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Abstract

We complete the determination of the first non-stablehomotopy sheaf of L,, by treat-
ing the case whereis even. Using techniques of obstruction theory involvimegt ! -Postnikov
tower, supported by some ideas from the theory of unimodaias, we classify vector bundles
of rank> L%J on split smooth affine quadrics of dimensi@nThese computations allow us to
answer a question posed by Nori, which gives a criterion éongletability of certain unimod-
ular rows. Furthermore, we study compatibility of our corgtions ofA'-homotopy sheaves
with real and complex realization.

Contents

1 Introduction 1
2 The first non-stable homotopy sheaf o5 L2, 5
3 Unimodular rows and vector bundles on split quadrics 12
4 Applications 20

1 Introduction

In [AF12], we began a study of the first non-statié-homotopy sheaf of the special linear group.
In that paper, the computations &f-homotopy sheaves were used in conjunction with techniques
of obstruction theory to give a cohomological classificatwf vector bundles on smooth affine
threefolds (over algebraically closed fields having chiaréstic unequal t@). This paper, which is
a continuation of some of the themes 6H12], answers some questions that were implicitly raised
before.

Henceforth, fix a fieldk that is assumed to be infinite, perfect, and to have charsiiternequal
to 2. We consider here the smooth affine vari€ly,, ; defined, for any integer > 1, by the
hypersurfaced ", z;y; = 1 in A?". Projecting ontazy, ..., ,, the quadricQs,—1 admits a
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2 1 Introduction

morphism toA™ \ 0 that is Zariski locally trivial and has affine space fibersaa®onsequence this
morphism is an isomorphism in the Morel-Voevodsky-homotopy category# (k) [MV99]. This
isomorphism can be used to identify thé-homotopy type of)s, 1 asX? 'G/", i.e.,Q2,_1 is a
smooth affine model of aa'-homotopy sphere (see, e.gV| V99, §3 Example 2.20]).

If we write G, », for the infinite Grassmannian, Morelis!-homotopy classification of vector
bundles [Vior12, Theorem 7.1] identifies the set of isomorphism classesnifraector bundles on
Q2n_1 as the set oA '-homotopy classes of maf@s,_1, BGL,],:. Forn > 2, the spac&)s,, 1
has trivial Picard group, and therefore to classify vectandies of rankr, it suffices to classify
vector bundles with trivial determinant, which can be idféed with the se{Q2,,—1, BSL,],1. The
benefit of this identification is tha®SL, is A'-1-connected, and therefore the canonical map from
pointed to unpointed\!-homotopy classes of maps is a bijection. If we writg X) for the set of
isomorphism classes of rankvector bundles on a smooth affine variety then for any integers
n,r > 2 there are canonical isomorphisms

Vi(Qan—1) = [Z7'GN™ BSL,| a1,

Moreover, the (abelian) groyg?—'G/ ", BSL,],: is the set of sections ovérof the A'-homotopy
sheafr' | (BSL,).

Since the spac8SL, is Al-connected, results of F. Morel identify the sheaﬁ‘l_m(BSLr)
as then-fold contraction of the sheafﬁl_l(BSLr). Whenn — 1 <r — 1, the sheafr,,_;(BSL,)
is already “stable” in the sense that it coincides with theathg, i.e., the sheafification for the
Nisnevich topology on smooth varieties of the Quillen Kahepresheaf (see’[-12, §2] for a
more detailed discussion of the stable range in this contért[AF12, Theorem 3.9], under the
additional hypothesis thatwas odd, we describeﬂlél(BSLr). Here, we finish the computation
of wA' (BSL,) by treating the case wherds even.

Theorem 1 (See Theoren2.3 and Remark2.4). For any integern > 1, there is a short exact
sequence of strictly'-invariant sheaves of the form

0 — Topi1 —> wh (BSLy,) — K& — 0,
whereT,,_; admits a description as the fiber product of stricily-invariant sheaves

In+1
Topt1 | Cias

|

Sont1 — K3, /2,

I?"*+1 s the unramified sheaf corresponding to the+ 1-st power of the fundamental ideal in the
Witt ring, KéV{L+1/2 is the unramified mod Milnor K-theory sheaf, an®,,, . is the cokernel of a

homomorphisnK?nH — K%H that coincides with Suslin’s homomorphism upon takingicest
over fields.

Remark2. Whenn = 1 in the above statement, the sh&f is simplyI3. Indeed, in that case,
Suslin proved $us84 Proposition 4.5] that the image & in K3 is precisely2K2! (strictly
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speaking, Suslin establishes this contingent upon a podfoMilnor's conjecture on quadratic
forms, but that is now known to hold by)j/\VO7, Theorem 4.1]). Therefore, the morphisSy —
K/ /2 is an isomorphism. In that case, using the identificafiofl ~ K/ that follows from
Matsumoto’s theorem, one sees thdt (BSLy) is an extension oK)’ by I3. This description
is consistent with Morel's identificatiom®' (SLy) = w4 (BSLy) = K¥W [Mor12, Theorem
5.40]: our description corresponds precisely to the faatB)’" can be written as an extension of
K2 by I (see, e.g., Propositich 1).

Note that the shed,, ., (resp. the shed8,, appearing in fF12, Theorem 3.9]) admits an
epimorphism fromK2? ., /(2n + 1)! (resp. K2! ,; /(2n)!). The question of whether this epimor-
phism is an isomorphism is, as was discussed inl[2, Remark 5], equivalent to a question posed
by Suslin. Unfortunately, the only case where a positivevango Suslin’s question is known is the
casen = 1, as discussed in the previous remark. While Theoteines not immediately provide
enough information to completely describe the set of isqism classes of rank — 1 vector
bundles orQ»,,_1, it does reduce the problem to understanding contractibBSg .oMoreover, upon
n-fold contraction, the problem of providing an explicit déption of S,, becomes in a sense geo-
metric and, with some input from the theory of unimodular spwe can then give a rather explicit
classification of ranKn — 1)-vector bundles ori),,,—; (the vector bundles of rank n are easy
to describe as well). The next result can thus be viewed as/giece of evidence that Suslin’s
guestion admits a positive answer; the dichotomy betweedd and even cases persists through
all our results.

Theorem 3(See Theorem8.4and3.5). If n is an integer> 1, and W (k) denotes the Witt group
of k, there are canonical isomorphisms

~ 1Z/(n—-1)! if n=2m
Vn-1(Qan1) = {Z/(n D xgp W(k) ifn=2m+1;

where the maps in the fiber product are the rank homomorphisartize reduction moduld map.

In [Sus771, Suslin gave a condition that was sufficient to ensure thahienodular row (see
Section3 for some recollections about unimodular rows) over any fihgan be completed to an
invertible matrix overR. In [Kum97], Nori inquired about a possible generalization of Suslin’
theorem. In Fasl1}), the second author constructed a counterexample to Nmigsnal question
and proposed a refined version. The computations of The8rean be used to answer this refined
version of Nori's question.

Theorem 4(See Theorem4.2and4.4). Supposé is a field, R = k[zq,...,z,] be a polynomial
ring in n variables,¢ : R — A is a k-algebra homomorphism such thaf ¢(z;)A = A, and
f1,--., fn are elements oR such that reduced subschemeAdfdefined by the ideal(fi, ..., f»)

coincides with0 € A”™; write f : A” \ 0 — A™\ 0 for the morphism induced bfi, ..., f,).

Assume thatength(R/(f1,..., fn)) is divisible by(n — 1)!.

e If nisodd, theno(f1),...,¢(fn)) is completable.

e If n is even, then one can attach an eleméni(f) € W (k) to f, and ifdeg(f) = 0, then
(d(f1),---,0(fn)) is completable.
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If Q2 is the smooth affine quadric defined by the hypersurfater;y; = z(z + 1) in A,
then it is expected thap,, is also a motivic sphere (this is true for= 1,2). We give a descrip-
tion of the set of isomorphism classes of rankector bundles ofd)s,, in Theorem3.15as well.
Combining this description of isomorphism classes of velotmdles with Theorer, allows us to
deduce Theorem.5, which discusses compatibility with complex realizatidrttee computations
of Theorem2.3and [AF12, Theorem 3.9]. In a sense, this compatibility explains thatfactors
of n! that appear in the homotopy sheaves arise from complex Batigicity, while the factors of
I" that appear arise because of real Bott periodicity. Findlheorend.7 discusses compatibility
of the computation of the second non-stable homotopy sHe#f.g (from [AF12, Theorem 3.20])
with complex realization, but since this is a low-dimensibresult, the techniques are somewhat
more explicit.
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Some notational preliminaries

We use the following notation. Assumsds a field. WriteSm,. for the category of schemes that are
smooth, separated and have finite type dveec k and Spe, = A° Shonis(Smy,) (resp. Spe )
for the category of (pointed) simplicial sheaves on the sitemooth schemes equipped Wlth the
Nisnevich topology; objects afpc, (resp. SP%.) will be referred to agpointed) k-spaces or

simply as(pointed) space$f  is clear from context. Write*{ (k) (resp. H,(k)) for the Morel-
VoevodskyA!'-homotopy category.

Given two (pointed) space& and 9, we set[X, ) |1 = Hom s, (X 9); morphisms in
pointed homotopy categories will be denoted similarly witse- pomts explicitly written if it is
not clear from context. We writ€? for the constant sheaf afm,, associated with the simplicial
i-sphere, and3,, will always be pointed byl. The A'-homotopy sheaves of a pointed space
(X,z), denotedr; AY(X,z) are defined as the Nisnevich sheaves associated with thieepres
U [SEAU,, (X )] a1- We also writerr?* (X x) for the Nisnevich sheafification of the presheaf
U [SEAGH ANUL, (X, 2)]| a1

A presheaf of set& on Sm;, is calledA!-invariantif for any smoothk-schemd/ the morphism
F(U) — F(U x A') induced by pullback along the projectidh x A! — U is a bijection. A
Nisnevich sheaf of grouggis calledstronglyA -invariantif the cohomology presheavés, (-, G)
areA'-invariant fori = 0, 1. A Nisnevich sheaf of abelian grougs is calledstrictly A'-invariant
if the cohomology presheave$y, (-, A) are Al-invariant for everyi > 0. Henceforth, unless
otherwise indicated, the word sheaf will mean Nisnevictagbe S, and the undecorated symbol
H* will mean “i-th cohomology (of a sheaf) with respect to the lenevicmtogy.”

If n > 0is an integer, a spac¥ is calledA'-n- connected |f7rA (X) = %, and, for any choice
of base-pointz € X'(k) and any integei < n, 7r (X x) = 0. If G is an algebraic group and
we view GG as a pointed space, the base-point is always the identitios&tpec & — G and for
this reason will usually be suppressed. Likewise, the sp@edefined by means of the simplicial
bar construction, has a canonical base-point correspgrtditthe uniqued-simplex, and this will
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usually be suppressed from notation as well (just as\inl[], we abuse notation and wrif@G for
any space that has tte' -homotopy type of the simplicial bar construction just memed).

2 The first non-stable homotopy sheaf of L,,

The goal of this section is to compute the grouﬁ_l(SLgn) for n > 1. We begin by reviewing
some notation and results fronviprO4] regarding Milnor-Witt K-theory. After that, we review
some details regarding fibration sequences; a more defaidsgntation of this material is given in
[AF12, §3], and we will use a number of results from that work.

Some exact sequences

Write KMW (k) for the graded Milnor-Witt K-theory ring. Recall th& " (k) is generated by
symbols[a] € k* of degree+1 and a symbof of degree—1 satisfying various relations\for04,
Definition 5.1]. WriteI* (k) for the graded ring corresponding to the powers of the furetaal
ideal in the Witt ring; recall that™ (k) is additively generated by the classesrofold Pfister forms.
Assigning to a symbok € k> the class of the Pfister forf{a)) defines a group homomorphism
KMW(k) — I'(k); this homomorphism extends to a graded ring homomorpHgtV (k) —
I*(k). Likewise, if KM (k) denotes the graded Milnor K-theory ring, there is also a haorphism
of graded ringsk MW (k) — KM (k) that sends) to 0.

Let k. (k) = KM(k)/2KM (k) (we beg the reader’s indulgence for this unfortunate chofce
notation, which will persist only through this paragrapfihere is a canonical homomorphism of
graded ringskM (k) — k.(k). The Milnor conjecture on quadratic form®V\/07] defines an
isomorphism of graded rings*(k)/I*T! (k) = k. (k). Morel [Mior04, Theorem 5.3] shows that
these various homomorphisms fit into a cartesian squareadedrrings of the form

KM (k) —= KM (k)

L

(k) —— ko (k).

The above square can be sheafified in an appropriate sensebjéioes and morphisms in the
fiber square are compatible with residue maps and yield agiart square of unramified sheaves of
graded rings

KMW — > KM

N

I ——=KM/2.

We refer the reader td/for05, §2.2-4] for a detailed discussion of the unramified Milnorh&ory
sheafK?, the unramified shedf™ and the homomorphisii* — K2 /2, which Morel calls a
sheafification of Milnor's homomorphism. We refer the reatefiVior12, §2] for the construction
of the sheafkK " and the homomorphism in the left hand column and the top roecaBse the
above diagram is cartesian, one deduces immediately teierge of the following exact sequences.
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Proposition 2.1. For every integem, there are short exact sequences of the form
0 — It L KMV KM 0,

and for every integen > 0, there are short exact sequences of the form
0 —2KM KMV 1" 0.

Moreover, the majK " — KMW induced by multiplication by factors as a composit& " —

n—1

I" — KMW where the two constituent maps are those in the above exquesces.

n—1"1

Proof. The only thing that remains to be checked is the final statemé&o that end, the map
KMW(Ek) — I™(k) is defined by sending a symb@ly]-- - [a,] to {(a1,...,a,)), and the map
I"(k) — KMW (k) is defined by sending a Pfister forftuy, . . ., a,)) tonfai] - - - [an). O

Recollections on fiber sequences
Recall from AF12] that the fiber sequence

SLop — SLapt1 — SLopt1/SLoy
yields an exact sequence of sheaves

74 (SLay) —=1h (SLaps1) —= KMW, — 74 (SLay) K2, 0,

while the fiber sequence
SLopsy1 — SLopyo — SLoyia/SLoniq

gives an exact sequence

02
MW ©92ntl Al Q
Koo — o, (SLopg1) — K31 —0.

The compositionys, 0o, +1 IS trivial by [AF12, Lemma 3.1], and thus the morphista,, (S Lo, 41) —
KW factors through a maps, (SLa,0) = K, — KW, and we obtain an exact sequence
of the form:

Q 1/)27L+1 MW Al Q
K2n+1 — Ky, 4 —— 79, (SLay) Kg, 0

with a morphismi)s,, 11 that we want to identify.

The image ofto, 11

Lemma 2.2. The morphism),,, 11 has image contained i?nKé‘,{H.
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Proof. Consider the diagram

b (SLont1) 0
0 2K, KW 12ntl 0
\‘\
T4 1 (SLay—1) —= mh,_1(SLay) KW by 5(SLop_1)
KS, Ky
0 0

The short exact sequence in the second row and the vertiodl eskact sequence involvirkf™+!
are those from Propositich 1. Moreover, the commutativity of the triangle with the arrtakeled
n as its bottom edge is also a consequence of Propositibn The commutativity of the lower
triangle withn on the diagonal was established in the discussion precgdind?, Lemma 3.1]
(the composite map is the connecting homomorphism in a laagtesequence in a fiber sequence
involving a Stiefel variety).

Now, any element int4, (SLa,1) goes to zero inrh, | (SLay,), and therefore the composite

into KW is also zero. By commutativity of the diagram, the image oflement inm2. (S Loy 1)
in 12"+1 is also zero. Therefore, the mag}, (SLa,+1) — K3W, has image K3 ;.
On the other hand, consider the diagram

W§;+1 (SLap+y2/SLant1)

74 (SLaps1) KW
74, (SLan+o)
0.

The diagonal map is the zero map ByH12, Lemma 3.1], and therefore the ma@ﬁ(SL2n+1) —
KAIW, factors through the maps, (SLay41) — 74, (SLant2) = K5,,,. Combining these two
observations, the image af}, (SL2,+1) — KW is contained in the image of a magy, ,, —
2K}, 1 < K3 O
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Let Ty, 1 be the kernel of the morphismg*,i_l(SLgn) — K9, so that we have an exact

2n?
sequence of sheaves

0 T2n+1 71"2&;_1(51—/2”) Kggn 0.

Theorem 2.3. The cartesian square (see abd¥mposition2.1)

MW 2n+1
K2n+1 I

]

M M
Koni1 — Ko 1/2

induces a cartesian square of the form

In+1
Tont1 | S

|

Sony1 —= K3, /2.
Proof. By definition of T, 1, we have an exact sequence

Q  Y2ntl LMW
K2n+1 K2n+1 T2n+1 0.

Lemma2.2 shows that the image afy,11 is completely determined by the composite

Q Vil oyw M
K2n+1 K2n+1 K2n+17

which is precisely the morphism considered Afi-[L.2, Lemma 3.8]. O

Remark2.4. Theoreml follows by combining Theoren2.3 with the isomorphisrm?l(SLn) =
wfjl(BSLn) arising from theA'-fiber sequence&L,, — ESL, — BSL,. In the sequel, we
will often use the computation in this form. Recall also frpai-12, Theorem 3.9] that there is an
epimorphism of sheaves

Kb 1/(2n)! = Sani

that is conjecturally an isomorphism.

Remark2.5. Assume for this remark thdt is a field having characteristic zero. The inclusions
SLy, (k) = SLy+1(k) induce homomorphisms

fmm : Ho(SLy(k),Z) — Hp(SLp+1(k),Z),

which are isomorphisms th > n + 1, and ifm = n is odd [HT10, Theorem 1.1]. Moreover, there
is a sequence of the form

Hyp1(SLin(K), Z) —= Hyp(SLyn (k), Z) —"= KMV (k)
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foranym > 1[BM99]. By [HT10, Theorem 1.1], this sequence is exact in the middle gnds
surjective ifm is even, while its image i8K M (F) if m is odd. Given these results one defines a
map font1 : K5, (k) — K3, (k) as the following composition:

Kﬁ%-i-l(k) - 7T2N+1(BSLOO(k)+) - H2n+1(BSLOO(k)+7 L) == Hon11(BSLe(k), Z)

-
\\
\\
-~ _

-~ _ Hoyi1(BSLoyy1(k),Z)

—

f27L+1 -~
T~ l€2n+l

T KMW (k).

—

2n+1

Observe that sincen + 1 is odd, the image of2, 1 is included in2K§V,{+1(k:). While it is not
necessary for our purposes, we expect that one can shovinéghaiarphism induced bys,,1 upon
taking sections over fields coincides with, 1.

Contracted homotopy sheaves

Recall that ifA is a strictly Al-invariant sheaf, one defines the contracted skeaf by means

of the formulaA _;(U) = ker(s* : A(G,, x U) — A(U)), wheres : U — G,, x U is the
map coming from the identity section &*,,. One then defines thifold contracted sheaA _;
inductively by A_; = (A_;+1)—1. A convenient summary of calculations of contractions used
here, and other basic properties of the contraction cortgdruis presented in[~12, §5].

Lemma 2.6.1f j > 0,7 > 1, andn > 2 are integers, then there are canonical isomorphisms
1 1
7} (GLy) =7 (GLy) ;.

Proof. The fibration sequencé/L,, — EGL, — BGL, gives isomorphismmﬁ;(GLn) &

TI'ZA;L]-(BGL”), and BGL, is A'-connected. The result then follows frorivi§r12, Theorem
5.13] (note: we cannot apply the aforementioned resulictiréo G'L,, since it fails to beA'-

connected). O

Since the contraction construction is exact, we deducedi@ning results from Lemma.6,
[AF12, Theorem 3.9] and Theoreth3 (resp. A\F12, Theorem 3.20]).

Proposition 2.7. Suppose: > 1 andj > 0 are integers. There are short exact sequences of the
form

0 — (Ton41)—j —>W§;—1,j(GL2n) — K5

on—j — 0, and

1
0 — (So(n+1))—j —W%n,j(GLGH) — K§n+1—j — 0,

where there is an epimorphisk’, , ;/n! = (S,41)-;.
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Proposition 2.8. For any integer; > 0, there is a short exact sequence of the form
0— (S))_; — w%}(GLg) — (K37)_; — 0,
where(S/])_, sits in a short exact sequence of the form
(I°)—4 — (S1)-a — (S)-a — 0
and there is an epimorphisii(}’ ; /12 — (S}) ;.

As discussed in the introduction, the epimorphﬂs’rﬁf{rl/n! — S,,11 is an isomorphism pro-
vided a question posed by Suslin has a positive answer. Isettpeel, we will several times need to
use the fact that the map on cohomology induced by the epmsmjust mentioned is an isomor-
phism. This conclusion can be deduced independently of iiy@answer to Suslin’s question by
establishing that appropriate contractions of the sheiavggestion are isomorphic. The next two
lemmas summarize the results in the form we need.

Lemma 2.9. The epimorphisnK ', , /n! — S,, 11 induces isomorphisn& )\ ; ;/n! = (S,y1)—;
foranyj >n — 1.

Proof. Recall first thatS,, ; is defined by the exact sequence

Q M
Ko Kot Sn+1 0

where the morphisanfJrl — K2, coincides with Suslin’s homomorphism when evaluated on
fields (which are infinite and finitely generated over the Hesd).

On the other hand, using Rost’s theory of cycle modutessPg, one can construct a morphism
of sheavesy,,; : KM, — Kgﬂ whose sections over fields (again, assumed to be infinite and
finitely generated over the base field) coincides with theinahthomomorphism from Milnor K-
theory to Quillen K-theory. Indeed, this follows fronRps96 Remark 5.4], which we quickly
summarize. The natural transformation of functéfg’(-) — Kf?(-) on the category of fields
that are finitely generated over the base field (which is asdunfinite throughtout) is compatible
with residue maps and transfer maps and yields a morphisnyabé enodules. Any morphism
of cycle modules yields a corresponding morphism of the @atad “unramified” sheaves (see
[Ros96G Remark 5.2]). Moreover, since a morphism of cycle modusdsyi definition compatible
with the action ofi’ () by left multiplication, it follows that the contracted mdvigm (cv,+1)—;
KM, - K _ coincides withn,.1_; for any;j € N.

Next, by [Sus84 Corollary 4.4], the composite

QAn+41

M Q M
Kn+1 Kn—',—l Kn+1

is multiplication by(—1)" - n! and we have a commutative diagram with exact rows

(—=1)™nl
KM KM KM /nl ———0

Oln+1l/ l
K% KM S, ——=0
n+1 n+1 n+1 .
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Since contraction is an exact functor, by contractirigmes we obtain a commutative diagram with
exact rows

(=1)mn!
Kol Kot Khj/n! ——0
an+1jl l
Kg—i—l—j K (Snt1)-j ——0.
If j > n —1, thena,,11—; is an isomorphism and the result follows. O

The next result uses the notation 6f{12, Lemmas 3.18-19 and Theorem 3.20].

Lemma 2.10. The epimorphisnK}’ /12 — S/, induces an isomorphisi}’ ;/12 — (S})_; for
anyj > 3, and there is a short exact sequence of the form

0—I1—8S]—7Z/12—0.
Proof. By definition, the shea$’, admits the following presentation:

Spwacfaz ar ’
K K S 0,

where f15 : K;fp — Kf is the forgetful morphism ang, : Kff — K3 is Suslin’'s homo-
morphism. Using £F12, Proposition 4.2, Proposition 5.4], we see thlt,”)_; = GW}_/,
where the latter denotes the Nisnevich sheaf associateuet@tothendieck-Witt groug:iv;
(see PF12, §4] for more details regarding this group). Since the fongjeftinctor preserves Ger-
sten resolutions, we g€tf42)—; = fi—j2—;. In view of the above lemma, it suffices to prove
that f4—j»—;(GW?_%) = 2K{_ . for j > 3. Consider the hyperbolic homomorphisiy_;,_; :

K . — GW . The compositionfy_j»—; o Hi_;»; is multiplication by2 by [AF12, Lemma
4.3] and it suffices to show thdf,_;,_; is an epimorphism provideg > 3; this follows from
[FRS1] Lemma 2.3].

By definition, S| is the cokernel of a morphier;fp — K¥W and fits into a short exact
sequence of the ford® — S/ — S, — 0. Contracting the morphism definirgj/ four times, and
using the identifications of the previous paragraph, tagettith the identification K}/")_, =
KW we see thatS/]) _ is the cokernel of a morphism

GW;? s KMV,

Observe thaGWO‘2 — GW3 and [FRS11 Lemma 2.3] tells us that the hyperbolic homomorphism
determines an isomorphisih~ GWZ. On the other hand, we know thHEt)’"' sits in a short exact
sequence of the forth — I — K} — K} — 0. Moreover, the proof of4F12, Lemma 3.17]
shows that the composite m&p— Ké”W — 7 is the map studied in the previous paragraph; the
result follows from this observation. O
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3 Unimodular rows and vector bundles on split quadrics

In this section, we begin by reviewing some ideas from therghef unimodular rows. We then use
the computations of Sectidhand [AF12, §3] together with techniques of obstruction theory using
the Postnikov tower in\'-homotopy theory (we refer the reader tor{1 2, §6] for a digest of all
the results that will be used) to give a general procedur@soribe sets of isomorphism classes of
vector bundles. We refer to vector bundles on the split smaffine quadria),; having rank[%lj as
those of critical rank: above this rank the classificatiowexdtor bundles is a stable problem; at or
below this rank, the problem is unstable.

Unimodular rows

Let R be a ring and letz > 3 be an integer. Recall that a rof, ..., a,) of elements ofR is
called unimodular if there exist$,, ..., b,) such thad_ a;b; = 1. We denote by/m,,(R) the set

of unimodular rows of length over R. We consider this set as a pointed set, the base point being
the rowe; := (1,0,...,0). The groupG L, (R) acts onUm,, (R) by multiplication on the right and

so do all subgroups af L, (R). In this paper, we will be mostly interested in the grouss, (R)
andE, (R), the subgroup generated by elementary matrices.

Let X andY be two schemes over a fiekd Recall that two morphisms of schemes (o¥gr
f,g: X — Y are said to be naively.'-homotopic if there exists a morphisf : X x Al — Y
such thatF'(0) = f andF(1) = g. We can consider the equivalence relation generated b naiv
A'-homotopies and we writHom 41 (X, Y") for the set of naive\'-homotopy classes of morphisms
fromX toY.

Supposeé: is a field, andR is a (commutative unitalj-algebra. A unimodular rofa, .. ., a,)
can be seen as a morphisipec R — A™ \ 0 and thereford/m,,(R) = Hom(Spec R, A" \ 0).

In this context, we havé&/m,,(R)/E,(R) = Homy:(Spec R, A" \ 0) provided thatR is smooth
[Fas11hTheorem 2.1].

For any pair of smootlk-schemesX andY’, the mapHomg,, (X,Y) — [X,Y],: factors

through a map
HomAl (X,Y) — [X, Y]Al

since naivelyA'-homotopic morphism become equal 4fi(k). In the special case wher¥ is
smooth affine and” = A" \ 0, the mapHom: (X, A™ \ 0) — [X, A" \ 0]4: is in fact a bijection
[Mor12, Remark 7.10]. It follows that the right-hand side is getesteby morphisms of schemes
X — A™\ 0, i.e., unimodular rows of length over Ox (X).

SinceA™ \ 0is A! — (n — 2)-connected, we can further identify the §&t A™ \ 0],: with the
cohomology groug?” (X, KMW) provided X is isomorphic (in#{(k)) to a smooth scheme of
dimension< n — 1 [Morl12, Theorem 7.16, footnote 11]. More precisely, we can write

H" 1A\ 0, K)) = GW (k) - €,

where¢ is an explicit element of/"~1(A™ \ 0, KMW) that we call the orientation classgs1 1k
§3.3]. The bijection X, A" \ 0],1 — H" (X, KMW) s then given by pulling-back the clags
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Vector bundles on(@»,,_

Letn > 2andAy,_1 = k‘[l‘l, ey Ty YLy e 7yn]/<2 TiY; — 1> We denote byggn_l the scheme
Spec As,—1. The goal of this section is to describe, up to isomorphidinjeztor bundles of suf-
ficiently large rank ovet),, 1. As observed above, projection ontg, . . . , x,, yields a morphism
of scheme®,,,—1 : Q2,—1 — A™\ 0 that is a Zariski locally trivial smooth morphism with fibers
isomorphic toA™ . In particular,ps,,_1 is an isomorphism i#{ (k).

A refined vanishing statement

Lemma 3.1. If A is a strictly A'-invariant sheaf and ifi > 2 is an integer, then

A(k) ifi =0,
Hi(an_l,A) ~ A_n(]{?) ifi=n— 1, and
0 otherwise.

Proof. Sinceps,_1 is an isomorphism i (k) and sinceA is strictly A'-invariant (equivalently,
the Eilenberg-Mac Lane spad€(A, i) is Al-local for every integei > 0), it follows that the
the pullback morphisnfi‘(A™, A) — H'(Qa,_1,A) is an isomorphism. 1#{(k), we have an
identificationA™ \ 0 = ¥n-1G/™.

The statement for = 0 is clear, sinceé\™ \ 0 has ak-point and the pullback morphism induced
by the structure map is a split injection. By the suspenssomiorphism in cohomology and the

definition of contraction, it follows that there are isomloigms
HY(A™\ 0,A) = H~("=U(Speck, A_,).
The remaining statements follow immediately. O

Remark3.2 Observe that the isomorphisf”~!(Qa,_1, A) ~ A_, (k) is non-canonical.

Vector bundles of large rank
Corollary 3.3. If n > 1 is any integer, any vector bundlg of rankm > n overQs,_ is free.

Proof. If n = 1, thenQa,_1 = G,,, C A and the result is clear. if > 2, theA'-weak equivalence
Q2n—1 — A™\ 0 shows thatPic(Q2,—1) is trivial. Therefore, any vector bundle @p,,_; has

trivial determinant. Now, sinc&SL,,, is A'-1-connected for any integer, if we arbitrarily pick a

base-poink € 5,1, it follows that the canonical map

[(Q2n—17 *)7 BSLm]Al — [Q2n—17 BSLm]Al

is a bijection. Therefore, to describe the set of isomorphitasses of rank: vector bundles on
Q2n_1, it suffices to describe the set on the left.

We can describe the set of pointéd-homotopy classes of mags,,_ — BSL,, as follows.
By means of the\!-weak equivalenc€)s, ; — A"\ 0 = X"~ 1G/ ", we have

[(Qan—1,%), BSLy]p1 =[S0 GA", BSLy g
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By [Mor12, Theorem 5.13], we have identifications
(S0 G, BS Lyl & w20 [ (BSLy)—n (k).

If m > n, then ﬂ-ﬁl_l(BSLm)_n = (Kg_l)_n by the results of Morel (see, e.gAf12,

Theorem 2.9] for a convenient summary). Sirﬁb@f_l)_n = 0, the result follows.
O

Vector bundles of critical rank |;: the case n even

We now study vector bundles of ramk— 1 on @)2,,_1 under the additional assumption thais
even. In that case, we havq‘“l(BSLn_l) = KZQ if 2 < i < n—2and an exact sequence (from
[AF12, Theorem 3.9])

0—S, —= A" (BSL, 1) — K% , ——0.

We recall that the she&,, admits the following explicit description. The'-fiber sequence
A"\ 0 — BSL,_; — BSL,
yields an exact sequence
a2 (BSL,) — w2 (A" \ 0) — 2 (BSL,_1) — « | (BSL,) —> 0.

The sheaB,, is defined to be the image afy, | (A™\ 0) = KMV in 72" (BSL, ;). In[AF12,
Theorem 3.9] we furthermore prove that the epimorphisti"' — S, factors as a sequence of
epimorphisms of sheaves

KMV KM KM /(n— 1) — S,,;

here the left hand map is the natural map that sertd$), the middle map is the quotient iy — 1)!
and the right hand map is a map induced by the fact that thee'mfagg in KM is contained in
(n — 1)!'KM (see PF12, Lemma 3.8]).

Theorem 3.4.1f n > 2 is an even integer, then there is an isomorphism between ridwp gof
isomorphism classes of ramk— 1 vector bundles o, and the grougZ/(n — 1)!. Moreover,
each isomorphism class admits a representative given byrtimodular row(z7*, z2, . .., x,) for
1<m<(n—1)L

Proof. The proof of Corollary3.3yields a bijection
Vi 1(Qan—1) =5 74 (BSLy_1)_n(k).

We described the relevant contraction in Proposifion sincen is even,n — 1 is odd, and we have
a short exact sequence of the form

0 — (Sp)n(k) — 72" (BSLy_1)_n(k) — (K9_|)_(k) — 0.
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Since(KY_,)_,, = 0, it follows that there is a bijectioft, _1(Qan_1) = (Sy)_n(k). Lemma2.9
yields (S,,)— (k) = Z/(n — 1)! thus proving the first assertion.
To identify the vector bundles of rank— 1 more explicitly, begin by observing that ttaé -fiber
sequence
A"\0— BSL,_1 — BSL,

yields an exact sequence of (groups and) pointed sets

(Q2n—1,5Lp]p1 — [Qan—1,A" \ 0]par — [Q2n—1, BSLp_1]p1 — [Q2n—1, BSLy]p

where the first map on the left is induced by the projecidn, — A™\0. By Corollary3.3, we have
[Qa2n—1, BSLy,)L = x while our computation above yield§a;,—1, BSL,—1]a1 = (Sn)-n(k) =
H"Y(Qs,-1,S,). SinceSL, satisfies the affine BG property and 4s-invariant, we get an
equality[Q2,—1, SLp]a1 = SLy(Q2n—1)/En(Q2,—1) by Morel's results (see for instanceds11h
Corollary 4.6]). Thus, the above sequence of pointed seltsces to an exact sequence of (groups
and) pointed sets

SLn(Q2n—1)/En(Q2n—1) — [Q2n—17An \ O]Al — Hn_l(Q2n—la Sn) — *

Now we have a bijectionQa,_1, A" \ 0] = H" 1(Qa,—1, KMW) as explained in Sectiof
and the magQs, 1, A" \ 0] — H" Y(Q2,_1,S,) is exactly the morphism induced by the mor-
phism of sheaveXMW — S, . In particular, this is a group homomorphism and it idergifie
H" 1 (Q2n_1,S,) with the orbits of "1 (Q2,,_1, KMW) under the action 0§ L,,(Q2,,_1)-

We now use the sequence of epimorphisms of sheaves

KMW KM S KM/(n—-1) — S,
to obtain a sequence of surjective homomorphisms (use LeBnbmance again!)
H" N Qon—1, KMW) = H" 1 (Qon—1, K)) = H" 1 (Q2p—1, K& /(n — 1)) = H" 1 (Q2n-1,Sy)

Since H" 1 (Q2,_1,KM) = 7Z and the homomorphism on the right-hand side is an isomarphis
by Lemma2.9, this proves that any unimodular row is equivalent, underatttion ofSL,,(Q2,,—1),

to a row of the form(z{*, o, ..., xy,) for 1 <m < (n — 1)L O
Vector bundles of critical rank 1I: the case »n odd

We now study isomorphism classes of rank- 1 vector bundles 0id),,,_1 whenn is odd. In that
case, recall from sectiohthat there is an exact sequence of the form

0——T, — ﬁﬁl_l(BSLn_l) e Kg—l —0

whereT,, is the image of the she& "V = A" (A"\0) in #2" | (BSL,_;) under the morphism
of sheaves induced by the morphism of spat®s 0 — BSL,,_.

Theorem 3.5.If n > 3 is an odd integer, then there is an isomorphism between thepgof
isomorphism classes of ramk— 1 vector bundles 0o, 1 andZ/(n — 1)! xz,5 W (k).
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Proof. The proof begins in the same fashion as the proof of The@dntollowing the same steps
there, we obtain a bijection

Vn-1(Qan—1) — 7h (BSLy—1)—n (k).

Again, applying Propositio2.7 and now using the fact thatodd impliesn — 1 is even, we obtain
an isomorphism )
(Tn)—n(k) — ’"ﬁ—l(BSLn—l)—n(k)'

Similarly, one concludes thdfT,,) (k) is the group of orbits of7" 1 (Q2,_1, KMW) under the
action of SL,,(Q2n—1)-
By Theorem?2.3, we have a fiber product diagram of stricfly -invariant sheaves:

T, I
S, ——=KM/2

The projectionT,, — S,, fits into a commutative diagram

MW
KMW . T,

L]

KM -8,

whereKMW —, K is the map sending to 0. As in the proof of Theorers.4, we deduce from
this diagram thatS,,) (k) = Z/(n — 1)
Combining the above observations, we conclude that theréligr product diagram of the form

(Tn)—n(k) —= (I")—n(k)

l |

Z/(n— 1) ——7Z/2
and the result follows from the straightforward computatibat(I")_,, = W. 0

Remark3.6. As in the situation whem is even, we can give an explicit collection of unimodular
rows which give the stably free modules of ramk- 1. By definition of the fiber product, we have
an exact sequence

0 —=27Z/(n — 1)l —Z/(n — 1)! x5/, W (k) W (k) 0.

Now Z/(n — 1)! xz,, W(k) can be seen as a quotient of the grai—'(Qan—1, K} =
Umn(Qan-1)/En(Q2,—1). It can be deduced fromi-fis12 Remark 2.6] that the unimodular rows
(axy, e, ..., x,) With o € kX generate the factdi/ (k) in the exact sequence above. It follows
that these unimodular rows, together with the rdw§”, z,...,z,) for 1 < m < (n — 1)!/2,
generate the group/(n — 1)! xz,, W (k).
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Remark3.7. Let f1,..., fn € k[z1,...,z,] be functions such that (f1, ..., f,) is a point inA™.

The variety", z;f; = 1 is a smooth affine variety that is!-weakly equivalent toA™ \ 0. By
Morel's theorem, the set of isomorphism classes of vectadlas on such a variety is canonically
in bijection with the set of isomorphism classes of vectardlas onQ,,,_1. However, the varieties

so defined areotin general isomorphic t@),,_1. These varieties are torsors under vector bundles
over A" \ 0. For example, when = 2, there are pairwise non-isomorphic varieties of this form
[DF11, Theorem 2.5]. Theoren&.4 and3.5 also provide a description of the set of isomorphism
classes of rank — 1 bundles on any such variety.

Vector bundles below critical rank

Since the Picard group @j~ is trivial, and we understand vector bundles of rank on @7 by the
results already proven, the next result completes the igéiscr of vector bundles o).

Proposition 3.8. There is a canonical bijectiof(Q7) = ﬂ%l(SLQ)_4(/€) and a short exact se-
guence of the form )
0 — I(k) — 75 (SLoy)_4 — Z/12 — 0.

Proof. As above, we identifyl(Q7) with 7r§1 (BSLjy)_4(k). By Proposition2.8 we have a short
exact sequence of the form

0 —> (SY)_a(k) — w5 (BSLy)_4 — (K57)_4(k) — 0.

We observed above thi;” = GW?3 and sinc GW3)_, = GW -2 = ( by [AF12, Proposition
5.4], the result follows immediately from Lemn2alQ O

Remark3.9. As with the case of ranB bundles onQ7, the rank2 vector bundles o), are all
given by stably free modules. It is possible to give explieppresentatives for each of these sta-
bly free vector bundles: seé&ds11283] for more information on how to associate a symplectic
bundle of rank2 to an unimodular row of length. For example, the unimodular rows of the form
(a", z2, 3, x4) With 1 < m < 12 give rise to non-isomorphic rarikvector bundles.

Vector bundles on@»,
Forn > 1, let
AQn - SpeCk[xla e JwTMyla e 7yn7 Z]/(Z wzyz - Z(l + Z)>

and set)s,, := Spec Ay,. By convention) is the disjoint union of two copies &fpec k. When

n = 1, one identifieg),, as the quotient o L» by its maximal toru%z,,, acting by, say, right mul-
tiplication. The inclusion ofx,,, into the Borel subgroup of upper triangular matrices deteesia
Zariski locally trivial smooth morphism with fibers isomdiip to A' of the form

Q2 — P

in particular, this morphism is an isomorphism#f(k).
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Ideally, one would like to show thd}s,, is itself a motivic sphere for arbitrany (in which case
the proofs of the results below would be essentially idahtic those given for the quadri€g,,, 1
above). The techniques ofD07] show thatQ, has theA!-homotopy type 022G /2. Indeed, in
that case, one knows th@t, can be covered by two quasi-affine (but not affine) subschémaéare
A'-contractible (seefD07, Remark 5.2]) and whose intersectiomis-weakly equivalent té\?\ 0.
Unfortunately, we do not know if this is true far > 2. Nevertheless, after a single suspensibn
has theA'-homotopy type of a sphere; this observation has been madeéndently by a number
of people including F. Morel and D. Dugger-D. Isaksen, b hat been written down.

Lemma 3.10. There is an isomorphisiQ,, = TP in # (k).

Proof. Consider the closed immersi@py,, > — 2, defined by the equations, = y,, = 0. Let
Z C Qo be the closed subscheme definedrhy= 0. Projection defines a morphisth — (02, _»
that makesZ into a trivial line bundle overQs,_>. The complement o¥ in @2, is an open
subscheme isomorphic 1"~ x G,,.

The normal bundle of — (-, is a line bundle over the total space of a line bundle&p_».
If n > 3, this bundle is trivial sincé”ic(Z) = Pic(Qan—2) is trivial. Whenn = 2, this line bundle
is still trivial by explicit computation. As a consequenbg,choosing a trivialization, the homotopy
purity theorem [/1V99, §4 Theorem 2.23] combined with/[V99, §4 Proposition 2.17.2] then gives
a cofibration sequence

A X Gy — Qon = PYA (Qan2)r — LA X Gy) — -

SinceQ.,,_» has ak-point, fixing such a point, we can identif)s, 2); = Q2,2 vV S°. In that
C&SG,[P>1 A (an_2)+ =Pl A (an_g V Sg) = (]P’l A an_g) v P,

The mapA?~! x G,, — G,, given by projection onto the second factor is Ah-weak
equivalence, so the mapt (A"~ ! x G,,) — XlG,, is also anA!-weak equivalence. However,
we know thatP! = G, in # (k). With these identifications, the connecting homomorphism i
the above cofibration sequence is a map

(Pl A\ an_g) V Pl — Pl,

and tracing through the definition of the connecting homagohimm, one identifies this map with

the map collapsing the first wedge summand to a point. Onecdsdmmediately that the map

Y1Qo, — (P A Qa,_2) is anAl-weak equivalence. The stated result follows immediatgly b
induction since we already kno@- is unstablyA'-equivalent tdP'. O

Lemma 3.11. If A is a strictly A'-invariant sheaf, anad: is an integer> 1, then

A(k) if i = 0.
H'"(Qopn, A) = A_, (k) ifi=n.
0 else.
Proof. As with the proof of Lemm&.1, anyk-rational point inQ)s,, splits the cohomology afs,, 1

as a sum of cohomology &fpec k and reduced cohomology. Combing the suspension isomanphis
and LemmeB.10, we obtain isomorphisms of reduced cohomology groups

ﬁZ(QQn,A) ~ ]SIH_l(Z;QQn,A) ~ ﬁi-l—l(z;z-i—lG;?\ln’A).
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Again applying the suspension isomorphism and the defin@gf@ontraction, the result follows.

Example3.12 Taking A = Krj\z/-[i-l in Lemma3.1], observe that one obtains isomorphiskis —
H™(Q2n, K%H). Tracing through the proof of Lemn®alQ one can realize the above isomorphism
as follows. In the notation of that lemma, we have a gQQ2,,, KX, ) — Hn(Th(vz)q,, ), Ki ).
Fixing a trivialization of the normal bundle 6 = Q2,,_» x A' C Q,, one obtains isomorphisms
Th(vz/q,,) = P! A (Qan—2 x A'),. SinceZ is defined by the equatian, = 0, the differential
gives a trivialization of the normal bundle. Proceedingatively, we eventually restrict to the sub-
variety Z,, defined by the equations, = ... = z,, = 0, which is isomorphic ta@), x A™, i.e., the
disjoint union of two copies ofA” (the two components correspond to taking= 0 or = = —1).
Composing the maps obtained by making these choices, ontfiglex € £* with the element of
H™(Qap, K%d) corresponding to the invertible functidat (1 —«)z on the component @, x A”
with z # 0.

Lemma 3.13. Two vector bundle®& and £’ of rankm > n + 1 onQ»,, are isomorphic if and only
if ¢, (E) = c,(E")in CH"(Q2y,) = Z.

Proof. The case where = 1 is clear sinc&), = P!. Therefore, assume > 1 so thatPic(Qs,,)

is trivial. Lacking the homotopy theoretic description(@4,,, we instead appeal to obstruction the-
oretic arguments. SincBic(Qsy,) is trivial, we can still identify the set of isomorphism cas of
rankm vector bundles of),,, with the set of pointed\'-homotopy classes of maf€)2,,, *), BSL,,].
We can describe this set by obstruction theory usingith@ostnikov tower ofBSL,,,.

In view of Lemma3.11, one sees inductively that there are no obstructions ta liftorphism
Qop — BSL%) to a morphismy)s,, — BSL%“), and irrespective of the choice of lift the subse-
guent obstruction vanishes since the group in which it ligegvial. If i + 1 = n, there is only one
possible lift, while in the caseé+ 1 = n, possible lifts are classified b§"(Qg,, 72" (BSL,y,)).
Sincen < m, the latter group i€ H"(Q2,) = Z. Moreover, one knows how to construct bun-
dles corresponding to each eleméntin view of the discussion beforeé\[F12, Remark 6.7], the
obstruction class is a (non-trivial) multiple of the Chetassc,. SinceC H"(Q2,,) is torsion free,
the result follows. O

Remark3.14 Vector bundlest of rankm > n on Q, split ask ~ E' & (9’52‘”", and therefore

it is sufficient to understand the vector bundles of rankOne way to see this is to observe that, if
i > n, the obstructions to lifting an.'-homotopy class of maps — BSL,;toamapX — BSL;
vanish by Lemma.11

Theorem 3.15. Assumer > 2 is an integer. There are isomorphisms

~ ) Zx (K (™) if n even, and
Vn(Qan) = {Z (kX (k)™ Xpx jyz I(k))  if noodd,

Proof. As above, we first describe the set of isomorphism classe®dbr bundles of rank
on @9, by using theA'-Postnikov tower ofBSL,. Using Lemma3.11, we see that there is
no obstruction to lifting a morphisn,,, — BSLY to a morphismQs, — BSLIHY for any

1 € N. Moreover, each subsequent lift is uniquely determinectpxevhen we want to lift a mor-
phism Q,, — BSL" Y to a morphismQa, — BSL™ .. The space of lifts is of the form

n—1
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[Qon, K (72 (BSLy),n)]y1 = H"(Qan, w2 (BSLy)). By means of Lemma.11, we see that
H™(Qop, w2 (BSL,)) = (72" BSL,)_ (k).
Now, the computations of Sectidshow that we have an exact sequence of sheaves

0— Apiy — w2 (BSL,) — K9 —0

whereA,, 1 =S, 1 if nisevenandA,, ; = T, if nis odd. Since the contraction construction
is exact, contraction of the above exact sequentienes yields

0— (Aps1)on — (72 (BSLy))—n — (K9)_,, — 0.

Evaluating the result &tpec k, we see thatr' (BSL,,) _,(Spec k) is an extension ofKY)_,, = Z

by (An+1)—n(k7)'
The group(A,,+1)—n (k) admits a description as the kernel of the homomorphism

H™(Qan, 72" (BSL,)) — H"(Q20, K?)

given by the above morphism of sheaves. This homomorphiswceges with a vector bundlg,
classified by a maj)z, — BSL,, the class inH"(Q2n,K§) = Z pulled back from a certain
universal lifting class omB.SL,,; the resulting class is a multiple of the Chern claggF) by the
discussion just before®[-12, Remark 6.7]. It follows thatA,, 1), (k) parameterizes the vec-
tor bundlesE' of rank n whosen-th Chern class;,(E) is trivial. Lemma3.13thus implies that
(A,+1)-n(k) is exactly the set of isomorphism classes of projective resdli of rankn such that
E®Og,, ~ Og;l ThereforeUm,,;1(As,)/SLpy1(A2,) = (Ans1)—n(k). Once again, Lemma
2.9yields (Any1)—n(k) = k*/(k*)" if nis even and A1) _n (k) = k> /(E™)™ X o2 I(k)
if n is odd.

O

Remark3.16 In casen is even, we can give a set of generators of the stably free le®adi
rankn on Q,, as follows. Exampl&.12shows thatf™(Qs,, K2% ;) is generated by the invertible
functions1l+(1—«)z on the component @), x A™ with z # 0. Now the sequence of epimorphisms
of sheaves

MW M M
Ko — Ky — Koy /nl— Spqa.

shows that these generators correspond to unimodular(rews. . , z,,, 1+ (1 —a)z) with o € k.
We thus obtain a set of generators by considering k> /(k*)™.

4 Applications

In this section, we discuss two applications of the desoripdf the set of isomorphism classes of
vector bundles on split quadrics from Sect&n
On a question of M. V. Nori

Our computation of the isomorphism classes of vector benafieankn — 1 on Q5,1 allows us to
address the following question of M. V. Nori on unimodulawso
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Question 4.1(M. V. Nori). Supposé is a field,R = k[x1, ..., z,] is a polynomial ring inn vari-
ables overk, ¢ : R — A is ak-algebra homomorphism such that ¢(z;)A = A, and f1,..., f,
are elements of? such that the reduced closed subscheme defined by the iidgal .., f,))
is0 € A" |If length(R/I(f1,...,[fn)) is divisible by(n — 1)!, then is the unimodular row
(6(f1),--.,0(fn)) completable?

Nori’'s question admits the following reinterpretation. eThomomorphismy : R — A such
that) " ¢(z;)A = A defines a unimodular row = (¢(zy), . .., ¢(x,)) and a morphism of schemes
v : Spec R — A™\ 0. Now any polynomialsfy, ..., f, such thatad(fi,..., fn) = (z1,...,2y)
defines a morphisrp : A"\ 0 — A™\ 0. If I(R/(f1,..., fn)) is divisible by(n — 1)!, then does
the morphismp o v : Spec A — A™ \ 0 lift to a morphismSpec A — SL,,?

Since the question is aboatl k-algebrasA and all unimodular rows of length on A, it is
reasonable to try to deal with the above question by lookirtgeauniversal algebra parameterizing
unimodular rows of lengt, namely thek-algebraAds,, 1. Indeed, letd be ak-algebra and be
a unimodular row of lengtm. Then the choice ofv € Um,,(A) such thatv - w’ = 1 yields a
lift of the morphismv : Spec A — A™ \ 0 to a morphismv’ : Spec A — Q2,—1, i.6. We have a
commutative diagram

Spec R — s Q2n-1

S

A"\ 0.

Letnowy : A” \ 0 — A™\ 0 be a morphism and : SL,, — A™ \ 0 be the projection to the first
row. The diagram

Qan—1

’
/ lp?nl

Spec R ——= A"\ 0 SLy,

RN

A"\ 0

thus proves that it suffices to show that p,,_; factorizes throught'L,, to prove thatpv also
factorizes througtb' L, .

Theorem 4.2. If n is an even integer, theQuestiond.1 has an affirmative answer.

Proof. The morphisnps,—1 : Q2,—1 — A™\ 0 corresponds to the unimodular rdw,, . .., x,),
whose class itVm,,(Q2,—1)/SLy(Q2rn—1) = Z/(n — 1)!'is 1. The unimodular row corresponding
to wpay,—1 IS precisely(f,. .., fn) and we want to compute its classZi(n — 1)!. Now ¢ : A™ \
0 — A™\ 0 induces a homomorphism : Z = H" 1 (Qan_1, KM) — H"1(Qo,_1,KM) = 7Z,
which is precisely the multiplication b R/(f1, ..., f»)), and it follows therefore that the class of
(fi,..., fn)InZ/(n — 1)!is this length (moduldn — 1)!). The result follows. O

Whenn is odd, the answer to Nori’s question is known to be negatwg-bs12 Theorem 4.7].
In view of this counter-example, the second author propassitionger version of Nori's question,
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which we now explain. IfI"™ denotes the unramified sheaf corresponding torthik power of
the fundamental ideal, then Lemn®al shows thatH"1(Qg,_1,I") = H" 1(A" \ 0,1I") ~
(I")_,(k) = W (k). The isomorphism can be uniquely specified by choosing &lidation of
the normal sheaf of in A™ and thus an orientation classgs1? Remark 2.5]. Any morphism
@ : A"\ 0 — A™\ 0yields a homomorphism* : W (k) — W (k) that we call the degree ¢f and
write deg(y). This degree is simply a concrete avatar of (the quadraticofpF. Morel's Brouwer
degree [Mlorl2, Corollary 24].

Remark4.3. In [Fas1], a degree homomorphism is defined by considering the Gndiaek-Witt
groquW[Ql(A" \ 0) (here the subscriped means “reduced,” i.e., one has split off the summand
corresponding to a base-point; sée§12 Lemma 2.4] for more details). This degree is exactly the
same as the one defined above. Indeed, the Gersten-Grableiitt spectral sequendg(n —
1)P4 shows that the edge homomorphightn — 1)5 1" = H»=1(A"\ 0,1") — GW"~1(A"\ 0)
induces an isomorphist ™1 (A” \ 0,I%) — GW™ 1(A™\ 0).

red

We now state and prove a result that constitutes a positis&@mnto a strengthening of Nori's
original question; this provides an answer @ §17 Question 4.8].

Theorem 4.4. Let A be ak-algebra,n € N be an odd integer and let : SpecA — A™\ 0 be

a unimodular row. Ifm is the maximal ideal corresponding b€ A™, assume we are given a
homomorphisny : k[z1,...,2,] — k[z1,...,z,] such thatf(m) C m and such tha{n — 1)!
divides the length of[x1,...z,|/f(m). Lety : A™ \ 0 — A" \ 0 be the morphism induced by

If the degreeleg(y) = 0, then the unimodular roww : Spec R — A™ \ 0 is completable.

Proof. Theorem3.5shows thal/m,,(Q2,—1)/Fn(Q2,—1) is the fiber product of the group¥’ (k)
andZ/(n — 1)! overZ/2. The same arguments as in the proof of Theodelshow that we have to
prove that the unimodular rogf (z1), ..., f(x,) is completable ifleg(¢) = 0 and(n —1)! divides
the lengthl of k[x4,...z,]/f(m). However, the unimodular roff(x1),..., f(z,)) corresponds
to the pair(deg(¢), ) in the fiber product by definition afeg(y) and Theorend.2. O

Compatibility with realization

Assumek = C. If (X,z) is a pointed space, andf(C) is the associated topological space of
complex points, complex realizatioiV[/99, p. 120-121] gives a homomorphism

P =L (X)(C) — m(X(T))

i+j=n

by summing the various component homomorphisms. Taking SL,, or BSL,,, complex real-
ization allows us to compare the computationsidfhomotopy sheaves fromi\[-17] and Section

2 with those coming from classical homotopy theory. We wig $eat the above homomorphism is
surjective in some situations. The precise descriptionrsf fion-stableA'-homotopy sheaves of
SL,, was motivated by anticipation of results such as those lesttal here.
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Compatibility with complex realization

Bott periodicity (see alsajot58 Theorem 5]) yields a computation of the homotopy groupef t
unitary group in the stable range and the first non-stabledhooy group:

0 if i <2n,ieven
m(U(n) =< Z if i < 2n,7o0dd, and
Z/n! ifi=2n.

Furthermore, it is classically known thag(U(2)) = Z/2 (use [Vhi50] together with the fact that
U(2) is anSt-bundle overSU (2)) andng(U(2)) = Z/12 [BS53 Proposition 19.4].

Theorem 4.5. For any integerm > 3, the homomorphisms

b (GLp)(C) —> Ton—1(GLn(C)) & m3n_1(U(n)) = Z, and

n—1n

1 141 (GLa)(€) — T20(GLo(C)) = o (U (n)) = Z/nl,
induced by complex realization are isomorphisms.

Proof. We begin by establishing the second isomorphism of the &meof~or any integen > 3,
we firstidentify ", | (GL,) = whl, . (SL,) = w4 . (BSL,). Becauser} (BSLy,) is
trivial, the latter set can be canonically identified witk 8et of unpointed homotopy classes of maps
[Q2ns1, BSLy] 1. Similarly, we identifyrs, (GL, (C)) = w2, (SU(n)) with [S?**1 BSU (n)] by
means of the clutching construction.

SinceW (C) = Z/2, Theorems3.4and3.5tell us that the set of isomorphism classes of rank
bundles or®,,,+1 has a natural group structure and is isomorphig ta!Z (irrespective of whether
n is even or odd). Now, the map that sends a complex algebratorvbundle to the underlying
topological vector bundle defines a function

[Qont1, BSLap)yr — [S*"H!, BSU(n)].

As mentioned above, topological vector bundles can be itbestby means of the clutching con-
struction. Now, each of the vector bundles of ranlon @, is given by a unimodular row.
The homotopy class of the clutching function attached tautiienodular row is computed, e.g., in
[ST75 Theorem 3.1] and this gives the required isomorphism.

To establish the first isomorphism of the statement we pibasdollows. Observe that we have
canonical isomorphisms

[STLA G GLp a1 =2 [ST A GO, SLy a1
> [STTLAGA" QLBSL,Jp = [STAGAY BSLy|at;

the first isomorphism is a consequence AF[2, Theorem 2.9], the second isomorphism follows
from [Mor12, Theorem 5.46] and\[\/99, §4 Proposition 1.15] once one observes ifiat, is A'-
connected, and the third isomorphism is simply the loogeansion adjunction.

Again, since BSL, is A'-1-connected, the canonical map from pointed to unpoiniee
homotopy classes is an isomorphism. Now, we know that theptmnrealization ofS” A G/"
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is the spheres?™. On the other hand, we know th@, (C) is weakly equivalent ta52" (more
precisely, it is diffeomorphic to the tangent bundle of ttenslard2n-sphereS?"). The map send-
ing a complex algebraic vector bundle to its associatedidgjzal vector bundle then determines a
function

[S™ A GN", BSLy|p1 — [S*™, BSU(n)],

which coincides with the homomorphism of the theorem statgnunder complex realization by
means of the loops-suspension adjunction. It therefoffiesafto show this map is an isomorphism.

Now, we have given an explicit identification of the set offferphism class of rank vector
bundles onQ,,, in Theorem3.15 In particular, whenk = C, the set of isomorphism classes of
rank n. vector bundles orf)s,, is isomorphic toCH"(Q,) = Z. Likewise, [S?", BSU(n)] =
Ton(BSU(n)) = man—1(SU(n)) = Z by Bott periodicity. Since the map in question is a homo-
morphism of free abelian groups, it suffices to observe tleatawn lift a generator.

The mapSU (n) — S?*~!induces a homomorphisty, _1(SU(n)) — m2,-1(S*"" 1) = Z.
Therefore, a rank topological vector bundle is classified by the topologicadjete of the map of
spheres induced by the clutching map. It is straightforwardheck that the topological degree of
the clutching function of the unimodular row defining a rankector bundle withn-th Chernl is
1.

SetF, := hofib(BSL, — BSL{""). Since the spac6” A G/" is Al-(n — 1)-connected,
the map )

A

7Tn,n

(Fp) — 7t (BSL )
is a bijection. Under the assumption nntheAl-Freudenthal suspension theoreof12, Theo-
rem 5.61] then gives an isomorphism

mhn(Fn) — T (SAF).

n,n

By Lemma3.10 we know that!Q,,, = X7T1GA". Therefore, the set on the right hand side is
[©1Q2n,, XLF,]. Note also that, SiNCELQ», is A'-n-connected, the map

[EiQZTH E;Fn]Al — [EiQZTw Z;BSLH]

is an isomorphism.
Complex realization thus gives a map

21Qon, SLBSL,] —s [$2"F1 SIBSU(n)],

and combining all of the results above it suffices to prove tthia morphism is an isomorphism. To
see this, it suffices to observe th@k,,, BSL,],1 — CH"™(X)and[S**, BSU(n)] — H**(5*",7)
given by then-th Chern class are isomorphisms. Since both of these isuhisons are stable in the
sense that they are compatible with simplicial or ordinarspgnsion the result follows. O

Remark4 6. Consider the homomorphisms, | i(SLp) = man-1(SU(n)). If i > n, the sheaf
7r2n 1-i(SLy,) = KS This sheaf becomes trivial afteifold contraction, and therefore, the

2n—i"

homomorphism in question is trivial. if < n it seems likely that the above homomorphism is
trivial as well, even though in that range the sheav§,1§_1_i(SLn)_i are not expected to be trivial.
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Theorem 4.7. The homomorphisms

I

755(SL2)(C) — m5(SLa(C))
44 (SLa)(C) — m6(SLa(C))

m5(SU(2)) = Z/2, and
76(SU(2)) = Z/12

[12

are isomorphisms.

Proof. For the second isomorphism, begin by recalling fraxa {2, Theorem 3.20] that there is an
exact sequence of the form:
I’ —8]—S,—0.

Contracting this sequenddimes, evaluating off (using the fact thak(C) = 0), and using Lemma
2.10yields an isomorphisr/12 = (S})_4(C). Since(K5") 4 = (GW2)_4 = (GWY) 5 =0
by [AF12, Lemma 4.9 and Proposition 5.4], there is thus an isomonpiig12 — 7r§714(SL2)((C).

By [BS53 Proposition 19.1] one knows that the classifying map of$hgbundleSp,/Sps —
BSp, provides a generator ofs(S%) = 77(BSp2). Now the computation of-rél(SLg) was
achieved using thé\!-fiber sequence&ps — Sps — Sps/Sp2, and the isomorphisiz,/12 —
7r§714(SL2)((C) is induced by the connecting homomorphism of the assoclatggexact sequence in
A'-homotopy sheaves. Since the complex realization of thesiguencep; — Spy — Spa/Spa
is homotopy equivalent to the fiber sequence considered bgit®rre, the result follows.

For the first isomorphism, recall first thi? /12(C) = 0. Then, using the fact th&t?p =
GW? observe thatGW?2) 3 = (GWY)_; = Z/2 (again, use4F12, Lemma 4.9 and Proposition
5.4]). Now, by Propositior2.8, the fact thatk /12(C) = 0, the fact thaf?(C) = 0, and the fact
that (Kip)_g = 7/2, we see thatr‘z*,g(SLg)(C) =~ 7/2. Thus, complex realization gives a map
wﬁg(SLg)((C) = 7/2 — Z/2. The computation of\[/hi50] shows that (see the proof ofl[i59,
Theorem 15.2] for more details) the generatorrgfS?) is obtained as follows: start with the Hopf
mapnc : S° — S? and consider the compositidivc o 32nc. Now, there is the algebro-geometric
Hopf mapn : A%\ 0 — P! (see Vorl2, §6.3 and Example 6.26]), and taking ti&&,, andP!-
suspensions of this map we obtain:

Sa,.n: PV — A2\ 0
Ypin: A3\ 0 — p1?,

The composite of these two maps has complex realization eéhergtor of thers(53) since the
complex realization ofy is the usual Hopf magc. O

Remark4.8. The second statement of the above theorem can also be ddidurreldroposition3.8.

Comments on real realization

Fork = R, Morel and Voevodsky1V/99, p. 121-122] also show that sending a smaotcheme

to X (C) equipped with theZ /2-action by complex conjugation defines can be extended tea “r
realization” functor from# (R) to theZ/2-equivariant homotopy category. There is a homotopy
equivalence5 L, (R) = O(n). SinceO(2) is an extension of./2 by SO(2), which has no homo-
topy groups in dimension- 1. The groupsr,—1(O(n)) are determined by Bott periodicity. For
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completeness, we quote the result frate[6(]: the groupr,_1(O(r)) is equal td), Z®Z, 7. /2, 7,0
if r = 3,4,5,6 or 7 and, more generally/. ® Z,Z/2 ® /2,7 ® 7./2,7./2,7. & Z,7./2,7,7.]2
if > 8, andr =0,1,2,3,4,5,6 or 7 modulo8. The situation involving compatibility with real
realization is more subtle than that of complex realization
Real realization gives rise to canonical homomorphisms

7 (GLy)(R) — mi(GLy(R)) = mi(O(n));

in particular,A'-homotopy groups of several different weights map toshmetopological homo-
topy group. Ifn > 2 andi > 2, we can again use fiber sequences to steifly andSO(n) instead
of GL,, andO(n). In that situation, the isomorphisms in question are coibfeatvith the clutching
construction (as above).

Similar to the situation involving complex realizationaleealization is compatible with (sim-
plicial) suspension, so the homomorphism above can alsddmgified as a morphism

71 J(BGL,))(R) — w41 (BO(n)).

The computations of homotopy groups®@ftn) give rise to descriptions of the set of isomorphism
classes of rank: topological vector bundles oA™. Likewise, Theorems.5 and 3.4 give de-
scriptions of the sets of isomorphism classes of real ramector bundles o), 1 (which has
real realization homotopy equivalent &'): these groups are equal ®/(n — 1)!Z if n is odd
andZ/(n — 1)! xz,, W(k) if n is even (the indices have shifted). The descriptions of éteof
isomorphism classes of real rankvector bundles ord)s,, (which has real realization homotopy
equivalent toS™) is in bijection withZ x Z/2 if n is even andZ x Z if n is odd. In particular,
while neither realization map is (individually) surjeaior injective, it is possible that the map
D, nﬁfj(BGLn) — m,(BO(n)) is surjective. Nevertheless, the factortthat corresponds to
W(R) in Theorem3.5does admit an elementary explanation; we view the followsmark as an
explanation of the factors df* that appear in Theorefh 3.

Remark4.9. A rank i vector bundle on5™ is classified by a mag™ — BSO(i). The obvious
inclusionSO(i) — SO(i+1) induces a ma@SO(i) — BSO(i+1). Those maps™ — BSO(i)
such that the composed maps — BSO(i + 1) are homotopically trivial (i.e., those rank
vector vector bundles that become trivial upon direct sumh &itrivial line bundle) lift to a map
f:8m— SO(i+1)/SO(i) = S. Takingi = n, the homotopy class of the mapis completely
determined by its topological degree.

Now, given a rankn — 1 vector bundle onQs, 1 corresponding to a unimodular row, the
classifying mapQs,_1 — BSL,_ lifts to a mapQ2,_1 — @2,_1. Morel has associated with
such a map a degree @V (k), and there is an associated degreéliifk); as observed in the
proof of Theoremd.4, this degree can be identified with the degreefafdl]}. Taking k£ = R,
one observes that the real points of a ndap,_1 — BSL, 1 correspond to a rank — 1 vector
bundle onS™~! and the element dfi’ (R) constructed above is precisely the topological degree of
this map.

Remark4.1Q The factor ofl® appearing irwé1 (SLy) exemplifies some of the complexities inher-
ent in the discussion of real realization. Note that realizaton gives a mapr‘%l(SLg)(]R{) —
72(SLa(R)) = mo(S1). HoweverI’(R) = Z, butmy(S!) = 0 so the factor of® is mapped to zero
under real realization.
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The explanation for the factor df is different. One can show using the next Hopf fibration
(this is an algebro-geometric versionof S7 — S%) that there is an epimorphism

7T3A1 (]P’1A2) — 7r§1(SL2).

There is a canonical morphis$iLy — QLL,1%1SL, (hereL,: is the Al-localization functor),
and this induces a morphism
w5 (SLy) — w4’ (P17)

that provides a splitting of this map. Now, under real resiim, there is a map?' (P"%)(R) —
73(S%) = Z, and the factor ol encodes this factor df. We will explain this construction in
greater detail elsewhere.
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