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Abstract

We complete the determination of the first non-stableA1-homotopy sheaf ofSLn by treat-
ing the case wheren is even. Using techniques of obstruction theory involving theA1-Postnikov
tower, supported by some ideas from the theory of unimodularrows, we classify vector bundles
of rank≥ ⌊d

2
⌋ on split smooth affine quadrics of dimensiond. These computations allow us to

answer a question posed by Nori, which gives a criterion for completability of certain unimod-
ular rows. Furthermore, we study compatibility of our computations ofA1-homotopy sheaves
with real and complex realization.
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1 Introduction

In [AF12], we began a study of the first non-stableA1-homotopy sheaf of the special linear group.
In that paper, the computations ofA

1-homotopy sheaves were used in conjunction with techniques
of obstruction theory to give a cohomological classification of vector bundles on smooth affine
threefolds (over algebraically closed fields having characteristic unequal to2). This paper, which is
a continuation of some of the themes of [AF12], answers some questions that were implicitly raised
before.

Henceforth, fix a fieldk that is assumed to be infinite, perfect, and to have characteristic unequal
to 2. We consider here the smooth affine varietyQ2n−1 defined, for any integern ≥ 1, by the
hypersurface

∑n
i=1 xiyi = 1 in A

2n. Projecting ontox1, . . . , xn, the quadricQ2n−1 admits a
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2 1 Introduction

morphism toAn \ 0 that is Zariski locally trivial and has affine space fibers; asa consequence this
morphism is an isomorphism in the Morel-VoevodskyA

1-homotopy categoryH (k) [MV99]. This
isomorphism can be used to identify theA1-homotopy type ofQ2n−1 asΣn−1

s G
∧n
m , i.e.,Q2n−1 is a

smooth affine model of anA1-homotopy sphere (see, e.g., [MV99, §3 Example 2.20]).
If we writeGrr,∞ for the infinite Grassmannian, Morel’sA1-homotopy classification of vector

bundles [Mor12, Theorem 7.1] identifies the set of isomorphism classes of rank r vector bundles on
Q2n−1 as the set ofA1-homotopy classes of maps[Q2n−1, BGLr]A1 . Forn ≥ 2, the spaceQ2n−1

has trivial Picard group, and therefore to classify vector bundles of rankr, it suffices to classify
vector bundles with trivial determinant, which can be identified with the set[Q2n−1, BSLr]A1 . The
benefit of this identification is thatBSLr is A

1-1-connected, and therefore the canonical map from
pointed to unpointedA1-homotopy classes of maps is a bijection. If we writeVr(X) for the set of
isomorphism classes of rankr vector bundles on a smooth affine varietyX, then for any integers
n, r ≥ 2 there are canonical isomorphisms

Vr(Q2n−1) ∼= [Σn−1
s G

∧n
m , BSLr]A1 ,

Moreover, the (abelian) group[Σn−1
s G

∧n
m , BSLr]A1 is the set of sections overk of theA1-homotopy

sheafπA1

n−1,n(BSLr).

Since the spaceBSLr is A
1-connected, results of F. Morel identify the sheafπ

A1

n−1,n(BSLr)

as then-fold contraction of the sheafπA1

n−1(BSLr). Whenn− 1 ≤ r − 1, the sheafπn−1(BSLr)

is already “stable” in the sense that it coincides with the sheafKQ
n , i.e., the sheafification for the

Nisnevich topology on smooth varieties of the Quillen K-theory presheaf (see [AF12, §2] for a
more detailed discussion of the stable range in this context). In [AF12, Theorem 3.9], under the
additional hypothesis thatr was odd, we describedπA1

r (BSLr). Here, we finish the computation
of πA1

r (BSLr) by treating the case wherer is even.

Theorem 1 (See Theorem2.3 and Remark2.4). For any integern ≥ 1, there is a short exact
sequence of strictlyA1-invariant sheaves of the form

0 −→ T2n+1 −→ π
A1

2n(BSL2n) −→ K
Q
2n −→ 0,

whereT2n+1 admits a description as the fiber product of strictlyA1-invariant sheaves

T2n+1
//

��

I
2n+1

��

S2n+1
// KM

2n+1/2,

I
2n+1 is the unramified sheaf corresponding to the2n + 1-st power of the fundamental ideal in the

Witt ring, KM
2n+1/2 is the unramified mod2 Milnor K-theory sheaf, andS2n+1 is the cokernel of a

homomorphismKQ
2n+1 → K

M
2n+1 that coincides with Suslin’s homomorphism upon taking sections

over fields.

Remark2. Whenn = 1 in the above statement, the sheafT3 is simply I3. Indeed, in that case,
Suslin proved [Sus84, Proposition 4.5] that the image ofKQ

3 in K
M
3 is precisely2KM

3 (strictly



3 1 Introduction

speaking, Suslin establishes this contingent upon a portion of Milnor’s conjecture on quadratic
forms, but that is now known to hold by [OVV07, Theorem 4.1]). Therefore, the morphismS3 →
K
M
3 /2 is an isomorphism. In that case, using the identificationK

Q
2

∼
→ K

M
2 that follows from

Matsumoto’s theorem, one sees thatπ
A1

2 (BSL2) is an extension ofKM
2 by I

3. This description
is consistent with Morel’s identificationπA1

1 (SL2) ∼= π
A1

2 (BSL2)
∼
→ K

MW
2 [Mor12, Theorem

5.40]: our description corresponds precisely to the fact thatKMW
2 can be written as an extension of

K
M
2 by I3 (see, e.g., Proposition2.1).

Note that the sheafS2n+1 (resp. the sheafS2n appearing in [AF12, Theorem 3.9]) admits an
epimorphism fromKM

2n+2/(2n + 1)! (resp.KM
2n+1/(2n)!). The question of whether this epimor-

phism is an isomorphism is, as was discussed in [AF12, Remark 5], equivalent to a question posed
by Suslin. Unfortunately, the only case where a positive answer to Suslin’s question is known is the
casen = 1, as discussed in the previous remark. While Theorem1 does not immediately provide
enough information to completely describe the set of isomorphism classes of rankn − 1 vector
bundles onQ2n−1, it does reduce the problem to understanding contractions of Sn. Moreover, upon
n-fold contraction, the problem of providing an explicit description ofSn becomes in a sense geo-
metric and, with some input from the theory of unimodular rows, we can then give a rather explicit
classification of rank(n − 1)-vector bundles onQ2n−1 (the vector bundles of rank≥ n are easy
to describe as well). The next result can thus be viewed as a tiny piece of evidence that Suslin’s
question admits a positive answer; the dichotomy between the odd and even cases persists through
all our results.

Theorem 3 (See Theorems3.4 and3.5). If n is an integer≥ 1, andW (k) denotes the Witt group
of k, there are canonical isomorphisms

Vn−1(Q2n−1)
∼

−→

{

Z/(n − 1)! if n = 2m

Z/(n − 1)! ×Z/2 W (k) if n = 2m+ 1;

where the maps in the fiber product are the rank homomorphism and the reduction modulo2 map.

In [Sus77], Suslin gave a condition that was sufficient to ensure that aunimodular row (see
Section3 for some recollections about unimodular rows) over any ringR can be completed to an
invertible matrix overR. In [Kum97], Nori inquired about a possible generalization of Suslin’s
theorem. In [Fas12], the second author constructed a counterexample to Nori’soriginal question
and proposed a refined version. The computations of Theorem3 can be used to answer this refined
version of Nori’s question.

Theorem 4 (See Theorems4.2and4.4). Supposek is a field,R = k[x1, . . . , xn] be a polynomial
ring in n variables,φ : R → A is a k-algebra homomorphism such that

∑

φ(xi)A = A, and
f1, . . . , fn are elements ofR such that reduced subscheme ofA

n defined by the idealI(f1, . . . , fn)
coincides with0 ∈ A

n; write f : An \ 0 → A
n \ 0 for the morphism induced by(f1, . . . , fn).

Assume thatlength(R/(f1, . . . , fn)) is divisible by(n− 1)!.

• If n is odd, then(φ(f1), . . . , φ(fn)) is completable.

• If n is even, then one can attach an elementdeg(f) ∈ W (k) to f , and if deg(f) = 0, then
(φ(f1), . . . , φ(fn)) is completable.
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If Q2n is the smooth affine quadric defined by the hypersurface
∑

i xiyi = z(z + 1) in A
2n,

then it is expected thatQ2n is also a motivic sphere (this is true forn = 1, 2). We give a descrip-
tion of the set of isomorphism classes of rankn vector bundles onQ2n in Theorem3.15as well.
Combining this description of isomorphism classes of vector bundles with Theorem3, allows us to
deduce Theorem4.5, which discusses compatibility with complex realization of the computations
of Theorem2.3 and [AF12, Theorem 3.9]. In a sense, this compatibility explains thatthe factors
of n! that appear in the homotopy sheaves arise from complex Bott periodicity, while the factors of
I
n that appear arise because of real Bott periodicity. Finally, Theorem4.7 discusses compatibility

of the computation of the second non-stable homotopy sheaf of SL2 (from [AF12, Theorem 3.20])
with complex realization, but since this is a low-dimensional result, the techniques are somewhat
more explicit.

Acknowledgements

The first author would like to thank Brent Doran for many discussions about theA1-homotopy
theory of quadrics.

Some notational preliminaries

We use the following notation. Assumek is a field. WriteSmk for the category of schemes that are
smooth, separated and have finite type overSpeck andSpc

k
:= ∆◦ShvNis(Smk) (resp. Spc

k,•
)

for the category of (pointed) simplicial sheaves on the siteof smooth schemes equipped with the
Nisnevich topology; objects ofSpc

k
(resp. Spc

k,•
) will be referred to as(pointed)k-spaces, or

simply as(pointed) spacesif k is clear from context. WriteH (k) (resp. H•(k)) for the Morel-
VoevodskyA1-homotopy category.

Given two (pointed) spacesX and Y , we set[X ,Y ]A1 := HomH (k)(X ,Y ); morphisms in
pointed homotopy categories will be denoted similarly withbase-points explicitly written if it is
not clear from context. We writeSis for the constant sheaf onSmk associated with the simplicial
i-sphere, andGm will always be pointed by1. The A

1-homotopy sheaves of a pointed space
(X , x), denotedπA1

i (X , x) are defined as the Nisnevich sheaves associated with the presheaves
U 7→ [Sis ∧U+, (X , x)]A1 . We also writeπA1

i,j (X , x) for the Nisnevich sheafification of the presheaf

U 7→ [Sis ∧G
∧j
m ∧ U+, (X , x)]A1 .

A presheaf of setsF onSmk is calledA1-invariant if for any smoothk-schemeU the morphism
F(U) → F(U × A

1) induced by pullback along the projectionU × A
1 → U is a bijection. A

Nisnevich sheaf of groupsG is calledstronglyA1-invariant if the cohomology presheavesH i
Nis(·,G)

areA1-invariant fori = 0, 1. A Nisnevich sheaf of abelian groupsA is calledstrictly A
1-invariant

if the cohomology presheavesH i
Nis(·,A) areA

1-invariant for everyi ≥ 0. Henceforth, unless
otherwise indicated, the word sheaf will mean Nisnevich sheaf onSmk, and the undecorated symbol
H i will mean “i-th cohomology (of a sheaf) with respect to the Nisnevich topology.”

If n ≥ 0 is an integer, a spaceX is calledA1-n-connected ifπA1

0 (X ) = ∗, and, for any choice
of base-pointx ∈ X (k) and any integeri ≤ n, πA1

i (X , x) = 0. If G is an algebraic group and
we viewG as a pointed space, the base-point is always the identity section Spec k → G and for
this reason will usually be suppressed. Likewise, the spaceBG, defined by means of the simplicial
bar construction, has a canonical base-point corresponding to the unique0-simplex, and this will
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usually be suppressed from notation as well (just as in [AF12], we abuse notation and writeBG for
any space that has theA1-homotopy type of the simplicial bar construction just mentioned).

2 The first non-stable homotopy sheaf ofSL2n

The goal of this section is to compute the groupπ
A1

2n−1(SL2n) for n ≥ 1. We begin by reviewing
some notation and results from [Mor04] regarding Milnor-Witt K-theory. After that, we review
some details regarding fibration sequences; a more detailedpresentation of this material is given in
[AF12, §3], and we will use a number of results from that work.

Some exact sequences

Write KMW
∗

(k) for the graded Milnor-Witt K-theory ring. Recall thatKMW
∗

(k) is generated by
symbols[a] ∈ k× of degree+1 and a symbolη of degree−1 satisfying various relations [Mor04,
Definition 5.1]. WriteI∗(k) for the graded ring corresponding to the powers of the fundamental
ideal in the Witt ring; recall thatIm(k) is additively generated by the classes ofm-fold Pfister forms.
Assigning to a symbola ∈ k× the class of the Pfister form〈〈a〉〉 defines a group homomorphism
KMW

1 (k) → I1(k); this homomorphism extends to a graded ring homomorphismKMW
∗

(k) →
I∗(k). Likewise, ifKM

∗
(k) denotes the graded Milnor K-theory ring, there is also a homomorphism

of graded ringsKMW
∗

(k) → KM
∗
(k) that sendsη to 0.

Let k∗(k) = KM
∗
(k)/2KM

∗
(k) (we beg the reader’s indulgence for this unfortunate choiceof

notation, which will persist only through this paragraph).There is a canonical homomorphism of
graded ringsKM

∗
(k) → k∗(k). The Milnor conjecture on quadratic forms [OVV07] defines an

isomorphism of graded ringsI∗(k)/I∗+1(k)
∼
→ k∗(k). Morel [Mor04, Theorem 5.3] shows that

these various homomorphisms fit into a cartesian square of graded rings of the form

KMW
∗

(k) //

��

KM
∗
(k)

��
I∗(k) // k∗(k).

The above square can be sheafified in an appropriate sense: theobjects and morphisms in the
fiber square are compatible with residue maps and yield a cartesian square of unramified sheaves of
graded rings

K
MW
∗

//

��

K
M
∗

��

I
∗ // KM

∗
/2.

We refer the reader to [Mor05, §2.2-4] for a detailed discussion of the unramified Milnor K-theory
sheafKM

n , the unramified sheafIm and the homomorphismI∗ → K
M
∗
/2, which Morel calls a

sheafification of Milnor’s homomorphism. We refer the readerto [Mor12, §2] for the construction
of the sheafKMW

n and the homomorphism in the left hand column and the top row. Because the
above diagram is cartesian, one deduces immediately the existence of the following exact sequences.
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Proposition 2.1. For every integern, there are short exact sequences of the form

0 −→ I
n+1 −→ K

MW
n −→ K

M
n −→ 0,

and for every integern ≥ 0, there are short exact sequences of the form

0 −→ 2KM
n −→ K

MW
n −→ I

n −→ 0.

Moreover, the mapKMW
n → K

MW
n−1 induced by multiplication byη factors as a compositeKMW

n →
I
n → K

MW
n−1 , where the two constituent maps are those in the above exact sequences.

Proof. The only thing that remains to be checked is the final statement. To that end, the map
KMW
n (k) → In(k) is defined by sending a symbol[a1] · · · [an] to 〈〈a1, . . . , an〉〉, and the map

In(k) → KMW
n−1 (k) is defined by sending a Pfister form〈〈a1, . . . , an〉〉 to η[a1] · · · [an].

Recollections on fiber sequences

Recall from [AF12] that the fiber sequence

SL2n −→ SL2n+1 −→ SL2n+1/SL2n

yields an exact sequence of sheaves

π
A1

2n(SL2n) //
π
A1

2n(SL2n+1)
q2n

// KMW
2n+1

//
π
A1

2n−1(SL2n) // K
Q
2n

// 0,

while the fiber sequence

SL2n+1 −→ SL2n+2 −→ SL2n+2/SL2n+1

gives an exact sequence

K
MW
2n+2

δ2n+1
//
π
A1

2n(SL2n+1) // K
Q
2n+1

// 0.

The compositionq2n◦δ2n+1 is trivial by [AF12, Lemma 3.1], and thus the morphismπ2n(SL2n+1) →
K
MW
2n factors through a mapπA1

2n(SL2n+2) = K
Q
2n+1 → K

MW
2n+1, and we obtain an exact sequence

of the form:

K
Q
2n+1

ψ2n+1
// KMW

2n+1
//
π
A1

2n−1(SL2n) // K
Q
2n

// 0

with a morphismψ2n+1 that we want to identify.

The image ofψ2n+1

Lemma 2.2. The morphismψ2n+1 has image contained in2KM
2n+1.
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Proof. Consider the diagram

π
A1

2n(SL2n+1)

��

0

��

0 // 2KM
2n+1

// KMW
2n+1

��

//

η

&&▲
▲▲

▲▲
▲▲

▲▲
▲

I
2n+1 //

��

0

π
A1

2n−1(SL2n−1) //
π
A1

2n−1(SL2n) //

��

K
MW
2n

//

��

π
A1

2n−2(SL2n−1)

K
Q
2n

//

��

K
M
2n

��
0 0.

The short exact sequence in the second row and the vertical short exact sequence involvingI2n+1

are those from Proposition2.1. Moreover, the commutativity of the triangle with the arrowlabeled
η as its bottom edge is also a consequence of Proposition2.1. The commutativity of the lower
triangle withη on the diagonal was established in the discussion preceding[AF12, Lemma 3.1]
(the composite map is the connecting homomorphism in a long exact sequence in a fiber sequence
involving a Stiefel variety).

Now, any element inπA1

2n(SL2n+1) goes to zero inπA1

2n−1(SL2n), and therefore the composite

intoK
MW
2n is also zero. By commutativity of the diagram, the image of anelement inπA1

2n(SL2n+1)
in I

2n+1 is also zero. Therefore, the mapπA1

2n(SL2n+1) → K
MW
2n+1 has image in2KM

2n+1.
On the other hand, consider the diagram

π
A1

2n+1(SL2n+2/SL2n+1)

�� ((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

π
A1

2n(SL2n+1) //

��

K
MW
2n+1

π
A1

2n(SL2n+2)

��
0.

The diagonal map is the zero map by [AF12, Lemma 3.1], and therefore the mapπA1

2n(SL2n+1) →

K
MW
2n+1 factors through the mapπA1

2n(SL2n+1) → π
A1

2n(SL2n+2) = K
Q
2n+1. Combining these two

observations, the image ofπA1

2n(SL2n+1) → K
MW
2n is contained in the image of a mapKQ

2n+1 →
2KM

2n+1 ⊂ K
MW
2n+1.
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Let T2n+1 be the kernel of the morphismπA1

2n−1(SL2n) → K
Q
2n, so that we have an exact

sequence of sheaves

0 // T2n+1
//
π
A1

2n−1(SL2n) // K
Q
2n

// 0.

Theorem 2.3. The cartesian square (see aboveProposition2.1)

K
MW
2n+1

//

��

I
2n+1

��

K
M
2n+1

// KM
2n+1/2

induces a cartesian square of the form

T2n+1
//

��

I
2n+1

��

S2n+1
// KM

2n+1/2.

Proof. By definition ofT2n+1, we have an exact sequence

K
Q
2n+1

ψ2n+1
// KMW

2n+1
// T2n+1

// 0.

Lemma2.2shows that the image ofψ2n+1 is completely determined by the composite

K
Q
2n+1

ψ2n+1
// KMW

2n+1
// KM

2n+1,

which is precisely the morphism considered in [AF12, Lemma 3.8].

Remark2.4. Theorem1 follows by combining Theorem2.3 with the isomorphismπA1

i (SLn) ∼=

π
A1

i+1(BSLn) arising from theA1-fiber sequenceSLn → ESLn → BSLn. In the sequel, we
will often use the computation in this form. Recall also from[AF12, Theorem 3.9] that there is an
epimorphism of sheaves

K
M
2n+1/(2n)! → S2n+1

that is conjecturally an isomorphism.

Remark2.5. Assume for this remark thatk is a field having characteristic zero. The inclusions
SLm(k) → SLm+1(k) induce homomorphisms

fm,n : Hn(SLm(k),Z) −→ Hn(SLm+1(k),Z),

which are isomorphisms ifm ≥ n+1, and ifm = n is odd [HT10, Theorem 1.1]. Moreover, there
is a sequence of the form

Hm−1(SLm(k),Z) // Hm(SLm(k),Z)
ǫm // KMW

m (k)
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for anym ≥ 1 [BM99]. By [HT10, Theorem 1.1], this sequence is exact in the middle andǫm is
surjective ifm is even, while its image is2KM

m (F ) if m is odd. Given these results one defines a
mapf2n+1 : K

Q
2n+1(k) → KMW

2n+1(k) as the following composition:

KQ
2n+1(k)

f2n+1

++❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲
π2n+1(BSL∞(k)+) // H2n+1(BSL∞(k)+,Z) H2n+1(BSL∞(k),Z)

��
H2n+1(BSL2n+1(k),Z)

ǫ2n+1

��

KMW
2n+1(k).

Observe that since2n + 1 is odd, the image off2n+1 is included in2KM
2n+1(k). While it is not

necessary for our purposes, we expect that one can show that the morphism induced byψ2n+1 upon
taking sections over fields coincides withf2n+1.

Contracted homotopy sheaves

Recall that ifA is a strictlyA1-invariant sheaf, one defines the contracted sheafA−1 by means
of the formulaA−1(U) = ker(s∗ : A(Gm × U) → A(U)), wheres : U → Gm × U is the
map coming from the identity section ofGm. One then defines thei-fold contracted sheafA−i

inductively byA−i = (A−i+1)−1. A convenient summary of calculations of contractions used
here, and other basic properties of the contraction construction is presented in [AF12, §5].

Lemma 2.6. If j ≥ 0, i ≥ 1, andn ≥ 2 are integers, then there are canonical isomorphisms
π
A1

i,j (GLn)
∼= π

A1

i (GLn)−j .

Proof. The fibration sequenceGLn → EGLn → BGLn gives isomorphismsπA1

i,j (GLn)
∼=

π
A1

i+1,j(BGLn), andBGLn is A
1-connected. The result then follows from [Mor12, Theorem

5.13] (note: we cannot apply the aforementioned result directly to GLn since it fails to beA1-
connected).

Since the contraction construction is exact, we deduce the following results from Lemma2.6,
[AF12, Theorem 3.9] and Theorem2.3(resp. [AF12, Theorem 3.20]).

Proposition 2.7. Supposen ≥ 1 and j ≥ 0 are integers. There are short exact sequences of the
form

0 −→ (T2n+1)−j −→π
A1

2n−1,j(GL2n) −→ K
Q
2n−j −→ 0, and

0 −→ (S2(n+1))−j −→π
A1

2n,j(GL2n+1) −→ K
Q
2n+1−j −→ 0,

where there is an epimorphismKM
n+1−j/n! → (Sn+1)−j .
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Proposition 2.8. For any integerj ≥ 0, there is a short exact sequence of the form

0 −→ (S′′

4)−j −→ π
A1

2,j(GL2) −→ (KSp
3 )−j −→ 0,

where(S′′

4)−4 sits in a short exact sequence of the form

(I5)−4 −→ (S′′

4)−4 −→ (S′

4)−4 −→ 0

and there is an epimorphismKM
4−j/12 → (S′

4)−j .

As discussed in the introduction, the epimorphismKM
n+1/n! → Sn+1 is an isomorphism pro-

vided a question posed by Suslin has a positive answer. In thesequel, we will several times need to
use the fact that the map on cohomology induced by the epimorphism just mentioned is an isomor-
phism. This conclusion can be deduced independently of a positive answer to Suslin’s question by
establishing that appropriate contractions of the sheavesin question are isomorphic. The next two
lemmas summarize the results in the form we need.

Lemma 2.9. The epimorphismKM
n+1/n! → Sn+1 induces isomorphismsKM

n+1−j/n! → (Sn+1)−j
for anyj ≥ n− 1.

Proof. Recall first thatSn+1 is defined by the exact sequence

K
Q
n+1

// KM
n+1

// Sn+1
// 0

where the morphismKQ
n+1 → K

M
n+1 coincides with Suslin’s homomorphism when evaluated on

fields (which are infinite and finitely generated over the basefield).
On the other hand, using Rost’s theory of cycle modules [Ros96], one can construct a morphism

of sheavesαn+1 : KM
n+1 → K

Q
n+1 whose sections over fields (again, assumed to be infinite and

finitely generated over the base field) coincides with the natural homomorphism from Milnor K-
theory to Quillen K-theory. Indeed, this follows from [Ros96, Remark 5.4], which we quickly
summarize. The natural transformation of functorsKM

∗
(·) → KQ

∗ (·) on the category of fields
that are finitely generated over the base field (which is assumed infinite throughtout) is compatible
with residue maps and transfer maps and yields a morphism of cycle modules. Any morphism
of cycle modules yields a corresponding morphism of the associated “unramified” sheaves (see
[Ros96, Remark 5.2]). Moreover, since a morphism of cycle modules is by definition compatible
with the action ofKM

∗
(·) by left multiplication, it follows that the contracted morphism(αn+1)−j :

K
M
n+1−j → K

Q
n+1−j coincides withαn+1−j for anyj ∈ N.

Next, by [Sus84, Corollary 4.4], the composite

K
M
n+1

αn+1
// K

Q
n+1

// KM
n+1

is multiplication by(−1)n · n! and we have a commutative diagram with exact rows

K
M
n+1

(−1)n·n!
//

αn+1

��

K
M
n+1

// KM
n+1/n!

//

��

0

K
Q
n+1

// KM
n+1

// Sn+1
// 0.
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Since contraction is an exact functor, by contractingj times we obtain a commutative diagram with
exact rows

K
M
n+1−j

(−1)n·n!
//

αn+1−j

��

K
M
n+1−j

// KM
n+1−j/n!

//

��

0

K
Q
n+1−j

// KM
n+1−j

// (Sn+1)−j // 0.

If j ≥ n− 1, thenαn+1−j is an isomorphism and the result follows.

The next result uses the notation of [AF12, Lemmas 3.18-19 and Theorem 3.20].

Lemma 2.10. The epimorphismKM
4 /12 → S

′

4 induces an isomorphismKM
4−j/12 → (S′

4)−j for
anyj ≥ 3, and there is a short exact sequence of the form

0 −→ I −→ S
′′

4 −→ Z/12 −→ 0.

Proof. By definition, the sheafS′

4 admits the following presentation:

K
Sp
4

ϕ4◦f4,2
// KM

4
// S′

4
// 0,

wheref4,2 : K
Sp
4 → K

Q
4 is the forgetful morphism andϕ4 : K

Q
4 → K

M
4 is Suslin’s homo-

morphism. Using [AF12, Proposition 4.2, Proposition 5.4], we see that(KSp
4 )−j = GW

2−j
4−j,

where the latter denotes the Nisnevich sheaf associated to the Grothendieck-Witt groupGW 2−j
4−j

(see [AF12, §4] for more details regarding this group). Since the forgetful functor preserves Ger-
sten resolutions, we get(f4,2)−j = f4−j,2−j. In view of the above lemma, it suffices to prove
thatf4−j,2−j(GW

2−j
4−j) = 2KQ

4−j for j ≥ 3. Consider the hyperbolic homomorphismH4−j,2−j :

K
Q
4−j → GW

2−j
4−j. The compositionf4−j,2−j ◦H4−j,2−j is multiplication by2 by [AF12, Lemma

4.3] and it suffices to show thatH4−j,2−j is an epimorphism providedj ≥ 3; this follows from
[FRS11, Lemma 2.3].

By definition, S′′

4 is the cokernel of a morphismKSp
4 → K

MW
4 and fits into a short exact

sequence of the formI5 → S
′′

4 → S
′

4 → 0. Contracting the morphism definingS′′

4 four times, and
using the identifications of the previous paragraph, together with the identification(KMW

4 )−4
∼=

K
MW
0 , we see that(S′′

4)−4 is the cokernel of a morphism

GW
−2
0 −→ K

MW
0 .

Observe thatGW
−2
0 = GW

2
0 and [FRS11, Lemma 2.3] tells us that the hyperbolic homomorphism

determines an isomorphismZ
∼
→ GW

2
0. On the other hand, we know thatK

MW
0 sits in a short exact

sequence of the form0 −→ I → K
MW
0 → K

M
0 → 0. Moreover, the proof of [AF12, Lemma 3.17]

shows that the composite mapZ → K
MW
0 → Z is the map studied in the previous paragraph; the

result follows from this observation.
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3 Unimodular rows and vector bundles on split quadrics

In this section, we begin by reviewing some ideas from the theory of unimodular rows. We then use
the computations of Section2 and [AF12, §3] together with techniques of obstruction theory using
the Postnikov tower inA1-homotopy theory (we refer the reader to [AF12, §6] for a digest of all
the results that will be used) to give a general procedure to describe sets of isomorphism classes of
vector bundles. We refer to vector bundles on the split smooth affine quadricQd having rank⌊d2⌋ as
those of critical rank: above this rank the classification ofvector bundles is a stable problem; at or
below this rank, the problem is unstable.

Unimodular rows

Let R be a ring and letn ≥ 3 be an integer. Recall that a row(a1, . . . , an) of elements ofR is
called unimodular if there exists(b1, . . . , bn) such that

∑

aib1 = 1. We denote byUmn(R) the set
of unimodular rows of lengthn overR. We consider this set as a pointed set, the base point being
the rowe1 := (1, 0, . . . , 0). The groupGLn(R) acts onUmn(R) by multiplication on the right and
so do all subgroups ofGLn(R). In this paper, we will be mostly interested in the groupsSLn(R)
andEn(R), the subgroup generated by elementary matrices.

Let X andY be two schemes over a fieldk. Recall that two morphisms of schemes (overk)
f, g : X → Y are said to be naivelyA1-homotopic if there exists a morphismF : X × A

1 → Y
such thatF (0) = f andF (1) = g. We can consider the equivalence relation generated by naive
A
1-homotopies and we writeHomA1(X,Y ) for the set of naiveA1-homotopy classes of morphisms

fromX to Y .
Supposek is a field, andR is a (commutative unital)k-algebra. A unimodular row(a1, . . . , an)

can be seen as a morphismSpecR → A
n \ 0 and thereforeUmn(R) = Hom(SpecR,An \ 0).

In this context, we haveUmn(R)/En(R) = HomA1(SpecR,An \ 0) provided thatR is smooth
[Fas11b, Theorem 2.1].

For any pair of smoothk-schemesX andY , the mapHomSmk
(X,Y ) → [X,Y ]A1 factors

through a map
HomA1(X,Y ) → [X,Y ]A1

since naivelyA1-homotopic morphism become equal inH (k). In the special case whereX is
smooth affine andY = A

n \ 0, the mapHomA1(X,An \ 0) → [X,An \ 0]A1 is in fact a bijection
[Mor12, Remark 7.10]. It follows that the right-hand side is generated by morphisms of schemes
X → A

n \ 0, i.e., unimodular rows of lengthn overOX(X).
SinceAn \ 0 is A

1 − (n− 2)-connected, we can further identify the set[X,An \ 0]A1 with the
cohomology groupHn−1(X,KMW

n ) providedX is isomorphic (inH (k)) to a smooth scheme of
dimension≤ n− 1 [Mor12, Theorem 7.16, footnote 11]. More precisely, we can write

Hn−1(An \ 0,KMW
n ) = GW (k) · ξ,

whereξ is an explicit element ofHn−1(An \ 0,KMW
n ) that we call the orientation class [Fas11b,

§3.3]. The bijection[X,An \ 0]A1 → Hn−1(X,KMW
n ) is then given by pulling-back the classξ.



13 3 Unimodular rows and vector bundles on split quadrics

Vector bundles onQ2n−1

Let n ≥ 2 andA2n−1 = k[x1, . . . , xn, y1, . . . , yn]/〈
∑

xiyi − 1〉. We denote byQ2n−1 the scheme
SpecA2n−1. The goal of this section is to describe, up to isomorphism, all vector bundles of suf-
ficiently large rank overQ2n−1. As observed above, projection ontox1, . . . , xn yields a morphism
of schemesp2n−1 : Q2n−1 → A

n \ 0 that is a Zariski locally trivial smooth morphism with fibers
isomorphic toAn−1. In particular,p2n−1 is an isomorphism inH (k).

A refined vanishing statement

Lemma 3.1. If A is a strictlyA1-invariant sheaf and ifn ≥ 2 is an integer, then

H i(Q2n−1,A) ≃











A(k) if i = 0,

A−n(k) if i = n− 1, and

0 otherwise.

Proof. Sincep2n−1 is an isomorphism inH (k) and sinceA is strictly A
1-invariant (equivalently,

the Eilenberg-Mac Lane spaceK(A, i) is A
1-local for every integeri ≥ 0), it follows that the

the pullback morphismH i(An,A) → H i(Q2n−1,A) is an isomorphism. InH (k), we have an
identificationAn \ 0 ∼= Σn−1

s G
∧n
m .

The statement fori = 0 is clear, sinceAn \ 0 has ak-point and the pullback morphism induced
by the structure map is a split injection. By the suspension isomorphism in cohomology and the
definition of contraction, it follows that there are isomorphisms

H̃ i(An \ 0,A) ∼= H̃ i−(n−1)(Spec k,A−n).

The remaining statements follow immediately.

Remark3.2. Observe that the isomorphismHn−1(Q2n−1,A) ≃ A−n(k) is non-canonical.

Vector bundles of large rank

Corollary 3.3. If n ≥ 1 is any integer, any vector bundleE of rankm ≥ n overQ2n−1 is free.

Proof. If n = 1, thenQ2n−1
∼= Gm ⊂ A

1 and the result is clear. Ifn ≥ 2, theA1-weak equivalence
Q2n−1 → A

n \ 0 shows thatPic(Q2n−1) is trivial. Therefore, any vector bundle onQ2n−1 has
trivial determinant. Now, sinceBSLm is A

1-1-connected for any integern, if we arbitrarily pick a
base-point∗ ∈ Q2n−1, it follows that the canonical map

[(Q2n−1, ∗), BSLm]A1 −→ [Q2n−1, BSLm]A1

is a bijection. Therefore, to describe the set of isomorphism classes of rankm vector bundles on
Q2n−1, it suffices to describe the set on the left.

We can describe the set of pointedA1-homotopy classes of mapsQ2n−1 → BSLm as follows.
By means of theA1-weak equivalenceQ2n−1 → A

n \ 0 ∼= Σn−1
s G

∧n
m , we have

[(Q2n−1, ∗), BSLm]A1
∼= [Σn−1

s G
∧n
m , BSLm]A1 .
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By [Mor12, Theorem 5.13], we have identifications

[Σn−1
s G

∧n
m , BSLm]A1

∼= π
A1

n−1(BSLm)−n(k).

If m ≥ n, thenπ
A1

n−1(BSLm)−n = (KQ
n−1)−n by the results of Morel (see, e.g., [AF12,

Theorem 2.9] for a convenient summary). Since(KQ
n−1)−n = 0, the result follows.

Vector bundles of critical rank I: the casen even

We now study vector bundles of rankn − 1 onQ2n−1 under the additional assumption thatn is
even. In that case, we haveπA1

i (BSLn−1) = K
Q
i if 2 ≤ i ≤ n − 2 and an exact sequence (from

[AF12, Theorem 3.9])

0 // Sn //
π
A1

n−1(BSLn−1) // K
Q
n−1

// 0.

We recall that the sheafSn admits the following explicit description. TheA1-fiber sequence

A
n \ 0 −→ BSLn−1 −→ BSLn

yields an exact sequence

π
A1

n (BSLn) −→ π
A1

n−1(A
n \ 0) −→ π

A1

n−1(BSLn−1) → π
A1

n−1(BSLn) −→ 0.

The sheafSn is defined to be the image ofπA1

2n−1(A
n \ 0) = K

MW
n in π

A1

n−1(BSLn−1). In [AF12,
Theorem 3.9] we furthermore prove that the epimorphismK

MW
n → Sn factors as a sequence of

epimorphisms of sheaves

K
MW
n −→ K

M
n −→ K

M
n /(n− 1)! −→ Sn;

here the left hand map is the natural map that sendsη to 0, the middle map is the quotient by(n−1)!
and the right hand map is a map induced by the fact that the image ofKQ

n in K
M
n is contained in

(n− 1)!KM
n (see [AF12, Lemma 3.8]).

Theorem 3.4. If n ≥ 2 is an even integer, then there is an isomorphism between the group of
isomorphism classes of rankn − 1 vector bundles onQ2n−1 and the groupZ/(n − 1)!. Moreover,
each isomorphism class admits a representative given by theunimodular row(xm1 , x2, . . . , xn) for
1 ≤ m ≤ (n− 1)!.

Proof. The proof of Corollary3.3yields a bijection

Vn−1(Q2n−1)
∼

−→ π
A1

n−1(BSLn−1)−n(k).

We described the relevant contraction in Proposition2.7: sincen is even,n− 1 is odd, and we have
a short exact sequence of the form

0 −→ (Sn)−n(k) −→ π
A1

n−1(BSLn−1)−n(k) −→ (KQ
n−1)−n(k) −→ 0.
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Since(KQ
n−1)−n = 0, it follows that there is a bijectionVn−1(Q2n−1)

∼
→ (Sn)−n(k). Lemma2.9

yields(Sn)−n(k) = Z/(n− 1)! thus proving the first assertion.
To identify the vector bundles of rankn−1more explicitly, begin by observing that theA1-fiber

sequence
A
n \ 0 −→ BSLn−1 → BSLn

yields an exact sequence of (groups and) pointed sets

[Q2n−1, SLn]A1 −→ [Q2n−1,A
n \ 0]A1 −→ [Q2n−1, BSLn−1]A1 −→ [Q2n−1, BSLn]A1

where the first map on the left is induced by the projectionSLn → A
n\0. By Corollary3.3, we have

[Q2n−1, BSLn]
1
A
= ∗ while our computation above yields[Q2n−1, BSLn−1]A1 = (Sn)−n(k) =

Hn−1(Q2n−1,Sn). SinceSLn satisfies the affine BG property and isA1-invariant, we get an
equality[Q2n−1, SLn]A1 = SLn(Q2n−1)/En(Q2n−1) by Morel’s results (see for instance [Fas11b,
Corollary 4.6]). Thus, the above sequence of pointed sets reduces to an exact sequence of (groups
and) pointed sets

SLn(Q2n−1)/En(Q2n−1) −→ [Q2n−1,A
n \ 0]A1 −→ Hn−1(Q2n−1,Sn) −→ ∗

Now we have a bijection[Q2n−1,A
n \ 0] = Hn−1(Q2n−1,K

MW
n ) as explained in Section3

and the map[Q2n−1,A
n \ 0] → Hn−1(Q2n−1,Sn) is exactly the morphism induced by the mor-

phism of sheavesKMW
n → Sn. In particular, this is a group homomorphism and it identifies

Hn−1(Q2n−1,Sn) with the orbits ofHn−1(Q2n−1,K
MW
n ) under the action ofSLn(Q2n−1).

We now use the sequence of epimorphisms of sheaves

K
MW
n −→ K

M
n −→ K

M
n /(n − 1)! −→ Sn

to obtain a sequence of surjective homomorphisms (use Lemma3.1once again!)

Hn−1(Q2n−1,K
MW
n ) // Hn−1(Q2n−1,K

M
n ) // Hn−1(Q2n−1,K

M
n /(n − 1)!) // Hn−1(Q2n−1,Sn)

SinceHn−1(Q2n−1,K
M
n ) = Z and the homomorphism on the right-hand side is an isomorphism

by Lemma2.9, this proves that any unimodular row is equivalent, under the action ofSLn(Q2n−1),
to a row of the form(xm1 , x2, . . . , xn) for 1 ≤ m ≤ (n− 1)!.

Vector bundles of critical rank II: the case n odd

We now study isomorphism classes of rankn − 1 vector bundles onQ2n−1 whenn is odd. In that
case, recall from section2 that there is an exact sequence of the form

0 // Tn
//
π
A1

n−1(BSLn−1) // K
Q
n−1

// 0

whereTn is the image of the sheafKMW
n = π

A1

n−1(A
n \0) in π

A1

n−1(BSLn−1) under the morphism
of sheaves induced by the morphism of spacesA

n \ 0 → BSLn−1.

Theorem 3.5. If n ≥ 3 is an odd integer, then there is an isomorphism between the group of
isomorphism classes of rankn− 1 vector bundles onQ2n−1 andZ/(n − 1)! ×Z/2 W (k).
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Proof. The proof begins in the same fashion as the proof of Theorem3.4. Following the same steps
there, we obtain a bijection

Vn−1(Q2n−1)
∼

−→ π
A1

n−1(BSLn−1)−n(k).

Again, applying Proposition2.7and now using the fact thatn odd impliesn− 1 is even, we obtain
an isomorphism

(Tn)−n(k)
∼

−→ π
A1

n−1(BSLn−1)−n(k).

Similarly, one concludes that(Tn)−n(k) is the group of orbits ofHn−1(Q2n−1,K
MW
n ) under the

action ofSLn(Q2n−1).
By Theorem2.3, we have a fiber product diagram of strictlyA1-invariant sheaves:

Tn
//

��

I
n

��

Sn
// KM

n /2

The projectionTn → Sn fits into a commutative diagram

K
MW
n

//

��

Tn

��
K
M
n

// Sn

whereKMW
n → K

M
n is the map sendingη to 0. As in the proof of Theorem3.4, we deduce from

this diagram that(Sn)−n(k) = Z/(n− 1)!.
Combining the above observations, we conclude that there isa fiber product diagram of the form

(Tn)−n(k) //

��

(In)−n(k)

��
Z/(n− 1)! // Z/2

and the result follows from the straightforward computation that(In)−n = W.

Remark3.6. As in the situation whenn is even, we can give an explicit collection of unimodular
rows which give the stably free modules of rankn− 1. By definition of the fiber product, we have
an exact sequence

0 // 2Z/(n − 1)! // Z/(n− 1)!×Z/2 W (k) //W (k) // 0.

Now Z/(n − 1)! ×Z/2 W (k) can be seen as a quotient of the groupHn−1(Q2n−1,K
MW
n ) =

Umn(Q2n−1)/En(Q2n−1). It can be deduced from [Fas12, Remark 2.6] that the unimodular rows
(αx1, x2, . . . , xn) with α ∈ k× generate the factorW (k) in the exact sequence above. It follows
that these unimodular rows, together with the rows(x2m1 , x2, . . . , xn) for 1 ≤ m ≤ (n − 1)!/2,
generate the groupZ/(n− 1)! ×Z/2 W (k).
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Remark3.7. Let f1, . . . , fn ∈ k[x1, . . . , xn] be functions such thatV (f1, . . . , fn) is a point inAn.
The variety

∑

i xifi = 1 is a smooth affine variety that isA1-weakly equivalent toAn \ 0. By
Morel’s theorem, the set of isomorphism classes of vector bundles on such a variety is canonically
in bijection with the set of isomorphism classes of vector bundles onQ2n−1. However, the varieties
so defined arenot in general isomorphic toQ2n−1. These varieties are torsors under vector bundles
overAn \ 0. For example, whenn = 2, there are pairwise non-isomorphic varieties of this form
[DF11, Theorem 2.5]. Theorems3.4 and3.5 also provide a description of the set of isomorphism
classes of rankn− 1 bundles on any such variety.

Vector bundles below critical rank

Since the Picard group ofQ7 is trivial, and we understand vector bundles of rank≥ 3 onQ7 by the
results already proven, the next result completes the description of vector bundles onQ7.

Proposition 3.8. There is a canonical bijectionV2(Q7)
∼
→ π

A1

2 (SL2)−4(k) and a short exact se-
quence of the form

0 −→ I(k) −→ π
A1

2 (SL2)−4 −→ Z/12 −→ 0.

Proof. As above, we identifyV2(Q7) with π
A1

3 (BSL2)−4(k). By Proposition2.8we have a short
exact sequence of the form

0 −→ (S′′

4)−4(k) −→ π
A1

3 (BSL2)−4 −→ (KSp
3 )−4(k) −→ 0.

We observed above thatKSp
3 = GW

2
3 and since(GW

2
3)−4 = GW

−2
−1 = 0 by [AF12, Proposition

5.4], the result follows immediately from Lemma2.10.

Remark3.9. As with the case of rank3 bundles onQ7, the rank2 vector bundles onQ7 are all
given by stably free modules. It is possible to give explicitrepresentatives for each of these sta-
bly free vector bundles: see [Fas11a, §3] for more information on how to associate a symplectic
bundle of rank2 to an unimodular row of length4. For example, the unimodular rows of the form
(xm1 , x2, x3, x4) with 1 ≤ m ≤ 12 give rise to non-isomorphic rank2 vector bundles.

Vector bundles onQ2n

Forn ≥ 1, let

A2n = Spec k[x1, . . . , xn, y1, . . . , yn, z]/〈
∑

xiyi − z(1 + z)〉

and setQ2n := SpecA2n. By conventionQ0 is the disjoint union of two copies ofSpeck. When
n = 1, one identifiesQ2n as the quotient ofSL2 by its maximal torusGm acting by, say, right mul-
tiplication. The inclusion ofGm into the Borel subgroup of upper triangular matrices determines a
Zariski locally trivial smooth morphism with fibers isomorphic toA1 of the form

Q2 −→ P
1;

in particular, this morphism is an isomorphism inH (k).
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Ideally, one would like to show thatQ2n is itself a motivic sphere for arbitraryn (in which case
the proofs of the results below would be essentially identical to those given for the quadricsQ2n−1

above). The techniques of [AD07] show thatQ4 has theA1-homotopy type ofΣ2
sG

∧2
m . Indeed, in

that case, one knows thatQ4 can be covered by two quasi-affine (but not affine) subschemesthat are
A
1-contractible (see [AD07, Remark 5.2]) and whose intersection isA

1-weakly equivalent toA2\0.
Unfortunately, we do not know if this is true forn > 2. Nevertheless, after a single suspensionQ2n

has theA1-homotopy type of a sphere; this observation has been made independently by a number
of people including F. Morel and D. Dugger-D. Isaksen, but has not been written down.

Lemma 3.10. There is an isomorphismΣ1
sQ2n

∼= Σ1
sP

1∧n in H (k).

Proof. Consider the closed immersionQ2n−2 →֒ Q2n defined by the equationsxn = yn = 0. Let
Z ⊂ Q2n be the closed subscheme defined byxn = 0. Projection defines a morphismZ → Q2n−2

that makesZ into a trivial line bundle overQ2n−2. The complement ofZ in Q2n is an open
subscheme isomorphic toA2n−1 ×Gm.

The normal bundle ofZ →֒ Q2n is a line bundle over the total space of a line bundle onQ2n−2.
If n ≥ 3, this bundle is trivial sincePic(Z) = Pic(Q2n−2) is trivial. Whenn = 2, this line bundle
is still trivial by explicit computation. As a consequence,by choosing a trivialization, the homotopy
purity theorem [MV99, §4 Theorem 2.23] combined with [MV99, §4 Proposition 2.17.2] then gives
a cofibration sequence

A
2n−1 ×Gm −→ Q2n → P

1 ∧ (Q2n−2)+ −→ Σ1
s(A

2n−1 ×Gm) −→ · · · .

SinceQ2n−2 has ak-point, fixing such a point, we can identify(Q2n−2)+ = Q2n−2 ∨ S
0
s . In that

case,P1 ∧ (Q2n−2)+ = P
1 ∧ (Q2n−2 ∨ S

0
s ) = (P1 ∧Q2n−2) ∨ P

1.
The mapA2n−1 × Gm → Gm given by projection onto the second factor is anA

1-weak
equivalence, so the mapΣ1

s(A
2n−1 × Gm) → Σ1

sGm is also anA1-weak equivalence. However,
we know thatP1 ∼= Σ1

sGm in H (k). With these identifications, the connecting homomorphism in
the above cofibration sequence is a map

(P1 ∧Q2n−2) ∨ P
1 −→ P

1,

and tracing through the definition of the connecting homomorphism, one identifies this map with
the map collapsing the first wedge summand to a point. One deduces immediately that the map
Σ1
sQ2n → Σ1

s(P
1 ∧ Q2n−2) is anA1-weak equivalence. The stated result follows immediately by

induction since we already knowQ2 is unstablyA1-equivalent toP1.

Lemma 3.11. If A is a strictlyA1-invariant sheaf, andn is an integer≥ 1, then

H i(Q2n,A) =











A(k) if i = 0.

A−n(k) if i = n.

0 else.

Proof. As with the proof of Lemma3.1, anyk-rational point inQ2n splits the cohomology ofQ2n−1

as a sum of cohomology ofSpeck and reduced cohomology. Combing the suspension isomorphism
and Lemma3.10, we obtain isomorphisms of reduced cohomology groups

H̃ i(Q2n,A) ∼= H̃ i+1(Σ1
sQ2n,A) ∼= H̃ i+1(Σn+1

s G
∧n
m ,A).
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Again applying the suspension isomorphism and the definition of contraction, the result follows.

Example3.12. TakingA = K
M
n+1 in Lemma3.11, observe that one obtains isomorphismsk× →

Hn(Q2n,K
M
n+1). Tracing through the proof of Lemma3.10, one can realize the above isomorphism

as follows. In the notation of that lemma, we have a mapHn(Q2n,K
M
n+1) → Hn(Th(νZ/Q2n

),KM
n+1).

Fixing a trivialization of the normal bundle toZ ∼= Q2n−2 ×A
1 ⊂ Q2n, one obtains isomorphisms

Th(νZ/Q2n
) ∼= P

1 ∧ (Q2n−2 × A
1)+. SinceZ is defined by the equationxn = 0, the differential

gives a trivialization of the normal bundle. Proceeding iteratively, we eventually restrict to the sub-
varietyZn defined by the equationsx1 = . . . = xn = 0, which is isomorphic toQ0 × A

n, i.e., the
disjoint union of two copies ofAn (the two components correspond to takingz = 0 or z = −1).
Composing the maps obtained by making these choices, one identifiesα ∈ k× with the element of
Hn(Q2n,K

M
n+1) corresponding to the invertible function1+(1−α)z on the component ofQ0×A

n

with z 6= 0.

Lemma 3.13. Two vector bundlesE andE′ of rankm ≥ n+ 1 onQ2n are isomorphic if and only
if cn(E) = cn(E

′) in CHn(Q2n) = Z.

Proof. The case wheren = 1 is clear sinceQ2
∼= P

1. Therefore, assumen > 1 so thatPic(Q2n)
is trivial. Lacking the homotopy theoretic description ofQ2n, we instead appeal to obstruction the-
oretic arguments. SincePic(Q2n) is trivial, we can still identify the set of isomorphism classes of
rankm vector bundles onQ2n with the set of pointedA1-homotopy classes of maps[(Q2n, ∗), BSLm].
We can describe this set by obstruction theory using theA

1-Postnikov tower ofBSLm.
In view of Lemma3.11, one sees inductively that there are no obstructions to lifta morphism

Q2n → BSL
(i)
m to a morphismQ2n → BSL

(i+1)
m , and irrespective of the choice of lift the subse-

quent obstruction vanishes since the group in which it livesis trivial. If i+1 6= n, there is only one
possible lift, while in the casei + 1 = n, possible lifts are classified byHn(Q2n,π

A1

n (BSLm)).
Sincen < m, the latter group isCHn(Q2n) = Z. Moreover, one knows how to construct bun-
dles corresponding to each elementZ. In view of the discussion before [AF12, Remark 6.7], the
obstruction class is a (non-trivial) multiple of the Chern classcn. SinceCHn(Q2n) is torsion free,
the result follows.

Remark3.14. Vector bundlesE of rankm > n onQ2n split asE ≃ E′ ⊕ Om−n
Q2n

, and therefore
it is sufficient to understand the vector bundles of rankn. One way to see this is to observe that, if
i ≥ n, the obstructions to lifting anA1-homotopy class of mapsX → BSLi+i to a mapX → BSLi
vanish by Lemma3.11.

Theorem 3.15.Assumen ≥ 2 is an integer. There are isomorphisms

Vn(Q2n)
∼
−→

{

Z×
(

k×/(k×)n!
)

if n even, and

Z×
(

k×/(k×)n! ×k×/(k×)2 I(k)
)

if n odd.

Proof. As above, we first describe the set of isomorphism classes of vector bundles of rankn
on Q2n by using theA1-Postnikov tower ofBSLn. Using Lemma3.11, we see that there is
no obstruction to lifting a morphismQ2n → BSL

(i)
n to a morphismQ2n → BSL

(i+1)
n for any

i ∈ N. Moreover, each subsequent lift is uniquely determined except when we want to lift a mor-
phismQ2n → BSL

(n−1)
n to a morphismQ2n → BSL

(n)
n−1. The space of lifts is of the form
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[Q2n,K(πA1

n (BSLn), n)]A1 = Hn(Q2n,π
A1

n (BSLn)). By means of Lemma3.11, we see that
Hn(Q2n,π

A1

n (BSLn)) = (πA1

n BSLn)−n(k).
Now, the computations of Section2 show that we have an exact sequence of sheaves

0 −→ An+1 −→ π
A1

n (BSLn) −→ K
Q
n −→ 0

whereAn+1 = Sn+1 if n is even andAn+1 = Tn+1 if n is odd. Since the contraction construction
is exact, contraction of the above exact sequencen-times yields

0 −→ (An+1)−n −→ (πA1

n (BSLn))−n −→ (KQ
n )−n −→ 0.

Evaluating the result atSpeck, we see thatπA1

n (BSLn)−n(Spec k) is an extension of(KQ
n )−n = Z

by (An+1)−n(k).
The group(An+1)−n(k) admits a description as the kernel of the homomorphism

Hn(Q2n,π
A1

n (BSLn)) −→ Hn(Q2n,K
Q
n )

given by the above morphism of sheaves. This homomorphism associates with a vector bundleE,
classified by a mapQ2n → BSLn, the class inHn(Q2n,K

Q
n ) = Z pulled back from a certain

universal lifting class onBSLn; the resulting class is a multiple of the Chern classcn(E) by the
discussion just before [AF12, Remark 6.7]. It follows that(An+1)−n(k) parameterizes the vec-
tor bundlesE of rankn whosen-th Chern classcn(E) is trivial. Lemma3.13 thus implies that
(An+1)−n(k) is exactly the set of isomorphism classes of projective modulesE of rankn such that
E ⊕OQ2n

≃ On+1
Q2n

. ThereforeUmn+1(A2n)/SLn+1(A2n) = (An+1)−n(k). Once again, Lemma

2.9yields(An+1)−n(k) = k×/(k×)n! if n is even and(An+1)−n(k) = k×/(k×)n!×k×/(k×)2 I(k)
if n is odd.

Remark3.16. In casen is even, we can give a set of generators of the stably free modules of
rankn onQ2n as follows. Example3.12shows thatHn(Q2n,K

M
n+1) is generated by the invertible

functions1+(1−α)z on the component ofQ0×A
n with z 6= 0. Now the sequence of epimorphisms

of sheaves
K
MW
n+1 −→ K

M
n+1 −→ K

M
n+1/n! −→ Sn+1.

shows that these generators correspond to unimodular rows(x1, . . . , xn, 1+(1−α)z) with α ∈ k×.
We thus obtain a set of generators by consideringα ∈ k×/(k×)n!.

4 Applications

In this section, we discuss two applications of the description of the set of isomorphism classes of
vector bundles on split quadrics from Section3.

On a question of M. V. Nori

Our computation of the isomorphism classes of vector bundles of rankn− 1 onQ2n−1 allows us to
address the following question of M. V. Nori on unimodular rows.
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Question 4.1(M. V. Nori). Supposek is a field,R = k[x1, . . . , xn] is a polynomial ring inn vari-
ables overk, φ : R → A is a k-algebra homomorphism such that

∑

φ(xi)A = A, andf1, . . . , fn
are elements ofR such that the reduced closed subscheme defined by the idealI(f1, . . . , fn))
is 0 ∈ A

n. If length(R/I(f1, . . . , fn)) is divisible by(n − 1)!, then is the unimodular row
(φ(f1), . . . , φ(fn)) completable?

Nori’s question admits the following reinterpretation. The homomorphismφ : R → A such
that

∑

φ(xi)A = A defines a unimodular rowv = (φ(x0), . . . , φ(xn)) and a morphism of schemes
v : SpecR → A

n \ 0. Now any polynomialsf1, . . . , fn such thatrad(f1, . . . , fn) = (x1, . . . , xn)
defines a morphismϕ : An \ 0 → A

n \ 0. If l(R/(f1, . . . , fn)) is divisible by(n − 1)!, then does
the morphismϕ ◦ v : SpecA→ A

n \ 0 lift to a morphismSpecA→ SLn?
Since the question is aboutall k-algebrasA and all unimodular rows of lengthn on A, it is

reasonable to try to deal with the above question by looking at the universal algebra parameterizing
unimodular rows of lengthn, namely thek-algebraA2n−1. Indeed, letA be ak-algebra andv be
a unimodular row of lengthn. Then the choice ofw ∈ Umn(A) such thatv · wt = 1 yields a
lift of the morphismv : SpecA → A

n \ 0 to a morphismv′ : SpecA → Q2n−1, i.e. we have a
commutative diagram

SpecR
v′ //❴❴❴❴

v
&&▼

▼▼
▼▼

▼▼
▼▼

▼
Q2n−1

p2n−1

��
A
n \ 0.

Let nowϕ : An \ 0 → A
n \ 0 be a morphism andr : SLn → A

n \ 0 be the projection to the first
row. The diagram

Q2n−1

p2n−1

��
SpecR v

//

v′
::ttttttttt

ϕv
$$❏

❏❏
❏❏

❏❏
❏❏

A
n \ 0

ϕ

��

SLn

r
{{✇✇
✇✇
✇✇
✇✇
✇

A
n \ 0

thus proves that it suffices to show thatϕ ◦ p2n−1 factorizes throughSLn to prove thatϕv also
factorizes throughSLn.

Theorem 4.2. If n is an even integer, thenQuestion4.1has an affirmative answer.

Proof. The morphismp2n−1 : Q2n−1 → A
n \ 0 corresponds to the unimodular row(x1, . . . , xn),

whose class inUmn(Q2n−1)/SLn(Q2n−1) = Z/(n− 1)! is 1. The unimodular row corresponding
to ϕp2n−1 is precisely(f1, . . . , fn) and we want to compute its class inZ/(n − 1)!. Nowϕ : An \
0 → A

n \ 0 induces a homomorphismϕ∗ : Z = Hn−1(Q2n−1,K
M
n ) → Hn−1(Q2n−1,K

M
n ) = Z,

which is precisely the multiplication byl(R/(f1, . . . , fn)), and it follows therefore that the class of
(f1, . . . , fn) in Z/(n − 1)! is this length (modulo(n − 1)!). The result follows.

Whenn is odd, the answer to Nori’s question is known to be negative by [Fas12, Theorem 4.7].
In view of this counter-example, the second author proposeda stronger version of Nori’s question,
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which we now explain. IfIn denotes the unramified sheaf corresponding to then-th power of
the fundamental ideal, then Lemma3.1 shows thatHn−1(Q2n−1, I

n) ∼= Hn−1(An \ 0, In) ≃
(In)−n(k) = W (k). The isomorphism can be uniquely specified by choosing a trivialization of
the normal sheaf of0 in A

n and thus an orientation class [Fas12, Remark 2.5]. Any morphism
ϕ : An \ 0 → A

n \ 0 yields a homomorphismϕ∗ :W (k) →W (k) that we call the degree ofϕ and
write deg(ϕ). This degree is simply a concrete avatar of (the quadratic part of) F. Morel’s Brouwer
degree [Mor12, Corollary 24].

Remark4.3. In [Fas12], a degree homomorphism is defined by considering the Grothendieck-Witt
groupGW n−1

red (An \ 0) (here the subscriptredmeans “reduced,” i.e., one has split off the summand
corresponding to a base-point; see [Fas12, Lemma 2.4] for more details). This degree is exactly the
same as the one defined above. Indeed, the Gersten-Grothendieck-Witt spectral sequenceE(n −
1)p,q shows that the edge homomorphismE(n− 1)n−1,0

2 = Hn−1(An \ 0, In) → GW n−1(An \ 0)
induces an isomorphismHn−1(An \ 0, In) → GW n−1

red (An \ 0).

We now state and prove a result that constitutes a positive answer to a strengthening of Nori’s
original question; this provides an answer to [Fas12, Question 4.8].

Theorem 4.4. LetA be ak-algebra,n ∈ N be an odd integer and letv : SpecA → A
n \ 0 be

a unimodular row. Ifm is the maximal ideal corresponding to0 ∈ A
n, assume we are given a

homomorphismf : k[x1, . . . , xn] → k[x1, . . . , xn] such thatf(m) ⊂ m and such that(n − 1)!
divides the length ofk[x1, . . . xn]/f(m). Letϕ : An \ 0 → A

n \ 0 be the morphism induced byf .
If the degreedeg(ϕ) = 0, then the unimodular rowϕv : SpecR→ A

n \ 0 is completable.

Proof. Theorem3.5shows thatUmn(Q2n−1)/En(Q2n−1) is the fiber product of the groupsW (k)
andZ/(n− 1)! overZ/2. The same arguments as in the proof of Theorem4.2show that we have to
prove that the unimodular row(f(x1), . . . , f(xn) is completable ifdeg(ϕ) = 0 and(n−1)! divides
the lengthl of k[x1, . . . xn]/f(m). However, the unimodular row(f(x1), . . . , f(xn)) corresponds
to the pair(deg(ϕ), l) in the fiber product by definition ofdeg(ϕ) and Theorem4.2.

Compatibility with realization

Assumek = C. If (X , x) is a pointed space, andX (C) is the associated topological space of
complex points, complex realization [MV99, p. 120-121] gives a homomorphism

⊕

i+j=n

π
A1

i,j (X )(C) −→ πn(X (C))

by summing the various component homomorphisms. TakingX = SLn or BSLn, complex real-
ization allows us to compare the computations ofA

1-homotopy sheaves from [AF12] and Section
2 with those coming from classical homotopy theory. We will see that the above homomorphism is
surjective in some situations. The precise description of first non-stableA1-homotopy sheaves of
SLn was motivated by anticipation of results such as those established here.
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Compatibility with complex realization

Bott periodicity (see also [Bot58, Theorem 5]) yields a computation of the homotopy groups of the
unitary group in the stable range and the first non-stable homotopy group:

πi(U(n)) =











0 if i < 2n, i even

Z if i < 2n, i odd, and

Z/n! if i = 2n.

Furthermore, it is classically known thatπ5(U(2)) = Z/2 (use [Whi50] together with the fact that
U(2) is anS1-bundle overSU(2)) andπ6(U(2)) = Z/12 [BS53, Proposition 19.4].

Theorem 4.5. For any integern ≥ 3, the homomorphisms

π
A1

n−1,n(GLn)(C) −→ π2n−1(GLn(C)) ∼= π2n−1(U(n)) = Z, and

π
A1

n−1,n+1(GLn)(C) −→ π2n(GLn(C)) ∼= π2n(U(n)) = Z/n!,

induced by complex realization are isomorphisms.

Proof. We begin by establishing the second isomorphism of the theorem. For any integern ≥ 3,
we first identifyπA1

n−1,n+1(GLn)
∼= π

A1

n−1,n+1(SLn)
∼= π

A1

n,n+1(BSLn). BecauseπA1

1 (BSLn) is
trivial, the latter set can be canonically identified with the set of unpointed homotopy classes of maps
[Q2n+1, BSLn]A1 . Similarly, we identifyπ2n(GLn(C)) = π2n(SU(n)) with [S2n+1, BSU(n)] by
means of the clutching construction.

SinceW (C) = Z/2, Theorems3.4and3.5tell us that the set of isomorphism classes of rankn
bundles onQ2n+1 has a natural group structure and is isomorphic toZ/n!Z (irrespective of whether
n is even or odd). Now, the map that sends a complex algebraic vector bundle to the underlying
topological vector bundle defines a function

[Q2n+1, BSL2n]A1 −→ [S2n+1, BSU(n)].

As mentioned above, topological vector bundles can be described by means of the clutching con-
struction. Now, each of the vector bundles of rankn on Q2n+1 is given by a unimodular row.
The homotopy class of the clutching function attached to theunimodular row is computed, e.g., in
[ST75, Theorem 3.1] and this gives the required isomorphism.

To establish the first isomorphism of the statement we proceed as follows. Observe that we have
canonical isomorphisms

[Sn−1
s ∧G

∧n
m , GLn]A1

∼= [Sn−1
s ∧G

∧n
m , SLn]A1

∼= [Sn−1
s ∧G

∧n
m ,Ω1

sBSLn]A1
∼= [Sns ∧G

∧n
m , BSLn]A1 ;

the first isomorphism is a consequence of [AF12, Theorem 2.9], the second isomorphism follows
from [Mor12, Theorem 5.46] and [MV99, §4 Proposition 1.15] once one observes thatSLn is A

1-
connected, and the third isomorphism is simply the loop-suspension adjunction.

Again, sinceBSLn is A
1-1-connected, the canonical map from pointed to unpointedA

1-
homotopy classes is an isomorphism. Now, we know that the complex realization ofSns ∧ G

∧n
m
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is the sphereS2n. On the other hand, we know thatQ2n(C) is weakly equivalent toS2n (more
precisely, it is diffeomorphic to the tangent bundle of the standard2n-sphereS2n). The map send-
ing a complex algebraic vector bundle to its associated topological vector bundle then determines a
function

[Sns ∧G
∧n
m , BSLn]A1 −→ [S2n, BSU(n)],

which coincides with the homomorphism of the theorem statement under complex realization by
means of the loops-suspension adjunction. It therefore suffices to show this map is an isomorphism.

Now, we have given an explicit identification of the set of isomorphism class of rankn vector
bundles onQ2n in Theorem3.15. In particular, whenk = C, the set of isomorphism classes of
rank n vector bundles onQ2n is isomorphic toCHn(Q2n) = Z. Likewise, [S2n, BSU(n)] =
π2n(BSU(n)) = π2n−1(SU(n)) = Z by Bott periodicity. Since the map in question is a homo-
morphism of free abelian groups, it suffices to observe that we can lift a generator.

The mapSU(n) → S2n−1 induces a homomorphismπ2n−1(SU(n)) → π2n−1(S
2n−1) = Z.

Therefore, a rankn topological vector bundle is classified by the topological degree of the map of
spheres induced by the clutching map. It is straightforwardto check that the topological degree of
the clutching function of the unimodular row defining a rankn vector bundle withn-th Chern1 is
1.

SetFn := hofib(BSLn → BSL
(n−1)
n ). Since the spaceSns ∧G

∧n
m is A

1-(n − 1)-connected,
the map

π
A1

n,n(Fn) −→ π
A1

n,n(BSLn)

is a bijection. Under the assumption onn, theA1-Freudenthal suspension theorem [Mor12, Theo-
rem 5.61] then gives an isomorphism

π
A1

n,n(Fn) −→ π
A1

n+1,n(Σ
1
sFn).

By Lemma3.10, we know thatΣ1
sQ2n

∼= Σn+1
s G

∧n
m . Therefore, the set on the right hand side is

[Σ1
sQ2n,Σ

1
sFn]. Note also that, sinceΣ1

sQ2n is A
1-n-connected, the map

[Σ1
sQ2n,Σ

1
sFn]A1 −→ [Σ1

sQ2n,Σ
1
sBSLn]

is an isomorphism.
Complex realization thus gives a map

[Σ1
sQ2n,Σ

1
sBSLn] −→ [S2n+1,Σ1

sBSU(n)],

and combining all of the results above it suffices to prove that this morphism is an isomorphism. To
see this, it suffices to observe that[Q2n, BSLn]A1 → CHn(X) and[S2n, BSU(n)] → H2n(S2n,Z)
given by then-th Chern class are isomorphisms. Since both of these isomorphisms are stable in the
sense that they are compatible with simplicial or ordinary suspension the result follows.

Remark4.6. Consider the homomorphismπA1

2n−1−i,i(SLn) → π2n−1(SU(n)). If i > n, the sheaf

π
A1

2n−1−i(SLn) = K
Q
2n−i. This sheaf becomes trivial afteri-fold contraction, and therefore, the

homomorphism in question is trivial. Ifi < n it seems likely that the above homomorphism is
trivial as well, even though in that range the sheavesπ

A1

2n−1−i(SLn)−i are not expected to be trivial.
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Theorem 4.7. The homomorphisms

π
A1

2,3(SL2)(C) −→ π5(SL2(C)) ∼= π5(SU(2)) = Z/2, and

π
A1

2,4(SL2)(C) −→ π6(SL2(C)) ∼= π6(SU(2)) = Z/12

are isomorphisms.

Proof. For the second isomorphism, begin by recalling from [AF12, Theorem 3.20] that there is an
exact sequence of the form:

I
5 −→ S

′′

4 −→ S
′

4 −→ 0.

Contracting this sequence4 times, evaluating onC (using the fact thatI(C) = 0), and using Lemma
2.10yields an isomorphismZ/12

∼
→ (S′

4)−4(C). Since(KSp
3 )−4 = (GW

2
3)−4 = (GW

0
1)−2 = 0

by [AF12, Lemma 4.9 and Proposition 5.4], there is thus an isomorphism Z/12
∼
→ π

A1

2,4(SL2)(C).
By [BS53, Proposition 19.1] one knows that the classifying map of theSp2-bundleSp4/Sp2 →

BSp2 provides a generator ofπ6(S3) = π7(BSp2). Now the computation ofπA1

2 (SL2) was
achieved using theA1-fiber sequenceSp2 → Sp4 → Sp4/Sp2, and the isomorphismZ/12 →
π
A1

2,4(SL2)(C) is induced by the connecting homomorphism of the associatedlong exact sequence in
A
1-homotopy sheaves. Since the complex realization of the fiber sequenceSp2 → Sp4 → Sp4/Sp2

is homotopy equivalent to the fiber sequence considered by Borel-Serre, the result follows.
For the first isomorphism, recall first thatKM

1 /12(C) = 0. Then, using the fact thatKSp
3 =

GW
2
3 observe that(GW

2
3)−3 = (GW

0
1)−1 = Z/2 (again, use [AF12, Lemma 4.9 and Proposition

5.4]). Now, by Proposition2.8, the fact thatKM
1 /12(C) = 0, the fact thatI2(C) = 0, and the fact

that (KSp
3 )−3 = Z/2, we see thatπA1

2,3(SL2)(C) ∼= Z/2. Thus, complex realization gives a map

π
A1

2,3(SL2)(C) = Z/2 → Z/2. The computation of [Whi50] shows that (see the proof of [Hu59,
Theorem 15.2] for more details) the generator ofπ5(S

3) is obtained as follows: start with the Hopf
mapηC : S3 → S2 and consider the compositionΣηC ◦Σ2ηC. Now, there is the algebro-geometric
Hopf mapη : A2 \ 0 → P

1 (see [Mor12, §6.3 and Example 6.26]), and taking theGm andP1-
suspensions of this map we obtain:

ΣGmη : P1∧2 −→ A
2 \ 0

ΣP1η : A3 \ 0 −→ P
1∧2.

The composite of these two maps has complex realization the generator of theπ5(S3) since the
complex realization ofη is the usual Hopf mapηC.

Remark4.8. The second statement of the above theorem can also be deducedfrom Proposition3.8.

Comments on real realization

Fork = R, Morel and Voevodsky [MV99, p. 121-122] also show that sending a smoothk-scheme
toX(C) equipped with theZ/2-action by complex conjugation defines can be extended to a “real
realization” functor fromH (R) to theZ/2-equivariant homotopy category. There is a homotopy
equivalenceGLn(R) ∼= O(n). SinceO(2) is an extension ofZ/2 by SO(2), which has no homo-
topy groups in dimension> 1. The groupsπn−1(O(n)) are determined by Bott periodicity. For
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completeness, we quote the result from [Ker60]: the groupπr−1(O(r)) is equal to0,Z⊕Z,Z/2,Z, 0
if r = 3, 4, 5, 6 or 7 and, more generally,Z ⊕ Z,Z/2 ⊕ Z/2,Z ⊕ Z/2,Z/2,Z ⊕ Z,Z/2,Z,Z/2
if r ≥ 8, andr ≡ 0, 1, 2, 3, 4, 5, 6 or 7 modulo8. The situation involving compatibility with real
realization is more subtle than that of complex realization.

Real realization gives rise to canonical homomorphisms

π
A1

i,j (GLn)(R) −→ πi(GLn(R)) ∼= πi(O(n));

in particular,A1-homotopy groups of several different weights map to thesametopological homo-
topy group. Ifn ≥ 2 andi ≥ 2, we can again use fiber sequences to studySLn andSO(n) instead
ofGLn andO(n). In that situation, the isomorphisms in question are compatible with the clutching
construction (as above).

Similar to the situation involving complex realization, real realization is compatible with (sim-
plicial) suspension, so the homomorphism above can also be identified as a morphism

π
A1

i+1,j(BGLn))(R) −→ πi+1(BO(n)).

The computations of homotopy groups ofO(n) give rise to descriptions of the set of isomorphism
classes of rankn topological vector bundles onSn. Likewise, Theorems3.5 and 3.4 give de-
scriptions of the sets of isomorphism classes of real rankn vector bundles onQ2n+1 (which has
real realization homotopy equivalent toSn): these groups are equal toZ/(n − 1)!Z if n is odd
andZ/(n − 1)! ×Z/2 W (k) if n is even (the indices have shifted). The descriptions of the set of
isomorphism classes of real rankn vector bundles onQ2n (which has real realization homotopy
equivalent toSn) is in bijection withZ × Z/2 if n is even andZ × Z if n is odd. In particular,
while neither realization map is (individually) surjective or injective, it is possible that the map
⊕

j π
A1

n,j(BGLn) → πn(BO(n)) is surjective. Nevertheless, the factor ofZ that corresponds to
W (R) in Theorem3.5 does admit an elementary explanation; we view the followingremark as an
explanation of the factors ofIn that appear in Theorem2.3.

Remark4.9. A rank i vector bundle onSn is classified by a mapSn → BSO(i). The obvious
inclusionSO(i) →֒ SO(i+1) induces a mapBSO(i) → BSO(i+1). Those mapsSn → BSO(i)
such that the composed mapsSn → BSO(i + 1) are homotopically trivial (i.e., those ranki
vector vector bundles that become trivial upon direct sum with a trivial line bundle) lift to a map
f̃ : Sn → SO(i + 1)/SO(i) ∼= Si. Takingi = n, the homotopy class of the map̃f is completely
determined by its topological degree.

Now, given a rankn − 1 vector bundle onQ2n−1 corresponding to a unimodular row, the
classifying mapQ2n−1 → BSLn−1 lifts to a mapQ2n−1 → Q2n−1. Morel has associated with
such a map a degree inGW (k), and there is an associated degree inW (k); as observed in the
proof of Theorem4.4, this degree can be identified with the degree of [Fas12]. Taking k = R,
one observes that the real points of a mapQ2n−1 → BSLn−1 correspond to a rankn − 1 vector
bundle onSn−1 and the element ofW (R) constructed above is precisely the topological degree of
this map.

Remark4.10. The factor ofI5 appearing inπA1

2 (SL2) exemplifies some of the complexities inher-
ent in the discussion of real realization. Note that real realization gives a mapπA1

2 (SL2)(R) →
π2(SL2(R)) = π2(S

1). However,I5(R) = Z, butπ2(S1) = 0 so the factor ofI5 is mapped to zero
under real realization.
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The explanation for the factor ofI5 is different. One can show using the next Hopf fibration
(this is an algebro-geometric version ofν : S7 → S4) that there is an epimorphism

π
A1

3 (P1∧2) −→ π
A1

2 (SL2).

There is a canonical morphismSL2 → Ω1
sLA1Σ1

sSL2 (hereLA1 is theA1-localization functor),
and this induces a morphism

π
A1

2 (SL2) −→ π
A1

3 (P1∧2)

that provides a splitting of this map. Now, under real realization, there is a mapπA1

3 (P1∧2)(R) →
π3(S

2) = Z, and the factor ofI5 encodes this factor ofZ. We will explain this construction in
greater detail elsewhere.
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