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Abstract

We discuss the relationship between thehomotopy sheaves @f" \ 0 and the problem
of splitting off a trivial rankl summand from a rank-vector bundle. We begin by comput-
ing 7r§1 (A®\ 0), and providing a host of related computations of “non-stall'-homotopy
sheaves. We then use our computation to deduce that & natdtor bundle on a smooth affine
4-fold over an algebraically closed field having characterisnequal to2 splits off a trivial
rank 1 summand if and only if its third Chern class (in Chow theowy}rivial. This result
provides a positive answer to a case of a conjecture of M.Pthylu
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1 Introduction

This paper is motivated in part by the following classicagstion: if X is a smooth affine variety
of dimensiond over a fieldk, under what conditions does a rankector bundle onX split as the
direct sum of a rank — 1 vector bundle and a free module of rahKbriefly: when does a rank
vector bundle split off a rank trivial summand)? The main idea of this paper, which is thiel tim

a series after/fF 121 and [AF124, is to apply A'-homotopy theory to provide some new results
regarding this splitting problem.
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2 1 Introduction

The answer to the question posed in the previous paragrag@nds on the relationship between
r andd. For example, in 1958, Serre proved thakifis a connected affine scheme of Krull dimen-
siond, then any vector bundle ol of rankr > d is the direct sum of a vector bundle of raskand
a free module$er5g Théoreme 1]. Answering the question whes d led to a torrent of work. It
follows from the results ofJIS74q that if X is a smooth affine surface over an algebraically closed
field, then a rank bundle onX splits off a trivial rankl summand if and only if its second Chern
class inCH?(X) is zero. In KM82, Corollary 2.4] Murthy and Mohan Kumar showed thafifis
a smooth affine threefold over an algebraically closed fiblkeh a rank3 bundle€ splits off a trivial
rank 1 summand if and only ify = c3(£) € CH3(X). This result was subsequently generalized
by Murthy [Mur94, Remark 3.6 and Theorem 3.7]: he showed (in particular)ith&tis a smooth
affine variety of dimensiod over an algebraically closed field and if€ is a rankd bundle onX,
then& splits off a trivial rankl summand if and only i6 = ¢;(€) € CHY(X).

In [Mor12], Morel revisited the splitting problem in terms of obstiioa theory in the setting of
A'-homotopy theory. Using his classification theorem for gebundles on smooth affine schemes,
he was able to recast the splitting problem in terms preceshlogous to the classical theory of the
Euler class studied, e.g., in Milnor-Stasheff$74. In particular, he showed that over an arbitrary
perfect fieldk, there is an “Euler class” obstruction to splitting a triviank 1 summand off a
bundle with trivial determinant (see alsbds0§ and [FS09 for d = 2,3). When the base field
k is algebraically closed, this Euler class is precisely the €hern class of the bundle. Radk
vector bundles on smooth affirkfolds are “at the edge of the stable range.” More precisalgy
an algebraically closed field, it follows from the computations ofA[F12b, AF124 that rankd
vector bundles are determined by data that is essentiatheldretic in nature (in fact, such a vector
bundle can be specified by a sequence of elements in the ClooywsyofX, though these elements
are necessarily not arbitrary).

Vector bundles of rank < d on general smooth affinéfolds are “outside the stable range”
even ifk is algebraically closedA priori, one might not expect to be able to make any reasonable
statements about the structure of such vector bundles. rifieless, Murthy wrote that he did not
know an example of a vector bundfeof rankd — 1 on a smooth affin€-fold over an algebraically
closed fieldk such thaty_;(£) = 0 € CH?1(X) that does not split off a trivial rank summand
[Mur99, p. 173]. Following a long established tradition, we refatate this observation as a
conjecture.

Conjecture 1 (Murthy’s splitting conjecture) If X is a smooth affin@-fold over an algebraically
closed fieldk and £ is a vector bundle of rank — 1 over X, then& splits off a trivial rank1
summand if and only if;_;(€) = 0in CH1(X).

With one exception, we were not aware of any general (alggbometric) results regarding
splitting vector bundles outside the stable range Alnl2[] we proved that, given an algebraically
closed fieldk and a smooth affine threefold ovkr there is a unique rank vector bundle onX
with given ¢; and c¢o; consequently, a rank vector bundle on such a variety splits off a trivial
rank 1 summand if and only it is trivial. In particular, Conjecturé is true under the additional
assumptions thdt has characteristic unequal2@ndd = 3. In this work, we provide a solution to
Conjecturel under the additional assumptions thdtas characteristic unequal2@andd = 4.
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Theorem 2. If X is a smooth affind-fold over an algebraically closed fiefdhaving characteristic
unequal to2 and if £ is a rank3 vector bundle onX, then& splits off a trivial rank1l summand if
and only if0 = c3(€) € CH3(X).

This result and the one mentioned in the previous paragragh deduced by the link between
the splitting problem and\'-homotopy theory. To explain this, writBG'L,, for the classifying
space forG L,,-torsors (the reader is encouraged to think of an appr@pnidinite Grassmannian).
Write # (k) for the Morel-VoevodskyA '-homotopy category. Given any smooth schelewe
write [X, BGL,|: for the set of morphisms it (k) from X to BGL,,. Morel showed [/lor17]
that the pointed s€tX, BGL,],: is canonically in bijection with the set),(X) of isomorphism
classes of rank vector bundles ok (provided.X is affine).

There is a canonical morphisBGL,,_1 — BG L, corresponding to the inclusion méf.,, 1 —
GL,, sending an invertible matri%/ to the block diagonah x n-matrix with blocksM and1. This
morphism induces a maX, BGL,_1],1 — [X, BGL,] that sends a rank — 1 vector bundle
£ to the rankn vector bundle€ & Ox. Therefore, the splitting problem is equivalent to the fol-
lowing lifting question: given an element X, BGL,|,1, when can it be lifted to a morphism
[X, BGL,_1],1? By standard topology, the obstructions to existence df sulift are governed
by the structure of theA(!-)homotopy fiber of the above maBGL,_; — BGL,. Morel then
explicitly identified thisA'-homotopy fiber by proving the existence of Ah-fiber sequence:

A"\ 0 — BGL,—1 — BGL,.

By obstruction theory, understanding the lifting questi®ithen tantamount to understanding the
(unstable)A'-homotopy theory ofA™ \ 0. To provide a positive answer to Murthy’s question for
a given integew, the above approach requires as input sufficiently detaiimation about the

d — 1st A'-homotopy sheaf oA?~1 \ 0. In particular, in pF12H we computedrs’ (A2 \ 0). In
this paper, we deduce the above result from a computatim‘@b(fA?’ \ 0). For completeness, we
record this computation here.

Theorem 3(See Theoren3.7 and Propositiort.1). If £ is an infinite perfect field having charac-
teristic unequal t@, there is a short exact sequence of the form

0— Fs — wd (A% 0) — GW?3 — 0,

whereGW3? is a sheafification of a certain Karoubi-theory group for the Nisnevich topology, and
F5 is a quotient of the shedl'; introduced infAF125 Theorem 2.3Jhich is itself a fiber product
of the form

T; I’
S5 E—— KéM/Q,

and S5 admits an epimorphism frod2! /24. Moreover, the epimorphisfii; — F5 becomes an
isomorphism afted-fold contraction.
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The spaceA? \ 0 is a motivic sphere, and the computation above, togethdr thvé parallels
in algebraic topology, hint at an extraordinarily rich sture in its unstablé\!-homotopy sheaves.
The results above exemplify how this structure is reflectethé splitting problem for projective
modules. We draw the reader’s attention to some tantalif@atures of the above computation.
The Grothendieck-Witt she&® W that appears corresponds to the part ofafihomotopy sheaf
detected by the “degree” homomorphism in Hermitian K-tgetimough we defer a detailed ex-
planation of this connection to a subsequent papéripd. On the other hand, the kernel of the
surjective map to the Grothendieck-Witt sheaf is closelgtesl to the motivic version of the clas-
sical J-homomorphism (see Theorefl?). In a sense we will make precise (see Propositidn
and Corollary4.2), the 24 that appears is the “same” factor of that intervenes in the third stable
homotopy group of the classical sphere spectrum (se&9, Theorem 16.4]): our computation
therefore mixes together topological information abowt timstable homotopy groups of spheres
and arithmetic information about the base-field and itsdipigenerated extensions!

The factor of I appearing in TheorerB appears to be a purely unstable phenomenon (see
Corollary 4.4 and Remarkt.5); detailed analysis of this phenomenon is deferred‘tel[2d. Up
to this factor, the sheaf§1 (A%\ 0) is an extension of two sheaves that are of “stable” provemanc
(in the sense of stablé'-homotopy theory Iflor044). While we cannot yet compute the groups
wgl (A%\ 0) for d > 3, based on the analogy with classical unstable homotopypgrofispheres,
we still expect these sheaves to exhibit similar behavitwesy should be an extension of a (subsheaf
of a) Grothendieck-Witt sheaf by an appropriate Milnor Keahy sheaf modul@4. Moreover, the
phenomenon that’' (A%\0) is an extension of two “stable” pieces in the known exampitegether
with computations from classical unstable homotopy thg¢onyl62 Mah67, hint at the existence
of a meta-stable range faér'-homotopy sheaves @f? \ 0.

Detailed description of contents

The computation ofr4' (A3 \ 0) involves a number of ingredients, some of which are estadatis
in greater generality than actually required for the apions to projective modules envisioned
in this paper. We begin with a review of Bott periodicity intttwgonal algebraic K-theory. The
motivic spectrumKO is known to be(8, 4)-periodic [Hor05]; and because of this periodicity, one
constructsKO out of 4 cohomology theories. Two of these cohomology theories gesrhetri-
cally understood”, i.e., orthogonal K-theory is known to dmometrically representable by work
in progress of Schlichting-TripathS[I'17, and symplectic K-theory is known to be geometrically
representable by work oP[/V104. However, to the best of our knowledge, no one has writtemdo
“geometric” models for the other cohnomology theories thptesmr. Sectio2 produces the required
geometric models.

Section3 details varioush ! -fiber sequences attached to some classical groups andhtimeo-
geneous spaces, includidgLs,, /Sp2, and Spa,. In each case, we describe the first non-stable
A'-homotopy sheaf and discuss the connections with correipgrcalculations in classical topol-
ogy. Only the computation of the first non-stable homotopya$tof GL,/Sp, (really SLy/Sp4)
is necessary for proof of TheoreBn Nevertheless, this section derives some of its length fitzan
detailed computations of the first non-staldlé-homotopy sheaf 0fp,,, and also ofSps,, /G L.,
which we will use in subsequent work.

Section4 is devoted to analyzing the computationfcﬁ1 (A®\ 0) in greater detail. The results
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of this section are not used in the remainder of the paperwkuteel they are integral because
they illuminate some of the more mysterious aspects of thgpcation and shape our expectations
about the structure of4' (A% \ 0). The fiber sequences of SectiBridentify 74" (A% \ 0) as an
extension of a Grothendieck-Witt sheaf By. The main goal of this section is to understand the
origins of theF 5 factor. In a sense we make more precise, the factdt;aé “generated” by a map
we call §. We then define an algebro-geometric version of Hopf mamd study its properties,
and use this to show thatis stably non-trivial. We believe, but are unable to probatt actually
coincides with an appropriate suspension of

Finally, Sectiorb is devoted to analyzing the problem of splitting a triviahkd summand off a
vector bundle by means of the techniques of obstructionryh&We give a detailed treatment of the
primary obstruction to splitting, which complements Méeliscussion of the Euler class. For rank
d — 1 vector bundles on a smooth affidefold, we formulate a general cohomological vanishing
conjecture that implies Murthy’s splitting conjecture.ebinem?2 is then proven by establishing the
vanishing theorem alluded to above in the cése 4. This calculation depends on the explicit form
of the computation o*fr{?1 (A%\ 0) given in SectiorB.
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2 Grothendieck-Witt sheaves and geometric Bott periodici

In this section, we begin by reviewing some notation regaydi'-homotopy theory. We then
discuss some aspects Af-representability of Grothendieck-Witt theory includisgme results
about Bott periodicity at the space level. Throughout, weua®ek is a field having characteristic
unequal t@. The results should be familiar, though the proofs are, iarss, backwards: they are
deduced from known representability statements for varitawors of K-theory. We refer tasch1(
and [5ch1] as general references for higher Grothendieck-Witt thedrschemes;Hor05 for a
discussion in the context @f'-homotopy theory, andF12h, §4] for a discussion in the context of
the present work.

Classifying spaces

As usual, ifG is a Nisnevich simplicial sheaf of groups, we writg G for a fibrant model of the
the usual simplicial classifying space 6f (see [VI\V99, §4.1]). If G is a linear algebraic group,
then by [VI\V99, §4 Proposition 1.15], the spad&,G classifies Nisnevich locally triviali-torsors
in HNS(k). In particular, if P — X is a Nisnevich locally trivialG-torsor over a smooth scheme
X, there is a (well-defined up to simplicial homotopy) morphiX — B,G such thatP is the
pullback of the universal-torsor overB,G.
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Grassmannians and Stiefel manifolds

If V'is a finite dimensionat-vector space of dimension we writeGr,,, (V') for the Grassmannian
parameterizingn-dimensional subspaces &f. Upon fixing ak-point of Gr,,(V), there is an
isomorphismGr,, (V) = GL,/P,, whereP,, is a parabolic subgroup a¥L,, with Levi factor
GLy—m X GL,,. (Since we will always work with based spaces, it will be cament to have a
base-point fixed from the beginning.) An inclusi®h— V'’ determines a morphis@r,, (V) —
Gr,, (V') and we writeGr,, for colim,, Gr,,,(k®™), where the transition morphisms are induced by
the inclusionsc®” — k®"*! as the firsh-factors.

Consider the inclusiotrL,, — GL,,+, obtained by sending an invertibte x m matrix M to
the block(m + 1) x (m + 1)-matrix

M 0
(9

Taking the product of this morphism with the identity mapstimclusion yields a magrL,,_,, x
GL,, —» GL,_,, x GLy, 11, that can be extended to a morphism of parabolic subgroup& gf
and therefore to a morphisd@r,,, , — Gry41,+1. These morphisms are compatible with the
transition morphisms corresponding to increasingnd yield morphism&sr,, — Gr,, 1 upon
taking the colimit, and we writér for colim,, Gr,,. Finally, we write K G L for the spacé& x Gr.
The importance of the spadéGL is that it represents algebraic K-theory4(k) by [MV/99, §4
Theorem 3.13].

Write H for the trivial symplectick-vector spacék®?, < 0 1)). Write H®" for the n-fold

-1 0
orthogonal direct sum off with itself. The quaternionic GrassmanniafGr,,, (H®") is the open
subscheme ofir(2m, H®™) parameterizing subspaces to which the symplectic formiceshon-
degenerately. Upon choosing a base-péligtr,,, (H®") becomes isomorphic ®pon/ (SP2(n—m) ¥
Spam). Any inclusion H®™ — H®" determines a morphist Gr,,,(H®") — HGr,,(H®"') and

we write H G, for colim,, HGr,,(H®™) (for the morphism induced by the inclusion as the first
summands).

The inclusionsH®" — H®"+1 yield morphismsSps,, — Spa2,.+2 and there are corresponding
morphismsH Gry, , — HGrp,41,+1. As above, using these maps, one defines a morphism of
spacesH Gr,, — HGr, 11, and we writeH Gr for colim,,, HGr,, and K Sp for the spaceZ x
HGr. The importance of the spadéSy is that, ifk is a field having characteristic unequalait
represents symplectic K-theory i (k) by [P\W105 Theorem 8.2].

The forgetful map

The inclusionf,, ,, : HGrp, , — Gram 2, IS cOmpatible with the various transition maps relating
(quaternionic) Grassmannians for different valueswadindn. As a consequence, there are induced
morphismsf,,, : HGr,, — Gray andf : HGr — Gr that arise by taking the various colimits.
Taking the product with the multiplication &: Z — 7Z, we obtain a may : KSp — KGL that
we call the forgetful map.

Remark2.1 The inclusionSps, < GLs, yields a morphismB, Sps, — Be(G Lo, and by taking
the colimit with respect taov (for appropriate inclusions) one obtaifiy Sp — B,G L. We will,
presently, compare this morphism to the one studied in theiqus paragraph. Given a smooth
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schemeX and a simplicial homotopy class of mafis— BeSpa,, the composite map t8,G Lo,

by means of the above inclusion yields a vector bundle of eank The multiplication by2 ap-
pearing in the last line of the previous paragraph encodefatit that the rank of the vector bundle
underlying a symplectic bundle is even.

We want to identify theA'-homotopy fibers of the maps, and the resulting maps obtained
by taking the relevant colimits. To this end, we will replabe mapHGr,, — Gra,, by anA'-
homotopy equivalent map whose homotopy fiber (almost) adé@scwith the point-set fiber.

First, we construct a candidate for the homotopy fiber: a®rshe homogeneous spa&és,, / Spay, .
There are induced morphisms of homogeneous sgaées/Spa, — G Lant2/Span+2 and we set

GL/Sp := colim,, GLa, /Span

We now relate thé\!-homotopy type of>L/Sp to the Grassmannians above.

Let us describe the candidate replacementHasr,,. LetV,, , be the variety parameterizing
m-dimensional subspaces of ardimensionak-vector space equipped with a basis, i.e., the Stiefel
variety of m-frames in am-dimensionalk-vector space. The canonical morphi$m,, — Gry, »
that forgets the basis is @L,,-torsor. The inclusionSps,, — GLs,, then determines a mor-
phismVay, 25,/ Spam — Vam,2n/GLay, Of quotients (the quotienitay, 2,/ Span, exists as a smooth
scheme), which is precisely the projection map in the foitmacontracted product:

‘/ém,2n XGLQm GLZm/SPZm — ‘/ém,2n/GL2m-

As the associated fiber bundle of.,,-torsor, this sequence is art -fiber sequence by/Jen1],
Proposition 5.2]; in particular, the canonical map from #etual fiber to the\!-homotopy fiber is
anA'-weak equivalence.

There are map¥a,.2n — Vam,2(nt1) @nd the collection of such spaces and maps yields an
admissible gadget (ovéipec k) in the sense of\[I\V99, §4 Definition 2.1]. These transition maps
yield morphisms

‘/Zm,Qn/Sme — V2m,2(n+1)/Sp2m-
We setHGr,, := colim,, Van, 2n/Spam With respect to these morphisms, and we wrffe :
HGr], — Gra,y,, for the colimit of the morphisms from the previous paragrafphe goal of the
next few paragraphs is to identify tiag -homotopy type o/ Gr/,,.

The Spay,-torsor Vo, 2, — Vam,2n/Spam is classified by a morphism (well defined up to
simplicial homotopy)

V2m,2n/5p2m — BaSpom,

and theG Loy, -torsor Vayy, 25, /G Loy, is classified by a morphisi@rs,,, — BeG Lay,.
These classifying maps are compatible with the transitiapsirelating Stiefel manifolds for
different values ofn andn and yield a morphism

7l HGrl, — BeSpom.

On the other hand, the quotieﬁpgn/SpQ(n_m) — HGry, p is also anSpay,-torsor and is there-
fore also classified by a maliGr,, , — BeSp2,,. Taking the colimit with respect to yields a
classifying morphism (well defined up to simplicial homogpp

T - HGryy — BeSpom,.
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The basic geometric fact about these classifying morphiseammarized in the following state-
ment.

Lemma 2.2. The morphisms,,, and 7/, are A'-weak equivalences. 4f, : Spa,, — G Loy, is the
obvious inclusion map, and, : BeSp2m — BeG Loy, is the induced morphism then the following
diagram is homotopy commutative:

HGr!, Tm BeSpam <2 HGrp,

lfr/n lim’ lf’m

GTQm —_— B.GLQm e GTQm,

where the bottom horizontal morphisms are the classifyiagsifor the universalz Lo,,-torsors
ng — GTQm.

Proof. That the mapr/, is anA'-weak equivalence follows from the results df\[{99, §4 Propo-
sition 2.3, Lemma 2.5 and Proposition 2.6], which shows thétn,, V5, 2, iS Al-contractible.

Panin and Walter showr|/V104 that ,,, is anA'-weak equivalence by showing that the spaces
Span/Span—m) and the obvious inclusion maps form an acceptable gadgee isense of{\W105
Definition 8.3]; this allows one to conclude thafim,, Sp2,/Spa(n—m) IS A'l-contractible and then
identify HGr,, as the quotient of aa!-contractible space by a free action$ys,,.

The homotopy commutativity follows by unwinding the defimits of the various maps. O

Our next goal is to identify thé\.!-homotopy fiber of the magi Gr!,, — Grs,,,. Because the
mMapsG Loy, /Spam — hofib(Vam 91/ Sp2m — Vam.on/GLam) are allAl-weak equivalences, we
conclude that the induced map

GL2m/Sp2m — COlimn hOﬁb(‘/Zan/SpZm — ‘/ém,2n/GL2m)

is also anA'-weak equivalence. Note that since we are taking a filterdichitchere the obvious
map from the homotopy colimit to the colimit is ak'-weak equivalenceM\V99, §2 Corollary
1.21]; we use this observation repeatedly below to idetiig/space level colimit as a model for the
homotopy colimit.

Now, we “commute the filtered homotopy colimit past the hoopgtfiber” (in the sequel, we
will simply use this phrase to stand for the argument of thd feav lines). More precisely, there is
a canonical morphism

COliIHn hOﬁb(ng,Qn/Spgm — V2m72n/GL2m) — hOﬁb(HGT‘;n — ng,Qn/GLgm),

that we claim is a\'-weak equivalence. Singe'-fibrant replacement is functorial, we can replace
all the maps/a,, 2,/ Sp2m — Vam 2n/GLam by Al-fibrations ofA!-fibrant spaces. In that case, the
set-theoretic fiber of each such map coincides withAhéromotopy theoretic fiber. To check that
the above morphism is an'-weak equivalence, we can check this stalkwise. Each stalkibrant
(Kan) simplicial set, and in the category of fibrant sim@lets, we can commute filtered colimits
past fiber products (this follows from the corresponding fadhe category of sets\[L98, IX.2
Theorem 1)), i.e., afteh'-fibrant replacement, the above map is stalkwisé& hweak equivalence.
Combining these observations, we have established treiol result.
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Lemma 2.3. The morphisnG La,,, / Spam — hofib(HG7!,, — Gray,) is anAl-weak equivalence.

Using theA!-weak equivalence fromtl Gr,,, — colim,, Va,, 2,/ Spam, We get anA!-fiber se-
guence of the form
GLgm/Spgm — HGT‘m — GT‘m.

Now, we take the colimit with respect ta. In particular, using the same argument commuting the
filtered homotopy colimits past the homotopy fiber, we dedbeéG L/ Sp = colim,,, G Loy, /Spom

is precisely the\'-homotopy fiber of the mapl G — Gr. Since the fiber over the base-point only
depends on the connected component of the identity, we camatize the discussion so far with
the following statement.

Lemma 2.4. The mapG'L/Sp — hofib(K Sp — KGL) constructed above is ah'-weak equiva-
lence.

Remark2.5. As we explain at the beginning of Secti@nit is possible to define directly a\({-
homotopy associative) multiplication map

GL2n/Sp2n X GL2m/Sp2m — GL2(n+m)/Sp2(n+m)

that is compatible with stabilization (up th'-homotopy). Thus, one obtains a multiplication on
GL/Sp by taking an appropriate colimit. Presumably this mulgation underlies an infinite loop
space structure oL /Sp making the above result into a homotopy fiber sequence of(giial)
infinite loop spaces.

The hyperbolic morphism

Consider the inclusion,,, : GL,, — Spam, given by sending an invertible, x m-matrix M to the

matrix
M 0
0o MT')

which is symplectic with respect to the standard sympldotim. If B,G L, is a simplicially fibrant
model of the simplicial classifying space f6fL,,, then the morphisny,, induces a morphism

him @ BeG Ly, —> BeSpom.
The importance of this map is summarized in the followingilies

Proposition 2.6. For any smooth schem¥, the morphism
[X, B.GLm]s — [X, BQSPZm]S

induced byh,, is precisely the map sending a rankrector bundle€ on X to the symplectic bundle
& @ &Y equipped with the standard symplectic form.

Proof. It suffices to check this in the universal case. In that cA3$€, is the standar@n-dimensional
representation ofps,, andV is the standare.-dimensional representation 6fL,,, then we have
Resg’f:(W) ~ V @ VV. Translating this into statements about associated véctodles: the
pullback of the vector bundle obtained by twisting the urseeSpo,,,-torsor vial’ along the map
BeGL,, — BeSpo, is the direct sum of the universal vector bundle®y(GL,, and its dual. [
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Our goal is to identify the\'-homotopy fiber of:,, and, to this end, we begin by constructing
a candidate for thé!-homotopy fiber. The inclusiot'L,,, < GL,,,1 and the inclusiorfps,, —
Spamao Studied above are compatible with, and together yield a morphism

Sp2m/GLm — Sp2m+2/GLm+1-

We set
Sp/GL := colim,, Spay, /G Ly,

with respect to the above morphisms.

Next, we construct a geometric model for the above hyperbukp where theé\'-homotopy
fiber is easier to understand. The sp&gg,,/Spa(n—m) IS anSpay,-torsor overd Gr(m,n). The
inclusionGL,, — Sps,, studied above yields @L,,,-action OnSpgn/sz(n_m), and a quotient of
Span/Spa(n—m) DY this action exists as a smooth scheme. The incluSibp, < G L,,,1 yields a
commutative square of the form

SpZn/(Sp2(n—m) X GLp) HGrpn

| |

Sp2n+2/(5p2(n—m) X GLm-i—l) - HGrm-l—l,n—i—l-

We then setir;, := colim,, Span/(Spamn—m) X GLn), and there is an induced morphisgi, :
Grl, — HGry,.

Since the quotient morphissip, /Spam—m) — SP2n/(SP2(n—m) X GLn) is @G Ly,-torsor,
there is a (well-defined up to simplicial homotopy) morphism

Sp2n/(5p2(n—m) X GLm) — B.GLm,
classifying thisG'L,,,-torsor. There is an induced morphism
Uy Gr;n — BeGL,,.

We already saw that the classifying maf), : HGr,, — B.Sp,, is an Al-weak equivalence.
Analogously, we have the following result.

Lemma 2.7. The morphism/,, is an A'-weak equivalence, andifis the morphism of simplicial
classifying spaces induced by the group homomaorpldidy, — Sps,, described in the beginning
of this section, the following diagram is homotopy comnigat

arl " B.GLn

h’erl l lh’m

HGry, — BeSpom,
7rm

whereh/!,, is the map on quotients induced hy,.
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Proof. The spacespa,/Spam—m) form an acceptable gadget in the senseRof/[L0 Definition

8.3]. In particular,colim,, Sp2n/Spam—m) is Al-contractible. If we consider th€ech simplicial
object associated with,,,, the proof follows in the same way as the proof of Lenirizabove. The
homotopy commutativity is clear from the construction. O

Now, the mapSpz,./(Spa(n—m) X GLn) — HGr(m,n) is the projection morphism of the
following associated fiber space:

Sp2m/GLm — Sp2n/5p2(n—m) X5p2m Sp2m/GLm — HGTm,n
and so provides aA'-fiber sequence by/Jen17, Proposition 5.2]. In particular, the map
Spam /G Ly — hofib(Span/(SPa(n—m) X GLm) — HGr(m,n))

is anA'-weak equivalence for any.. As in the previous section, since a filtered colimit\dfweak
equivalences is again an'-weak equivalence, the map

Spom /G Ly, — colimy, hofib(Span /(Spa(n—m) X GLpm) — HGr(m,n)),

induced by taking colimits is ai'-weak equivalence. Again, commuting the filtered homotopy
colimit past the homotopy fiber we obtain al-weak equivalence

colimy, hofib(Sp2n/(Spagn—m) X GLm) = HGrpp) =
hofib(Gr!, — HGry,).

Thus, combining the observations above, and taking thengolith respect to:, we have deduced
the following result.

Lemma 2.8. The morphism above yields @r-weak equivalence
Spam/G Ly, — hofib(colim,, Span/(Spam—m) X GLm) = HGry,).
Combining the two lemmas above, yields ahfiber sequence of the form
Spom/GLy, — Gry, — HGry,

We can then take the colimit with respectso and, using the fact thatolim,,, Spa,,/GL,, =
Sp/GL, and once more commuting the filtered homotopy colimits gasthomotopy fiber, we
deduce the following result.

Lemma 2.9. The mapSp/GL — hofib(KGL — K Sp) constructed above is ah'-weak equiva-
lence.



12 2 Grothendieck-Witt sheaves and geometric Bott periodici

Algebraic avatars of Bott periodicity

Let f : KSp — KGL andh : KGL — KSp be the morphisms constructed above. We al-
ready know that GL represents algebraic K-theory byl{/99, §4 Theorem 3.13] and that' Sp
represents symplectic K-theory bi\[V10g Theorem 8.2]. Following the conventions of higher
Grothendieck-Witt groups, we write! X, K Spl,1 = GW2(X). In that case, for any smooth
k-schemeX, the mapsf andh yield morphisms

fo: GWA(X) — Ki(X) andh, : K;(X) — GWA(X),
which are functorial inX. Presently, our goal is to identify these morphisms.

Proposition 2.10. The morphismg, and h, coincide with the forgetful and hyperbolic morphisms
on Grothendieck-Witt groups.

Proof. To establish this fact, we need to show tliaandh. induce maps of cohomology theories;
we will do this by showing thalf and i arise from morphisms df-spaces. To this end, recall
that the morphisndzL,, x GL,, — G L., given by block-sum of matrices yields a morphism of
classifying space®,GL, x BeGLy,, — BeGL,1+m, and that these morphisms can be collected
together into a monoid [, ., BsGL,. Similar considerations for the symplectic group yield a
monoid structure of[, -, BaeSpay. The construction explained ispg74 §2; p. 299] shows that
each of these monoids is part of'aspace in the category of simplicial sheaves. The pointas th
because of the explicit nature of thiespace construction, the sequences of group homomorphisms
im : Spam — G Loy, and~y,, : GL,, — Spa,, Yield morphisms of’-spaces corresponding to the
above monoids, and therefore to morphisms of the correspgrdhomology theories.

Morel and Voevodsky explain that the group completR!B(] ], -, B.GL,) represents al-
gebraic K-theory [1V99, §4 Proposition 3.9] in the simplicial homotopy category aheyt con-
struct anA!-weak equivalence

Z x BeGLoo — RUB(][ B.GLy).
n>0

As Hornbostel remarks{or05 Remark 3.8], the analogous proof with G L,, replaced byB,.Spa;,
(replace references to Thomason'’s result$/iv 9] by the corresponding results due to Schlichting
in [Sch1(] and use the fact thap-, is a special group, i.e., that allpy,-torsors over smooth
schemes are Zariski locally trivial) provides a correspoganodel of symplectic K-theory. [

Theorem 2.11.If F'is a field having characteristic unequal 2 and if X is a smoothF’-scheme,
then for any integef > 0, there are canonical isomorphisms

(XX, Sp/GL]y — GWHX), and
[ZLX 4, GL/Sply — GWP(X).

Proof. We have am\'-homotopy fiber sequence of the form

GL/Sp — KSp L5 KGL.
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For any smooth schen€, there is an associated long exact sequence obtained kyyrappt ., |4:1.
Since in Propositior2.10we have identified the mafy : [YLX,, KSplu — [ZLX,, KGL]\1 as
the forgetful map on symplectic K-theory, the result folkoty comparison with Schlichting’s Bott
sequencegchl? Theorem 8.11] viagch1Z Theorem 9.3]. The result for the hyperbolic functor is
analogous. O

For anyi,j € N, let GW{ be the Nisnevich sheaf associated to the prestieat GWij(U);
we refer to these sheaves as Grothendieck-Witt sheavegvirod the above theorem, the proof of
the following corollary is a straightforward consequenésheafification.

Corollary 2.12. For any integeri > 0, we have canonical isomorphisms

7 (Sp/GL) = GW!
wt (GL/Sp) — GW3,,.

Contracted sheaves

Let G be a Nisnevich sheaf of abelian groups. Recall from¢hiatcalled strictlyA!-invariant if the
map Hi, (X,G) — Hi, (X x Al,G) induced by the projection is an isomorphism for d@ny N
[Mor12, Definition 7].

For any smootltk-schemel/, the unit mafSpeck — G,, yields a morphisnU — U x G,,,.
The sheafj_; is then defined by

G_1(U) = ker(G(G,, x U) — G(U)).

We can then inductively defin@_,, := (G_,+1)—1 for any integern > 1; we callG_,, the n-th

contraction ofGG. It turns out that contraction is an exact functor (see, €\¢gor12, Lemma 7.33]).
If (X,z) is a pointedA'-connected space, the'-homotopy sheaves @&, -loop spaces oft’ are
related to those att’ by the following result of Morel.

Theorem 2.13([Mor12, Theorem 6.13)) If (X, ) is a pointedA®-connected space, then for every
pair of integersi, 7 > 1
7 (X) =7 (RO, X) ==l (X))

2

In the sequel, we will need computations of contractionsapiows strictlyA '-invariant sheaves;
the results we use are summarized in the following statement

Proposition 2.14. For any integers, n > 0 and anyj € Z, we have
) (K?)-n =K,
ii)

i) (KMW)_, = KM,
(

2

iv) (I')_, = I
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V) (GW/)_, = GW! ",

Proof. The identifications in (i) and (ii) follow from/4F12b, Lemma 5.3], while that in (v) is
[AF12b, Proposition 5.4]. The identification in (iii) is a directrtgequence of\lor12, Theorem
2.24]. For (iv), first observe that there is an exact sequenstictly A'-invariant sheaves

0—>Ii—>K%¥/—>K%1—>O

for anyi € Z [Mor04b, Corollaire 5.4]. The identification of (iv) is then an imniatd consequence
of exactness of the contraction construction. O

3 Some homotopy sheaves of classical groups and symmetri@asps

The goal of this section is, after establishing an approgiséable range, to compute the first non-
stableA'-homotopy sheaves @Ls,, /Sp2n, Sp2, and Spa, /GL,. The computation of the first
non-stable homotopy sheaf 6fL,,, /Sp,,, will, in particular, give the computation af4’ (A3 \ 0)
mentioned in the introduction. However, the more generahmaation has other applications,
e.g., to obstructions to existence of algebraic symplesttigctures on smooth varieties. We will
also discuss compatibility of our computations with complealization. The topological results
corresponding to our computations are classical and caolralf e.qg., intfHar63 and [MT64].

Geometry of GLsay, /Span

Let W5, be the2n-dimensional standark-rational representation @¥Ls,, and consider the vec-
tor space(A2Ws,)" of anti-symmetrick-bilinear forms onWWs,,. The G L, -representation car-
ried by (A2Ws,)Y yields an action ofG'Ly, on A((A%W>,)Y). There is an open subscheme
As, C A((A2Wa,)Y) consisting of non-degenerate anti-symmetribilinear forms oni¥,,, and
this subscheme is stable underf.,,,.

If we fix a non-degenerate anti-symmetric form @ry,,, then the corresponding-point of
A,y has stabilizer isomorphic t6p2,, and this choice yields an identificatiofy,, =~ G La, /Span.
In discussingA'-homotopy theory ofd,,,, we will always fix a base-point and, for that reason,
we prefer to refer td7 Lo, /Spe, instead. The determinant m&pLs,, /Sp2, — G, induces a
morphism

Pf : Agn — Gm

such if we pick a basis df,,,, thenAs,, can be identified with the space of anti-symmegnicx 2n-
matrices, and’ f sends &n x 2n anti-symmetric matrix to its Pfaffian. We set
X 1= Pf_l(l)

The schemeX;, is smooth, and a choice of base-point provides an isomarpRis =~ S Lo, /Spay,.
There is a morphism
A2n X A2m — A2(n+m)7
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which corresponds in coordinates to block-sum of anti-swtnim matrices (this “multiplication” is
the one referred to in Remakkb). If H is the standard hyperbolic matrix described at the beggnin
of the previous section, then block sum withdetermines a stabilization morphism

A2n — A2(n+1)'
SinceP f(H) = 1, it follows that block sum with# yields a stabilization morphism
X, — Xn+1.

We setSL/Sp := colim,, X,,, where the morphisms defining the colimit are as just specifne
goal of what follows is to understand tiAe¢ -homotopy fiber of the stabilization morphisms.

The first non-stable A'-homotopy sheaf ofG Ly, / Span,

The goal of this section is to compute the “low-degree” hapgtsheaves of7 Ls, /Spa,. We
will establish a stable range for these homotopy sheaveistham describe the first non-stale-
homotopy sheaf. To establish these results, we will perfarseries of reductions. First, let us
understand thé.'-connected components 6fLy,, /Spo,,.

Lemma 3.1. The inclusionsSps,, < SLo, — G Lo, yield a splitA'-fiber sequence of the form
SL2n/Sp2n — GLZn/Sp%L—)Gm;

the splitting is given by — diag(t,1...,1). In particular, the first morphism is the inclusion of
the A'-connected component of the base-point.

Proof. SinceG Lo, /Span = GLa, x5 SLy, /Sps, the sequence
SLQn/SPQn — GLZn/Sp2n_>Gm

is aA!-fibre sequence by/Jen1l, Proposition 5.1]. Now thé.!-fiber sequence associated with the
classifying morphism
SL2n — SL2n/Sp2n — Bsp2n

demonstrates that the spagés,, /Spa,, is A'-connected. Since the morphism
GLQn/Spgn—>Gm
splits, it follows thatrA' (G Ly, /Span) = &' (G,,) = G,,,. This proves the Lemma. O

Corollary 3.2. There is a canonical isomorphisnﬁl(GL/Sp) = G,,,, and the induced morphism
SL/Sp — GL/Spis the inclusion of the\'-connected component of the base-point.

Proof. The results above show that the determinant yields an iquimsmm wél(GL% /Spay) =
G,,, for everyn > 0; this is obviously compatible with the inclusion maps. Hue second state-
ment, since the following diagram commutes

SLZn/SPZn GL2n/Sp2n

| |

SLont2/Span+2 — GLayy2/Spon42,

the result follows by taking the colimit. O
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The practical consequence of the above statements is that'thomotopy theory of the map
GLsy,/Span, — GL/Sp is reduced to studying the ma&fs,, /Spa, — SL/Sp.
In [AF12h Proposition 3.11], we observed the existence of a fiberrequfethe form

(3-1) Spon — 5p2n+2

b

SL2n+1 —_— SL2n+2-

SinceSpay,+2 acts transitively orb Lo, +2/S5 Loy, +1, and the stabilizer of the identity coset9g,,,,
we conclude the existence of an isomorphism of sche$ies 2 /S Loy +1 = Spant2/Span. Anal-
ogously, we can deduce the following result.

Lemma 3.3. For any integem > 1, there is a canonical isomorphism of sche§€s,,1/Spa, =
Xni1-

Lemma 3.4. The sequences of closed immersion group homomorphisms
i) Span <= SLay — SLayi1,
i) Spoy, < SLopy1 <> SLayio, and
i) Span < Spanto — SLopia
yield A'-fiber sequences of the form
i) SLoyn/Span, — SLopt1/Span — SLop+1/SLop,
i) SLopt1/Span — SLant2/Spon — SLant2/SLany1, and
i) Spant2/Span — SLan+2/Span — SLan+2/Spanto.

Proof. In each case, these fiber sequences are the associated fidkrshio Zariski locally trivial
SL, or Sps,-torsors for appropriate values of we then apply \[Ven1], Proposition 5.2]. O

The following result provides a description of the connattiof the A'-homotopy fiber of the
stabilization mapX,, — X,,.1, together with some complements.

Proposition 3.5. For anyn > 1, there is anA!-fiber sequence of the form
Xn — Xn+1 — SL2n+1/SL2n-

In particular, X,, — X,, 11 is (2n — 2)-Al-connected X,, — SL/Sp is (2n — 2)-A'-connected,
and there is an exact sequence of the form

w4 (GL/Sp) — KMV, — wh (X)) — wh_|(GL/Sp) — 0.
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Proof. For the first statement, combine Lemn®ag(i) and 3.3. The second statement follows im-
mediately from the first sinc6 Loy, +1/5 Lo, is A'-weak equivalent té\2* 1\ 0 which is(2n — 1)-
Al-connected. The third statement follows from the secondnibldtion onn, and the fourth
statement follows from the previous three together withdGary 3.2 by looking at the long ex-
act sequence in homotopy sheaves attached to the gtatéider sequence and using the fact that
7 (SLant1/SLay) = K5IV, by [Mor12, Theorem 5.40]. O

By means of Corollar®.12 the exact sequence in Propositid® takes the form
ngn-‘rl Xﬁ)l K%K[—/l — ﬂ-grlz—l(Xn) — GW%n — 07

and we set
3 X2n+1 MW
Font1 := coker(GW3,, ; "— Kj.1'y).

Our goal in what follows is to descrid,,, +; (hereF stands for “forgetful”).
Since the morphist& W3, — K37V is induced by the morphistX,, 1 — SLa,11/S5Lay,
by means of the identificatioX,,+1 = SLay,+1/Sp2n, We can consider the composite morphism

SLopt+1 — Xnt1 — SLapt1/SLay.

This composite is precisely the projection morphism of$i,,-torsorS Lo, 1 — SLop+1/S Loy,
As a consequence, the morphist, 1 : 5, (SLa,+1) — KW, factors through a morphism
K§n+1 — 2K, < KW by [AF12h Lemma 3.2] and the image of this homomorphism
contains(2n)!K3. | by [AF12h Lemma 3.8].

Since the morphismary, (SLans1) — 74 (X,41) can be factored through stabilization to a

morphisngszrl — GW%nH, the results of the previous section identify this homorn@m
with the hyperbolic homomorphisis 5,11, and we deduce that the following diagram commutes

H32n41
(3.2) K . ——=GWj,,,

w2n+1l lX2n+1

Im(vY2,41) — K%K

In particular, since€l's, 1 = coker(vs,+1) by definition (see AF125 Theorem 2.3] for a more
detailed discussion of this sheaf), we obtain an epimonpfis,, .1 — Fa,11.

Theorem 3.6. The canonical morphism L, /Sps, — GL/Sp is (2n — 2)-A'-connected, and
there is a short exact sequence of the form

0 — Fons1 — wh (GLay/Spon) — wh_(GL/Sp) —> 0,
whereF, 11 is a quotient ofTs,, 1 1.

Takingn = 2 and using the fact (from Lemna3) that X, = SL3/SL,, which isA!-weakly
equivalent taA? \ 0, Theorem3.6yields the following resuilt.
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Theorem 3.7. There is a short exact sequence of the form
0— Fs — wh (A% 0) — GW3 — 0,
whereF'; is a quotient ofT's.

The computation of Theoref7 can be refined to provide more detailed information alitut
the next result shows that the epimorphidfp — F'5 becomes an isomorphism after repeated
contraction.

Lemma 3.8. The epimorphisnT; — F5 induces an isomorphisifiTs)_, — (F5)_4 and there is
a cartesian square of the form:
(T5)_4 —1

|

KM/24 —>1.

Proof. Fix n = 2, and consider Diagran8(2) above. Contracting this diagra#atimes and using
Proposition2.14, yields a cartesian square

In order to show thatTs)_4 — (F5)_4 is an isomorphism, it therefore suffices to prove tHat
is surjective. This surjectivity statement follows fromH{S12 Lemma 2.3]. The fact thafl's)_4
sits in the Cartesian square

(T5)-a——1

KM/24 —= 1.
is a direct consequence ¢fff 123 Theorem 2.3 and Lemma 2.9]. O
Lemma 3.9. The spaceX,,, is A'-simply connected for arbitrary.

Proof. Whenm = 1, the spacesLs/Sp, is a single point, so we can assume that> 2. In that
case, we know thaX,,, — X,,,+1 is a(2m — 2)-Al-connected by Theore®6. As a consequence,
it suffices to prove tha$ L/ Sp is A!-1-connected. Since?' (SL/Sp) = GW3 by Corollary2.12

it suffices to observe that # is a field, thenGW3(F) is trivial by, e.g., FRS12 Lemma 2.2]. In
what amounts to the same thing, one can also consider thempoftthe long exact sequence

W%I(Sp) — ﬂ‘fl(SL) — ﬂ%l(SL/Sp) — 0

in A'-homotopy sheaves. There are identificatiarfs (Sp) = KW and=%' (SL) = KJ, and
the mapKy'"W — K2 is the natural epimorphism. O
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Remark3.1Q In classical topology, the first few non-stable homotopyugoof X, (C) were com-
puted in Har6d. In particular, ifn is even, thenry, (X, (C)) = Z/(2n!), while if n is odd, then
Tan(Xn(C)) = Z/((2n!)/2). Complex realization gives a morphism

1

ﬂ%n—1,2n+1 (Xn) — Tan(Xn(C)).

The groupw’zﬁ_l,z” +1(X5) can be computed by contracting the result of TheoBefn(2n + 1)
times. Sinc&GW3,,)_2,-1 = W'~ is trivial by [BW07], it follows that 74, _ 5,1 (X,) =
(F2n41)—2n—1, and furthermore there is an epimorphism frG#y,,1)_2,—1 onto this group. The
latter contraction was discussed in detail i—[L25 Theorem 4.5], where it was established that
(Ton+1)—2n—1 = Z/(2n!). The classical computation suggests that, whénheven, the homomor-
phismFs, 1 — Ta,41 is an isomorphism, while if is odd then it has a non-trivial kernel.

Remark3.11 The above results provide a non-trivial obstruction totexise of an algebraic sym-
plectic structure on a smooth algebraic variety of dimem&i& Indeed, ifY is a smooth algebraic
variety of dimensior2d with trivial (co)tangent bundle, we can fix such a triviatia and therefore
obtain anA'-homotopy class of mapg — BS L, classifying this structure. The existence of an
algebraic symplectic structure yields a reduction of thecstire group for the tangent bundle from
SLog to Spog, i.e., a lift of the given may” — BSLyg t0o @a mapY — BSpsg. Whether such

a lift exists is governed by the homotopy fiber of the map, WhicpreciselyX,;. We know that
7 (Xy4) = GW3,, fori < 2d—2, and the results above computé, | (X,). Sincerrs’ (X,) =0

for anyd > 1, the inductively defined obstructions to existence of aelalgic symplectic structure
lie in the (untwisted) group&l“+1 (X, w;.*l (Xq)). The sheaves-f1 (Xy) are stable foi < 2d — 2,

in which case they coincide wittiW?, , as we observed above. Thus, we obtain an inductively
defined sequence of elementsBf*! (Y, GW?, ) for i < 2d — 2. If all of these obstructions
vanish, then there is a final obstructionfit? (Y, wo4_1(X,4)). We will revisit this interpretation in
subsequent work.

The first non-stable A'-homotopy sheaf ofSp,,,

In this section, we describe the first non-stablehomotopy sheaf ofp,,, (the stable range was
identified by Wendt; see/Jenl], AF12H). There are two approaches to identifying this sheaf: ei-
ther we can generalize the approach to the computatimrﬁlo(fSpg) provided in AF12h Theorem
3.20], or we can use the results of the previous sectiondagathe first non-stable homotopy sheaf
of X,,,; we follow the first approach and describe the second apprioeslightly more detail later.

To begin, observe that the long exact sequenca ithomotopy sheaves associated with the
A'-fiber sequence arising from ti$,,,-torsor Spa,, 2 — Spani2/Spen yields an exact sequence
of the form

1 P2an 1 1 1
T i1(SPonga) —% Myt 1(Spanta/Span) — 75, (Span) — 7hy (Spanta) — 0.

The sheaves involvingps,, 2 are already in the stable range, and since there is'ameak equiv-
alenceSpa, 1 2/Span — A?"12\ 0, we obtain an exact sequence of the form

Sp Va2 o MW Al Sp
K2n+2 K2n+2 > Top (Sp?n) K2n+1 0.
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If we set
" . Sp  Ynt2 oMW
242 = COker(Kszrz - K2n+2)7

then our goal is to descrif®; , . , explicitly.

To this end, we again use the morphism of fiber sequencesiatezbaevith the fiber square
3.1 (see p\F12h, Corollary 3.12]), to obtain a commutative diagram of long& sequences in
A'-homotopy sheaves of the form:

Yan+2

S 1 1 S
K2£+2 § +1(A2n+2 \0) —— Wgn(spﬁl) - K25+1

T ]

7h 1 (SLapsa) —=hy 1 (A2F2\ 0) —— mh (SLopi1) —= K35, 1.

Now, the shea’irg*,;r1 (SLan+2) was computed inff12a Theorem 2.3]. In particular, we observed

in [AF123 Lemma 2.2] that the homomorphi&ﬂ@tﬂ (SLapt2) — Kévfl‘fz factors through the sta-

bilization homomorphlsmr2n+1(SL2n+2) — K2n+2, and througﬂ<2n+2 — 2K, c KW,
Since the above diagram indicates tn@tﬁg factors througm2n+1(SL2n+2), it follows that

the homomorphismps,, ;o factors througthnJr2 Moreover, since the stabilization homomor-
phism in question is induced by the composigy, 2 — SLo,19, it follows that the induced
homomorphismK5” , — K3, ., is precisely the forgetful homomorphism.

Let v, ., be the composite of the forgetful morphi§f§£+2 — K§n+2 and the morphism
KS, ., — 2K3 ., described above, and set

/ L Sp ¢2n+2
Sop 4o i= coker(Kyy p = 2K2n+2)

The discussion above also yields an epimorphsin, , — S5, ,, but the kernel of this morphism
can be understood more precisely using the techniques pfdioé of [AF125 Theorem 2.3]
We have the fiber product presentation (s€el23 §2] for a discussion):

.

KM -~ KM/2.

The composite morphler2n+2 — K2n+2 — I?"*2 s trivial, while the composite morphism
Kgn .o — K3, is precisely the one described above (it has image contame&3’  ,). We
therefore obtain an induced morphis$j, ., — K2/ ,/2. On the other hand, the morphism
K57 , — KW, induces a morphism t8"+2. Since this morphism factors througt?, . ,, it
follows that this composite map is trivial, and we obtain arpism$S?, ., — I*"*2. The next
result is an immediate consequence of this discussion.
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Proposition 3.12. There is a fiber product diagram of the form
S/2/n+2 Iznt—m
S/2n+2 - Ké\/rlz+2/27
where the morphisms in the fiber product are those definedeabov
Finally, we understand the order in the torsion of the si$gaf ,.

Lemma 3.13. If the base field: is assumed to have characteristic unequat tthere is an epimor-
phismK2? . /(2(2n +1)!) = S, ,o.

Proof. This is proven in a fashion identical téF 12b, Lemma 3.19]. It suffices to understand what
happens on the “symbolic part” dff,erz(F) for any finitely generated field extensignC F.

To understand this, recall that we have the hyperbolic mismls, . ,(F) — K5”,,(F) and the
natural homomorphism&!  ,(F) — K%JFZ(F). The composite map

K%—FQ(F) - K2%+2(F) - K%—FQ(F)
is multiplication by—(2n + 1)! by Suslin’s result §us84 Corollary 4.4], and the composite map
5
K%+2(F) — Ké%m(F) — Kyp'yo(F) — Kz%w(F) — K%+2(F)
is multiplication by—2(2n + 1)! from the above fact combined with [12b, Lemma 4.3]. O

For convenient reference, we summarize the above resuhe ifollowing statement.

Theorem 3.14. There is an exact sequence of the form
1
0— S/2/n+2 — ﬂ%n (Sp?n) — KngL)—i-l — 0,

and a fiber product diagram

Shupe — K3 10/2
whereS, ., andS},, . , are defined above, arfsl, , , , is a quotient o3’ ,/(2(2n + 1)!).

As in the previous section, more precise statements regatte structure of the shesf
can be made after sufficiently many contractions. The fdaligwesults show that the structure of
the sheal?, . , depends on the parity of.
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Lemma 3.15. If n is an even integer, then the morphism of sheaves
Kb 0/(22n+ 1)) — S, 1o

induces an isomorphis®3’ /((2n + 1)!) — (S}, 5)—2n. Moreover, there is a cartesian square of
the form

(S/2/n+2)—2n r

| |

K /((2n + 1)) —= K3 /2.

Proof. Recall that the shed?,  , is the cokernel of the composite map

S 9 Fa on42 M
K2£+2 =GW3, o — K§n+2 — 2Ky,

whereF; 9,4 is the forgetful homomorphism. Contracti2g times and using Propositiaf 14

we obtain a composite

Fo_on2
—_—

GWi KY ——2K)/

whose cokernel i$S5, ;) _2,. We know from \F125 Lemma 2.9] that the cokernel of the mor-
phismKY — 2K is preciselyK2! /((2n + 1)!) and it suffices to show thalf,_,, » is onto to
conclude.

Sincen is even, we can identifﬁW%‘Q" — GW3 and the forgetful mag - is the natural
morphismGW?2 = KW — K2 which is surjective by construction. O

Lemma 3.16. If n is an odd integer, then the morphism of sheaves
Kb 0/(22n+1)1) = S, .5

induces an isomorphisi{}’ /(2(2n+1)!) — (Sh,,,5)—2n—1. Moreover, there is a cartesian square
of the form

( /2/n+2)—2n—1 —1

| |

KM/((2n + 1)) —= KM /2.
Proof. Arguing as in the previous lemma, we obtain a composite msmnph

Fi_on
—

GW| 2" K¢ —— 2KM
whose cokernel i§S4,, . ,)_2,_1. The cokemel oK? — 2K is KM /((2n + 1)!) by [AF123

Lemma 2.9] and it remains to show that the imag&av; 2" — K? is 2K?. Sincen is odd, we
can identifyGW] 2" = GW?$. Combining FRS12 Lemma 2.3] and4F12h, Lemma 4.3] yields
the required statement regarding the image. O
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Remark3.17. The complex realization dp,,, is the groupSp,,,(C), which is homotopy equivalent
to the compact symplectic grougps,. On the other hand, the real realization$,,, is the real
Lie group Sp2,(R), which is homotopy equivalent to its maximal compact subgrt(n). It is
known thatry,,+2(Spay) iISZ/(2n + 1)!if nis even andZ/(2(2n + 1)!) if nis odd Har63. There

is a canonical morphism from§;72n+2(5p2n)(([3) — Tan+2(Sp2n). In view of the two lemmas
above, this morphism is an isomorphism for arbitrargince, in each case, one can explicitly lift a
generator.

The first non-stable A'-homotopy sheaf ofSps,, /G L,

As above, we can study thi'-connectivity of the morphisn$ps,, /GL,, — Sp/GL. The next
result is established in exactly the same way as Ledha

Lemma 3.18. The sequences of closed immersion group homomorphisms
i) GLy, < Spay, < Sponia, and
i) GL,, — GLpt+1 < Span+2
yield A'-fiber sequences of the form
) Span/GLy — Span+2/GLy — Spant2/Span, and
i) GLpy1/GLy — Spanta/GLy — Spansa/GLyyq.

Using the above fiber sequences, we can study the first nblegth-homotopy sheaf a$ps,, /G L,,.
To state the result, we first make two definitions.

Theorem 3.19. The morphisnSps, /G L, — Sponia/GLy1 is (n — 1)-Al-connected. For any
integern > 2, there is a short exact sequence of the form

0 — Vi1 — 72 (Spon/GL,) — GW! — 0,

where ifn is even, theiV,, ;1 is the cokernel of the morphis@W, ; — KM while ifn is odd,
thenV,,1 is the cokernel of a morphis@W.,, — KM |, and, in each case, the morphism in

guestion factors through the forgetful mOI’phi@W}H1 — K§+1.

Proof. For the first statement, we factor the inclusiSps, /GL, — Spon+2/GLy+1 through
Sponio/GL,. From Lemma3.18 we see thatSps,/GL, — Spani2/GLy is (2n — 1)-Al-
connected (Sinc&pa,, 1 2/Spa, is Al-weak equivalent ta\>"*2 \ 0), and thatSps,.2/GL, —
Sponio/GLyy1is (n — 1)-Al-connected.

For the second statement, the fiber sequences in LedriBgield isomorphisms

er%—li-l(SPZ(n+1)/GLn+l) s W§i1(5p2(n+2)/GLn+l)> and
78 (Span /G Ln) 25 wh (Spy(ni1)/GLy).
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Applying these identifications in the long exact sequencé'rhomotopy sheaves associated with
the second fiber sequence in Lemfas and combining this with the long exact sequencé ta
homotopy sheaves associated with the first fiber sequende isaime lemma with replaced by

n + 1 yields the following diagram

T (GLnya/GLnt1)

7 (Spanta/GLys1) = wh (GLnt1/GLy) — 74 (Spant2/GLy) — 74 (Spant2/GLnt1) — 0

71 (Sp2nsa/GLyya)

0

By the first statement there are isomorphisms of the fatm(Spanio/GLny1) = 74" (Sp/GL)
and alsor® | (Spanta/GLni2) = w4\, (Sp/GL), and these homotopy sheaves were identified
with GW), andGW, ; by Corollary2.12
The map
T8 1 (Spansa/GLns1) = wh (GLys1/GLy)

factors throughrﬁil(GLnH) by definition and we have a commutative diagram

ﬂ%—li-l (Sp2nsa/GLpy1) — Trﬁl (GLp+1)

| !

T (SP20+4/GLys2) —= T4 (GLpya).

Under the identificationsr, | (Spay+4/GLyyo) = GWL | andwh' (GL,12) = K%, , the bot-
tom map is the forgetful homomorphism. The composite

Wﬁil(GLnH/GLnH) - W§i1(5p2n+4/GLn+1) — A (G L)

is precisely the connecting homomorphism in the long exagtisnce of homotopy groups induced
by the fiber sequence
GLn—i—l — GLn—i—Z — GLn-i—Z/GLn—i-la
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and therefore we get a commutative diagram with exact cabumn

7 (GLng2/GLygy) == 4, (GLyp42/GLy 1)
\
7 (SP2nsa/GLys) T4 (GLut1) 74 (GLy+1/GLy)
GW, 4 K7,
0 0

We can understand the two right-hand columns as.il2b, proof of Lemma 3.2] (if» is odd) and
[AF123 proof of Lemma 2.2] (ifn is even). In particular, the diagonal map

7 (GLng2/GLnt1) = 78 (GLys1/GLy)

is multiplication by if n is odd and trivial ifn is even. Consequently, the morphiﬁW}LH —
KMW described above factors as

1 Q M
GWn—H — Kn+1 — Kn+1

if n is odd, and
GW, | — Kg—i—l — K

if n is even; in each case, the first morphism is the forgetful imsrp. The second morphism far
odd was described inf[-12b, §3], and forn even was described i\[F123 §2]. O

Remark3.20 Suppose that is even. Then we can study the map
GW, | — Kg—i—l — K

as follows. We precompose with the hyperbolic nIé@H — GW}Nr1 and we observe that the
composite
K¢, — GWL,, - K%,

is multiplication by2 on the symbolic part oKffJrl ([AF12b, Lemma 4.3]). Thus we get an epi-
morphism of sheaveK?/ , /2(n!) XM/ " = V..

Arguing as in the previous section, we can show that the §héaf)_,, depends on the class
of n modulo4. If n =2 (mod 4), the epimorphism of sheaves

K /2(nl) xgear s T (Vi)

is in fact an isomorphism. It induces an isomorphiki /(n!) Xy I — (Vig1)—nifn =0
(mod 4).
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If n is odd, things are even simpler. Indeed, we claim that the Iﬁ#’pl — V11 yields an
isomorphismK — (V,,11)_,, providedn # 1. If n = 3 (mod 4), then this follows from the fact
that then-th contraction of the forgetful homomorphis@Ww1 ., — Kf 1 is trivial becaus&GW?
is trivial. If n = 1 (mod 4), the n-th contraction of the forgetful homomorphis@W1,, —
KffJrl is the forgetful homomorphisrtGW!{ — K? whose image is the constant subsheafby
[FRS1Z Lemma 2.4]. The contraction of the mm? — K is multiplication byn! and thus the
compositeGW! — K% — KM is trivial if n # 1.

In casen = 1, the arguments above prove that the ri&}y — V induces an isomorphism
KM /(£1) = (V2)1.

4 The Hopf mapv and ' (A% \ 0)

In the previous section, we described the sheﬁf(Ai" \ 0) as an extension of the Grothendieck-
Witt sheafGW?3 by a sheaf we calle@s. The goal here is to provide a better understanding of
the “topological” origin of the sheaF'; and the factor oR4 that appears in the Milnor K-theory
sheaf that contributes tB'5. We will see that the24 appearing in the description &' is the
“same” as the24 the appears in the third stable homotopy group of spheresplédée the word
“topological” in quotes because the initial computations nvake are purely algebraic. To begin,
we study what happens under real and complex realizatiowllfziwe give a purely algebraic proof
of the stable non-triviality of (see Theorem.17). One consequence of this is tfEtsuspensions

of v contribute tor®" (A" \ 0) for n. > 4 as well.

Contracted homotopy sheaves

Precomposing with elements of; ; (22G/)?) gives} 5 (X) a K} (k)-module structure for any
pointed spaceX, and this module structure is covariantly functorialirby construction. In partic-
ular 7 5 (A% \ 0) admits the structure of &}" (k)-module.

The suspension morphism yields a map

3G — QlxieN = 0lsLs/SLy.

We saw above that the connecting morphism inARefiber sequenc&, — X3 — SLs/SL, was
amorphisms : Q!SL5/SLy — Xo = SLy/Spy = A%\ 0. Abusing notation, we will write
d: EEG;\,A? — Q;SL5/SL4 — X

for the composite map.

By Morel's Al-Freudenthal suspension theorem, since the SBa€E)’ is 2-A!-connected (by
Morel's unstable\ ! -connectivity theorem), the suspension morphism induaéscenorphism upon
applyingms ; for anyj > 0. In particular, the morphism

1 1
Ky = nh5(33G)0) — n§5(Q;SL5 /SLy)

is an isomorphism. Using this notation, we can now desctileeit!!"" (k)-module structure of
AL(A3\ 0)(k
7’3,5( \ 0)(k).
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Proposition 4.1. There is a canonical isomorphism
1
755 (AN 0) 2 Z/24 X7, W,
and 4 (A% \ 0)(k) is generated as & " (k)-module byp.

Proof. By Theorem3.7, we know thatw?1 (A3 0) is an extension oGW? by F5. By [Mor12,
Theorem 6.13], we know that} 5 (A% \ 0) = 74" (A% \ 0)_5. Sincer} 5(X3) = (GW?)_5 =0,

it follows from the long exact sequencert-homotopy sheaves associated with the fiber sequence
X5 — X3 — A®\ 0 that the morphism

KW = 78 (QLSLs/SLy) — wh(A\ 0)

is an epimorphism. In other words# ;(A® \ 0) is generated as &}'" (k)-module by the con-
necting homomorphisni.
By exactness of contractions, and the fact {@W?3)_5 = 0, it follows that

T4 (A%\ 0) = (F5)_s.

The result follows then from Lemm&8. O

Complex realization
If k¥ = C, then we can apply the complex realization functor toARdiber sequence
Xo — X3 — SL5/SLy
to obtain (after shifting) the topological fiber sequence
QlsY — §° — SU(6)/Sp(6).

By precomposing the ma@!S® — S° by the suspension magf® — QX158 we obtain a map
S8 — S°, which we want to identify. The long exact sequence in hompigroups of the above
fiber sequence yields:

18(Q18%) — m5(S%) — ms(SU(6)/Sp(6)) — 0.

We know thatrs(SU(6)/Sp(6)) = ms(SU/Sp) = ws(U/Sp), and by Bott periodicity, we know
that 7g(U/Sp) = m10(O) = m2(O) = 0. In other words, the portion of the long exact sequence
displayed above collapses to the surjection

7 — m(S%) — 0.

One knows thats(S°) is Z /24 generated by the suspension of the Hopf magince the composite
map.S® — S5 mentioned above corresponds to the image ef Z, it follows that the composite
map isv.
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Corollary 4.2. Under complex realization, the homomorphism
w45(A*\ 0)(C) — m5(S°) = Z/24
is an isomorphism.

Proof. By Proposition4.1, we know thmﬂ-gﬁ](A3 \ 0) = Z/24 xz,5 W(k). As a consequence,
complex realization yields a homomorphisii24 — Z/24. Moreover, we saw before the state-
ment that the generator of (the topologic#l)24 is precisely the connecting homomorphism in
the fibration associated with the complex pointsXaf — X3 — A® \ 0. Since this connecting
homomorphism is algebraically defined, ahis a generator oﬁﬁg(Ai” \ 0)(C), it follows that
complex realization maps the algebraic generator to thelaggal generator and is therefore an
isomorphism. O

Remark4.3. We interpret this result as saying that thethat appears i’ (A% \ 0) is the “same”
as that appearing in the third stable homotopy of the spheres

Real realization

We can compute the homotopy groups of the real points as avsetutly real realization. We view
this computation as providing an explanation for the appear of W in ﬂ-?’g(A?’ \ 0). Upto
A'-homotopy, the fiber sequencg, — X3 — SLs/SL, yields the sequence

A3\ 0 — SLg/Sps — A®\ 0,
which upon taking real points gives the topological fibernsstre
5% — SO(6)/U(3) — S™.

A computation using Bott periodicity shows thaf(SO(6)/U(3)) = m3(0/U) = m4(O) = 0. As
a consequence, the map(Q2'5*) — 73(5?) in the long exact sequence is an isomorphism. Thus
the composite mapg® — Q'S* — S? is precisely the classical Hopf map

Corollary 4.4. For any j > 0, real realization defines a surjective maﬁi;(A?’ \ 0O)(R) —
7T3(52) = 7.

Proof. We can computa?}(A3 \ 0) by contractingrr§1 (A%\ 0) j-times. To prove surjectivity, we
will consider onlyF, i.e., the kernel of the mam{?1 (A3\0) — GW3. By definition, we know that
F5 admits an epimorphism frorl's, which is a fiber product o5 andI® overK2/ /2. Moreover,
the mapT5; — Fj is injective onI®. Contracting repeatedly and using the fact tHdR) = Z
for anyi < 5 (by conventionl’ = W for i < 0), we see tha’tr?} (A3 \ 0)(R) is non-trivial. The
real realization of the connecting homomorphism lifts tle@eyator ofr;(S?) by the discussion
preceding the statement. O

Remark4.5. The above computation shows that the factoF’as an avatar of the topological Hopf
mapn : S3 — S2. Since the topological Hopf mapbecomeg-torsion inm,(S?), we expect that
the factor ofI® appearing irm-?1 (A% \ 0) will become trivial after a single simplicial suspension,
ie.,inm}" (P1"*%). In particular, it should follow thatr s (P'%) = Z,/24.
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The A'-homotopy type of Q4

Let Q4 be the quadric defined hy,y; + z2y2 = z(z + 1). The Al-homotopy type ofQ, was
effectively described infD07]; we review the argument here. Consider the closed subsliam
of Q4 defined byz; = 0,20 = 0,z = —1. Observe thaf?, is isomorphic toA?. LetY; C Qq
be the (open) complement &k. In [AD07], it is observed that there is@,-torsorA®> — Y, and
thereforeY; is A'-contractible (in fact, ove$pec Z). There is a cofiber sequence of the form

Vi — Q4 — Th(vg,q,) — SiYa — -+ .

The normal bundle td’; C Q4 is trivial, and picking a trivialization otz o, yields anA'-weak
equivalencel'h(vp, ,) = P AE, . SinceE; is itself A'-contractible we see thdf, | = SY,
and thereforelh(vp, 0,) = P*. Thus, there is an induced map, — P, SinceY; is
Al-contractible, the next result follows from the fact thaspouts ofA'-weak equivalences along
cofibrations are again'-weak equivalence, which is a consequence of the consiruofitheA ' -
homotopy category\[\V99, §2 Theorem 3.2].

Proposition 4.6(Asok, Doran) For any fieldk, the mapQ, — P1*? is anAl-weak equivalence.

Remark4.7. More generally, let),,, be the smooth affine quadric defined by the equation

E TiZngi = Tonp1 (1 + Tong1).

2

It is straightforward to check th&, = SL,/G,, and is therefore\!-weakly equivalent t®'. Let
E, C Q., be the closed subscheme definediyy= --- = x,, = 0,z = —1, and letYs, be its
open complement. The same argument as above gives @map> P1"". If one knew thatls,,
wasA!-contractible, then it would follow thaDs,, — P\ is anAl-weak equivalence. Itis known
thatYs,, cannot be the base space of a unipotent group torsor, soctmgidees of fD07] cannot
be applied.

A geometric Hopf map and fibration

Given a pair of2 x 2-matricesA and B consider the equatiotiet A — det B = 1; the resultis a
quadricQ} C AS. Letyu : My x My — Ms be multiplication of2 x 2-matrices. Define a function

hu(A, B) := (u(A, B),det B).

Observe thatiflet A—det B = 1, then sincelet(AB) = det(A) det(B), it follows thatdet(AB) =
det(B)(1 + det B), i.e., b, restricts to a morphisn®;, — Q.. If Q7 is the standard quadric de-
fined by the equatimi:f:l z;z44; = 1, then there is an obvious isomorphigps = )%, obtained
by changing signs.

Definition 4.8. The Hopf mapv : Q7 — Q4 is the maph,, precomposed with the isomorphism
Q7 = Q% described above.
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Define an action ob L on pairs(A, B) by means of the formula
C-(A,B) = (AC,C7'B).

If C € SLy, thendet(AC) — det(C~1B) = det(A) — det(B), so this action preserveg..
Moreover, 1(AC,C~'B) = u(A, B) anddet(C~'B) = det B. Therefore,h,(C - (A, B)) =
h,(A,B). In fact, this action makeg), into an SL-torsor over(), (see the proof of AD0S,
Corollary 3.1] for details). Becaus§L,-torsors give rise ta\!-fiber sequences, we deduce the
following result.

Proposition 4.9. There is anA!-fibration sequence of the form

Qs — Q7 — Q4.

Remark4.10 There is a homotopically simpler but less geometric desoripof the Hopf map.
Indeed, the multiplication mafL, x SLy — SLs yields a morphisnE!SLoaSLy — $1SLo,
which provides another candidate fofsee [Vior12, p. 189] for more discussion of this map). The
morphism we called above and this Hopf map should agree (perhaps up to a sign).

Splitting the geometric Hopf fibration

The fiber sequenc®s; — Q% — Q4 gives rise to a long exact sequence in homotopy sheaves. The
(pointed) inclusion mag); — Q% gives an element df)s, Q%] 41 = wﬁ;(Eg’GQj‘)(k). However,
sinceny ,(23GHY) = 7 (B3G)Y) 2 = 0, it follows that the inclusion ma@; — Q) is null-
homotopic. In particular, the induced maqaﬁ;;(Qg) — ﬂ-ﬁ;(Q;) are zero for arbitrary and;.

The suspension homomorphigp — Q13103 together with the\! -weak equivalencE! Qs = Q4
yields a homomorphism

T (Qs) = L (Qu)

that provides a splitting of the connecting homomorphisﬁll,j(@;) — ﬂ'ﬁ; (Q3) inthe long exact
sequence in homotopy sheaves associated with the Hopfdilor&ombining these two facts yields
the following result.

Proposition 4.11. For any integersi, j, the long exact sequence in homotopy sheaves associated
with the Al-fibration Q5 — Q% — Q. breaks into split short exact sequences of the form
1

1 1
0 — 7l (Q7) — w05 (Qu) — w1ty ;(Q3) — 0.

Takingi = 3 in the above proposition, using the fact that' (Q4) = KW, contracting4
times, and replacing L, by B.S L, via an index shift yields the following split short exact seqce:

0 — KW 2o 1 (PV) — by (BSLy) — 0.

Evaluating onk, and precomposing with elements|&f;, Q7|1 defines ak " (k)-module struc-
ture on each term of the exact sequence and since the mospaisrnompatible with thi& /" (k)-
module structure, the above sequence is a split short ezqoeace of /" (k)-modules.
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Remarkd.12 ltis possible to identify more explicitly th& " (k)-module structure Oﬁ'éA’Z(BSLg)(k:)

using the computation crfél(SLg) in [AF121 and [AF124. Indeed, contracting four times, we
saw thatm}',(SLy) = 7Z/12 xz, W in [AF124. Moreover, sincers ,(Sps) = (K;”)-4 = 0,
the connecting homomorphisth: Q1Sp,/SLy, — SLs in the long exact sequence of the fiber
seqguence

SLQ — Sp4 — Sp4/SL2

yields a surjective homomorphisk)’" — ﬂ%Z(SLg). This surjective homomorphism provides

a K" (k)-module generator a4 ;(SLy) = w4, (BSL,) that we also refer to a& From these
facts, one can deduce that

w5 (P (k) = KO (k)v @ (Z/12 x 70 W (K))E.

The cone ofv

If : A%\ 0 — P! is the Hopf map given by the usual projection morphism, ititagsical fact that
the cone ofy, computed in4, (k) is isomorphic tdP2. To see this, one také® and considers the
standard open cover by two open sets isomorphig®tandP? \ 0. The inclusion of the intersection
gives a maph? \ 0 — P2\ 0 that under the\!-weak equivalenc®? \ 0 — P! coincides with the
Hopf map. Since\? is contractible, the Mayer-Vietoris square gives the meglicomputation of
the cone. The benefit of this computation is that the cohogyotd P? is well understood.

We now provide an analogous computation #ofTo this end, consider the spadé®’ defined
by Panin and Walter in{\W101. In terms of the notation of quaternionic Grassmanniatreduced
at the beginning of Sectio?, we have

HP" = HGr(1,n+1).

The spacdlP" is a smooth affine scheme of dimensionthat behaves in a fashion very similar to
the quaternionic projective spaces one considers in tggolo

Remark4.13 One can check thalP' coincides with the quadri€, we considered. The varieties
HP™ can all be constructed as quotients of the split smooth affilzelric()4,, 3 by a free action of
S Lo, generalizing the construction 6J4 as a quotient of); by a free action o5 Ls. In fact, the
varietiesHP™ can all be seen to be smooth ogrec Z.

Roughly speakingHP™ admits a “cell decomposition” with cells of dimensida More pre-
cisely, there exist smooth locally closed (in general, gafisie) subschemeg,; in HP™ of codi-
mension2i, such i) Z,, = A?", ii) each Z,; is anA'-contractible variety realized as the quotient
A*—2i+1 py g free action of3,, and iii) the closureZs; is a vector bundle of ranki over HP"~*
[PW10h Theorem 1.1]. Given this notation, we can state the contiputa

Proposition 4.14. The cone of in H, (k) is HP?.

Proof. We know thatHP? has a cell-decomposition with cell, Z, and Z,, whereZ,; has codi-
mensior2i, and the closure af, is a rank2 vector bundle ovef), = HP! [P\W10h Theorem 3.2].
SinceZ; is A'-contractible, with complemeri,, the Thom isomorphism theorem, combined with
the cofiber sequence attached to the inclusigrn— HP? yields anA'-weak equivalence

HP? & Th(N; yp2)-
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Now, by definition the Thom space 6f- /HP? is the quotientV— /HP? /N%2 /1P’ whereN%2 JHP?

denotes the complement of the zero section. We now destrése spaces more explicitly.
The total spacéV; ;2 is a rank2 vector bundle oveF,, which is itself a rank vector bundle

overHP!. Therefore, the composite map yields ahweak equivalence
1

On the other hand, the spaﬁ%/Hp2 admits the following description. The spaZe is affine and

A'l-weakly equivalent taQ,. If v is the Hopf map, thew is an S Ly-torsor overQ,, and we can
form the associated? \ 0-bundleZ := Q7 x°%2 A%\ 0 — Q4. The map

Q7= Q7 x 12 SLy — Q7 x 12 A%\ 0

is Zariski locally trivial with fibers isomorphic ta\! and is therefore an\'-weak equivalence.
Therefore, the induced map — Q4 coincides withv up to A'-homotopy. One can check that

N%Q/HPQ is precisely the pullback of to Z, along the vector bundi&, — Q.
Combining these two facts, we see that, up\Mfeweak equivalence, the inclusion of the com-
plement of the zero section of the normal bundl&tanto the total space is. O

Stable non-triviality of v

Sincer gives a morphisn®); — Q, Tate suspension ofyields, up toA'-homotopy, a map
Sa, v G — A\ 0.

Therefore, X v is an element ohﬁg(A?’ \ 0). By Proposition4.1, it follows immediately that
Yq, v is amultiple ofs (for the K3V (k)-module structure). To show thaiis stably non-trivial,
we will show thatv is stably non-trivial.

If k is a field having characteristic zero, then stable nonatityi of § follows from complex
realization, but it is possible to give a purely algebraguanent for this fact. The purely algebraic
argument is, unsurprisingly to anyone familiar with thessiaal topological story, related to the
Hopf invariant. Recall that, in topology, given a map S*"~! — 27 one can form theoW
complexC(g) = D*" Uy ", which has two cells of dimensiotn and2n. If g is homotopically
trivial, this complex is simplyS“™ v S?7, and this completely determines (say) the cohomology of
C(g) (even, say, as modules over the Steenrod algebra). One wiayetct that”(g) is non-trivial
is to study its cohomology ring or Steenrod operations.

In algebraic geometry, one may replacéy) by the cone of the mapand perform all the same
arguments. Suppose given an elemenf af [A2"\ 0,P1""],:. We can form the con€(f) in
H, (k). If fis A'-homotopically constant, thefi(f) = P!"" v 1A% \ 0. In particular, we have

H*(PV v SIAN 0,7/2) = H* (P, 7/2) @ H**(SLA%"\ 0,7/2).

where we writeH**(—, Z/2) for reduced motivic cohomology witld /2-coefficients. IfA** is
the (mod2) motivic Steenrod algebra studied ivide03 §11], thenH**(—, Z/2) is a module over
A** and the above direct sum decomposition is a decomposisionogules overd™*,
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Note thatH**(X1A%"\ 0,7Z/2) = H**(Spec k)[£]/£2, where¢ is a class of bidegre@in, 2n),
and thatH** (P, 7,/2) = H**(Spec k)[r]/72, wherer is a class of bidegre€@n, n). For this
reason, we will limit our attention to the subridg?**(—, Z/2), which we view as & /2-vector
space. Now, the algebr&™* does not preservB 2*(—, Z/2). However, if we writed** /3 for the
quotient ofA** by the2-sided ideal generated by the Bockstein, thegri /5 actually does preserve
H?** (see Bro03 §11] for a discussion of this fact, in our context it followsfn [Voe03 Theorem
10.2] upon observing thatg?*! = 35¢?). The action ofdA** /3 on H2**(—,Z/2) is Z/2-linear
by construction.

If f e [A2"\ 0,PY""],: is A'-homotopically constant, then thé** /3-module structure on
H?*($IA?\ 0,7/2) is trivial, since every Steenrod operation acts trivially & Similarly,
the A** /3-module structure od**(P1"",Z/2) is trivial. Thus, to prove non-triviality off, it
suffices to prove that the action df-* /5 on C'(f) is non-trivial. Since the operations we consider
are all stable with respect to both simplicial a@, -suspension, it follows that if thel**/3-
module structure od’(f) is non-trivial, thenf remains non-trivial after both simplicial ar@,,,-
suspension, so is non-trivial in the staté-homotopy category oP!-spectra (see\Jor044 for
details regarding the latter category).

Remark4.15 One would like to just describe th&™*-module structure on the motivic cohomol-
ogy of H**(Speck)[¢]/¢2 directly, but there are some technical difficulties preirenian easy
statement. The main problem is thatifis a scheme, the action of** on H**(X,Z/2) is not
H**(Speck, Z/2)-linear (seeoe03 p. 41]). This is the reason we considétr* /3.
Remark4.16 If f Trgn_l,gn(]?l/\n) is as above, and we look at***(C(f),Z) instead, then we
see that

HY>*(C(f),Z) = Z[¢, 7]/(€2, 7,72 — hs€)
with hy € Z for dimensional reasons. One can check that the function

H: 7"5%1 1,2n(P1An) —Z

given by the assignmetft— h is actually a group homomorphism, just as in topology anchesfi
a motivic analog of the classical Hopf invariain’[i50]. Since this invariant depends only the ring
structure of the motivic cohomology 6f( ), it is an unstable invariant.

Loosely following the notation of Morel\lorO4g, §5], we write
wiA(SY) = colimy, ., (BY");

in words, this sheaf is the bidegrée j)-stableA'-homotopy sheaf of the motivic sphere spectrum.
IteratedP! -suspension of gives rise to an element mf{f*; (S9) (k).

Theorem 4.17. The element € 5% (S9)(k) is non-trivial.

Proof. Sincev is defined oveBpecZ, it suffices by a base-change argument to show that it is non-
trivial over the prime field. Since the prime field is perfegg can use motivic cohomology to detect
non-triviality. We saw that’(v) = HP? in Propositiord.14. By [P\W10h Theorem 8.1], we know
that H**(C(v),Z/2) = 7Z./2[¢]/¢3, where(, a class of bidegregt, 2), is the first Pontryagin class

of a canonical symplectic line bundle ou@P2. In particular,S¢*(¢) = ¢% by [Voe03 Lemma 9.8],

so H**(HP2,7Z/2) has a non-triviald** / 3-module structure, and the required stable non-triviality
of v follows. O
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Corollary 4.18. The element is P'-stably non-trivial.

Proof. Since the elementg v is non-trivial by the above argument, it follows thais a non-
trivial multiple of X v. The result follows immediately from Theorefnl 7. O

Finally, note thaty can actually be defined ov&pecZ. Every indication suggests that the
following conjecture is true.

Conjecture 4.19. The elements andX¢g v are Al-weakly equivalent (oveSpec Z).

Remark4.2Q If one knew that the (pointed) endomorphismsAGf\ 0 (n > 2) in the A'-homotopy
category oveBpec Z were given byGW (Z), one could use the two realization computations above
to establish this conjecture for fields having characteridt One can construct a split injective
map fromGW (Z) to the above homotopy endomorphisms, but we do not know hqwaee this
map is surjective. Alternatively, as mentioned in Remérk it seems reasonable to expect that
w45 (PY?) = 7/24. From this, one could easily deduce thay) = Zpiv in 7} 5 (P'") for any
field having characteristié by appealing to complex realization.

5 Obstruction theory and the splitting problem

In this section, we explain in detail the obstruction théoreomputations required to reduce the
splitting problem to the computation @f'-homotopy sheaves. We then explain how the computa-
tion of 7r§1 (A% 0) yields the statement of the introduction. By Morel’'s resuite know that ifX
is a smooth affiné-scheme, thefX, BGL,|,: is canonically in bijection with the set of isomor-
phism classes of rank vector bundles otX'. Consider the morphisi¥ L,, — G L, that sends an
invertible matrix M/ to the block diagonal matrix with diagonal blockg and1. By functoriality,
there is an induced morphisBGL,, — BG L.

The image of a vector bundt&on X under the induced morphism

[X, BGLn]Al — [X, BGLn-i—l]Al

is a vector bundle of the forri & Ox. To understand whether a given vector bunéllen X of
rankn + 1, classified by an elemeit € [X, BGL, 1], splits off a trivial rankl summand, it
therefore suffices to determine whetlgdres in the image of X, BGL,],:, and this question can
be studied by means of the Moore-Postnikov tower of the mempBGL,, — BG L, 1.

Remarks.1 Strictly speaking, if we are to work with the Moore-Postnikactorization, then we
must work in the category of pointed maps. This presents abdifficulty since we can replace
X by X, and use the fact that the space of pointed maps betweeand BG L, is canonically
identified with the space of unpointed maps betwéeand BGL,,. Throughout this section, we
will implicitly make this choice and avoid further discussiof base-points.

The A'-homotopy fiber of BGL,, — BGL, is preciselyA™ \ 0, so the obstructions to
lifting are controlled by homotopy sheaves of this spaceweéi@r, for any integen, we know
thatw%l(BGLn) = G,,, (induced by the determinant homomorphiéht,, — G,,,), and the sheaf
74! (BGL,) acts non-trivially onr®' (BGL,,) in general, so the obstruction theory is slightly more
complicated.
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We refer the reader ta\[-12h, 6] for a general discussion @f'-Postnikov towers; the Moore-
Postnikov factorization of a morphisyh: X — ) of spaces comes from applying thé-Postnikov
tower discussed there to tie -homotopy fiber off. The identificationBGLS) = BG,, yields a
map[X, BGL,|, — [X, BG,,]s: that sends a vector bundle to its determinant line bundieerGi
an element € [X, BGL,1]a1, since the action of®' (BGL,,) = w*' (BGL,,,) on the total
space and fiber are compatible, there is an induced actiarfquBGLnH) on theA'-homotopy
sheaveSr;.*1 (A"*1\ 0). Therefore, there are inductively defined obstructions

Oint1(6) € HFL(X, 7 (A1 0)(det £)).

SinceA™*1\ 0is (n — 1)-Al-connected, the first potentially non-trivial obstructism;, ,,+1(€),
which is an element off " (X, KM (det €)). If X has dimensiom + 2, then for reasons of
cohomological dimensions, df, ,,.-1(£) vanishes, the only further possible non-trivial obstretis
Ont1n+1 € H'2(X, 7whl (A1 0)(det €)). Therefore, if we understand the shedf, ; (A"1\
0) (together with the induce€k,,,-action), we completely understand the splitting problemrénk
n + 1-vector bundles on a smooth affife + 2)-fold.

The primary obstruction and Murthy’s splitting conjecture

Proposition 5.2. If k is an algebraically closed field having characteristic unabto 2, o,, ,+1(§)
vanishes if and only i, (&) = 0.

Proof. In [AF12b, Corollary 5.9], we showed that, under the stated hypot)dke canonical mor-
phism
H™ (XK (6) — H'H(X,Kql) = CH™H(X)

is an isomorphism. In particular, the element,,, is canonically determined by an element of
CH"*1(X) (always under the stated hypotheses).

The obstruction class oX is pulled-back from a universal class &L, 1, induced by the
identity map onBGL,,,1. If v is the universal bundle oBGL,, ;1 with determinantdet v, then
there is a commutative diagram of the form

H"™ Y (BGLy 11, KMW (det 1)) — H" (X, KMW (det €))

| |

H™Y(BGLypyy KM ) HH (XKML ).

In particular, sinceo, ,+1(¢) is uniquely determined by its image iH" (X, Kr%—l)' it suf-
fices to understand the imagg ,+1 of 0, ,11(v) in H" T (BGL, 11, K2, ;). Now, if we iden-
tify BGL,4; with the infinite GrassmanniaG'r,, 1, it follows that the image ob,, 41 (v) in
H" Y BGLy41, K2 ) is given by an element "+ (Gry 1, KM ) = CH" ! (Grypg1) = Z.
It follows thatoy, ,,+1 is @ multiple ofc,,. (v), which is a generator af H"1(Gr,11).

In fact, we will see thab,, ,,+1 = ¢,+1(r) and it follows by functoriality of the obstruction class
and the Chern class that the same result holds for an agbgnaooth scheme. Topologically, the
fact that the top Chern class is an Euler class is the defirtiéiken in Milnor-StasheffiJIS74, §14],
and the fact that the Euler class is the obstruction clasaestpn is [IS74, Theorem 12.5].
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First, we use an alternate identificationf, ;. Up to A'-weak equivalence, we can identify
BGL,, with the complement of the zero section in the universal Ripder BGL,, 1. If V(v) is
the associated geometric vector bundle (we can think of dnciive limit of vector bundles over
finite dimensional Grassmannians), and we wkitg/) \ 0 for the complement of the zero section,
then there is a cofiber sequence of the form

V() \ 0 — V(v) — Th(v).

Now, the groupH™ ™! (Th(v), K2, ) is precisely isomorphic t6°(BGL,,+1,Z) = Z by means
of the Thom isomorphism, ang,, is precisely the image df € Z under this morphism.

On the other hand, the obstruction class is an elemeft"df' (BGL,, 11, KM% (det v)). The
cofiber sequence above gives rise to a long exact sequencgjanf which takes the form:

H" ™ (Th(v), KMY (detv)) — H" ™ (V(v), KMY (det v)) — H"™H(V(0)\0, KM (detv)).

By the identifications discussed in the previous paragraptp A'-weak equivalence, the second
arrow (from the left) in the above sequence coincides wighnttorphism

H" " (BGLy 41, KMY (detv)) — H" ™ (BGL,, KM (detv))

induced by the inclusio®GL, — BGL,,1. Since the pullback of to BGL,, splits off a free
rank 1 summand by construction, it follows by functoriality of testruction class that the im-
age ofo,, ;11 in H""(BGL,,, K)MY (detv)) is 0. Thereforeo,, ,1 comes from an element of
H”“(Th(u),K%V{’).

The twisted Thom isomorphism gives an identification

H ™ (Th(v), KMY (detv)) = HY(BGL,41, K{™W) = GW (k)

[AH11, Theorem 4.2.7]. We claim that, ,; is the image of(1) € GW (k) under this map.
Indeed, by the self-intersection formula, the morphi&iiv (k) — H"*1(BGL,, KM (detv))
sendsl to the (twisted) Euler class of, which coincides with the obstruction class by definition.

The canonical homomorphiski2’"} (det v) — K2 ,, when combined with the Thom isomor-
phisms, yields a homomorphism

HYBGL, 1, K{™) = HY(BGL,1,7)

that corresponds to the degree homomorphisii (k) — Z, which is split surjective sending)
to 1. ]

As a consequence of this identification of the primary olusiibn class, we see that Murthy’s
splitting conjecture is equivalent to a cohomological gaimg statement.

Corollary 5.3. If X is a smooth affine scheme of dimension 1 over an algebraically closed field
having characteristic unequal 1, then Murthy’s splitting conjecture holds if and only if fany
rank d vector bundlet on X, such thaicg(¢) € CHY(X) =0,

04,4(€) € HEN(X, 74" (A% 0)(det €)) = 0.



37 5 Obstruction theory and the splitting problem

Murthy’s splitting conjecture for smooth affine 4-folds

In this section, we will establish Theoretnfrom the introduction. In light of Corollanp.3, we
would like to study the grou;ﬂﬁﬁ;l (X, wdAl (A%\ 0)(det £)). To this end, we need to understand
the Gersten resolution for the sheﬁ1 (A9\ 0)(det ¢), which is complicated by the non-triviality
of the twist bydet £. In the casel = 3, the sheaﬁ-{}l (A3\ 0) is an extension o&*W? by the sheaf
F5. We will understand théx, ,-action on each of these components separately.

Lemma 5.4. If X is a smooth affing-fold over an algebraically closed fieldhaving characteristic
unequal ta2, and¢ is a rank3-vector bundle onX, then the groupZ*(X, F5(det £)) = 0.

Proof. The sheakF's is defined as the cokernel gf : GW§ — Ké”W. Given a line bundle, we
can define the she® " (L) on the small Nisnevich site of. The Gersten resolution of such a
sheaf is described irvfor12, Remark 5.13], and unwinding the definitions, one seesEbédet &)
is a quotient oKW (det ¢).

There is a short exact sequence of the form

0 — I%(det &) — KMW(det¢) — KM — 0,

i.e., the induced action afet ¢ on the Milnor K-theory quotient oKW is trivial. Now, the
description ofF'; we gave in Theorer3.7 shows that it admits an epimorphism fréhy, which is
itself a fiber product oI® and a quotient oK 2/ /24.

Sincek is algebraically closed, it follows fromi\[-12h, Proposition 5.8] thatl*( X, I?(det £)) =
0. Likewise, it follows from P\F12h, Proposition 5.10] that7*(X, K27 /24) = 0. Therefore,
H*(X,Ts5(det&)) = 0. For reasons of cohomological dimension, there is a sivggbbmomor-
phism H*(X, T5(det £)) — H*(X,Fs5(det&)), and so we conclude that the latter vanishes as
well. O

Our next aim is to compute the grodp’ (X, GleH(det €)). We start with two lemmas.

Lemma 5.5. Let F' be a field of characteristic different frodmand let L. be a F-vector space of
rank one. Then the hyperbolic mé@p= Ky(F) — GW?3(F, L) induces an isomorphism

7.)2 — GW3(F, L).

Proof. Choosing a generator @f, we get a commutative diagram

GWO(F) —L o Ko (F) —L s GW3(F)
GWO(F, L) —L = Ko(F) = GW3(F, L)

where the vertical maps are isomorphisms. The result faliithven from FS0§ Lemma 4.1]. O

Lemma 5.6. Let F' be a field of characteristic different frodand let L. be a F-vector space of
rank one. Then Karoubi periodicity yields a split exact s=me

0— K1 (F)/2 5 GWO(F, L) —~ GW3(F, L) —=0
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Proof. As above, choosing a generator bfyields an isomorphisn¥” — L and a commutative
diagram

GW(F) —— GW{(F)

| |

GWP(F, L) —~ GW{(F, L)

where the vertical maps are isomorphisms. The result falldverefore from AF12b Lemma
4.9]. O

Theorem 5.7. Let X be a smoothi-fold over a fieldk of characteristic different forr@ and £ be a
line bundle overX. Then there is an exact sequence

S 2
Chi=1(X) =% Chd(X) — HY(X,GWI (L)) —=0,

whereSq? is the Steenrod square operation twistedhy.e. Sg%(a) = Sq?(a) + -l with [ the
class ofZ in Ch!(X).

Proof. The proof follows the lines of4F12h Theorem 4.11]. There, we proved in particular that
if Y is a smooth (connected) curve oveand\ is a line bundle ove¥’, thenH ! (Y, GW{(N)) is
precisely the cokernel of the map

Sqir : ChO(Y) — ChY(Y).

Consider now the Gersten-Grothendieck-Witt spectral segeF (d — 1) twisted by L ([FS09
§3]). Its groups at page 1 are of the form
Bd-10"= @ GWy TP (k(wp),wk)

d—1-p—q »Tp
J:peX(P)

and it abuts taGWj_‘ll_p_q(X, L). The Gersten conjecture being true for Grothendieck-Wtgs,

its line ¢ = —1 is a flasque resolution of the she(awj‘l(ﬁ). In particular, we have an exact se-
qguence

L
B WP(kwan).wh ) P GWEk(xa) wE) — HUX,GWI (L)) — 0.
Tg_1€X (A1) zg€X (D)

Using Lemma$.5and5.6, we can argue as im\|-12b, Theorem 4.11] to get an exact sequence

P z/2"5Chd(X)— HYX,GWI(L) —=0

md,leX(d*U

with a mapy . that we have to identify.
Letz,_; € X(@=1) pe any point, and let” be the normalization of the closu#of z,_; in X.
Then the morphisn¥’ : Y — Z C X is finite, and we can compute the differenti& (restricted
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to GWY (k(zq—1,w, ))) using the transfer map. I := wy/;, ® frwy,y» We get a commutative
diagram
%

W (k(rg-1), 0k, ) ——— @ OW(k(wa),wf,)
zgeX(@nz
g
GWP k(o) wiy V) e €D G k() w9
Y

y1eY (™)

and thus a commutative diagram
72—~ Chi(X)

|

72— ChL(Y).

Xf*LoN

We find therefore

X£(T) = fulxpecan (@) = fuler(F L) @ N)) = fu( £ 14n) = 1- Y]+ £.5¢°(T) = Sqz([Y]).
O
Combining the above results, we can deduce Thed@éwom the introduction.

Proof of Theoren2. By Corollary 5.3 to prove Murthy’s splitting conjecture in dimensiah it
suffices to prove thati*(X, 71-{,?1 (A% \ 0)()\)) vanishes for an arbitrary line bundleon X. By
Lemmab.4 and the long exact sequence in cohomology associated vatextension describing
74 (A% \ 0)(\), we are reduced to proving vanishing Bf!(X, GW?3(L)). However, if X is

a smooth affinet-fold, we know thatCh*(X) is trivial as a consequence of Roitman’s theorem
on unique divisibility of the Chow group of zero cyclesr[39. Combining this observation with
Theoremb.7, we conclude that i is a smooth affind-fold over an algebraically closed field, then
H*(X,GW?3(L)) vanishes., O
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