projective modules.Ann. of Math. (2), 140(2):405–434, 1994.2

[Mur99] M. P. Murthy. A survey of obstruction theory for projective modules of top rank. InAlgebra,K-theory,
groups and education (New York, 1997), volume 243 ofContemp. Math., pages 153–174, Providence, RI,
1999. Amer. Math. Soc.2

[MV99] F. Morel and V. Voevodsky.A1-homotopy theory of schemes.Inst. HautesÉtudes Sci. Publ. Math., 90:45–143
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