
UNSTABLE CLASSIFICATION OF PROJECTIVE MODULES
OVER AFFINE ALGEBRAS

J. FASEL

Abstract. We present a self-contained proof of a conjecture of Suslin about
stably free modules.

Foreword

These notes contain the basic material I’m going to cover during the ICTP
meeting. They are PRELIMINARY. Some proofs are missing and some important
results around the subject are simply not stated. I intend to write down the missing
proofs and extend the material covered in the future. In particular, one of my goals
is to rewrite the classical results under a A1-homotopy category point of view. To
my opinion, it is certainly the right framework to understand the isomorphism
classes of projective modules over smooth algebras (over a field).

Conventions. All the rings considered in these lectures are supposed to be noe-
therian, and the projective modules of finite type. Similarly, all the schemes con-
sidered here are supposed to be of finite type and separated over some field k.

Basic definitions and results

Theorem 0.1 (Eisenbud-Evans-Plumstead). Let R be a ring and P be a projective
R-module of rank r. Let (α, a) ∈ P∨ ⊕ R. Then there exists β ∈ P∨ such that
ht(Ia) ≥ d where I = (α + aβ)(P ). In particular, if the ideal (α(P ), a) has height
≥ d then ht(I) ≥ d. Further, if (α(P ), a) is of height ≥ d and I is a proper ideal,
then ht(I) = d.

Theorem 0.2 (Swan-Bertini). Let R be a smooth affine algebra over an infinite
field k, and let P be a projective R-module of rank r. Let (α, a) ∈ P∨ ⊕ R be a
unimodular element. Then there exists β ∈ P∨ such that if I = (α+ aβ)(P ) then
1. R/I is smooth of dimension dim(R)− r unless I = R.
2. R/I is integral if dim(R/I) 6= 0.

Proposition 0.3 (Suslin). For any n ≥ 3 and any ring R, the subgroup En(R) is
normal in GLn(R).

Lecture 0

0.1. Stable versus unstable classification. Let R be a ring. If P is a (finitely
generated) projective R-module, we denote by {P} its isomorphism class. The set
of isomorphism classes M(R) of projective R-modules is endowed the structure of
an abelian monoid with operation defined by

{P}+ {Q} = {P ⊕Q}
1
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and neutral element the trivial module. The group K0(R) is the group comple-
tion of M(R). More precisely, K0(R) is the free abelian group generated by the
isomorphism classes {P} quotiented by the subgroup generated by

{P}+ {Q} − {P ⊕Q}

for any {P} and {Q}. We denote by [P ] the class of {P} in K0(R).

Proposition 0.4. Let P and Q be projective R-modules be such that [P ] = [Q].
Then there exists n ∈ N such that P ⊕Rn ' Q⊕Rm.

Suppose that R is such that Spec(R) is connected (otherwise we can decompose
R as a product of such rings). Then we obtain a homomorphism

ρ : K0(R)→ Z

defined by ρ([P ]) = rank(P ). We denote by K̃0(R) the kernel of ρ.
For any r ∈ N, let Pr(R) be the set of isomorphism classes of rank r projective

R-modules, pointed by the class {Rr}. We define a map

sr : Pr → Pr+1

by sr({P}) = {P ⊕ R} and we observe that sr is a map of pointed sets. Let
P(R) := lim Pr(R). For any r ∈ R, we denote by

πr : Pr(R)→ P(R)

the "limit" homomorphism. It follows that P(R) is pointed by the class of π0{0}.
For any r ∈ N we define a map fr : Pr(R)→ K̃0(R) by fr({P}) = [P ]− [Rr]. It

is clear that the following diagram commutes for any r ∈ N

P(R)
sr //

fr ##G
GGGGGGG

Pr+1(R)

fr+1yyttttttttt

K̃0(R)

and we then obtain a map f : P(R)→ K̃0(R).

Proposition 0.5. The map f : P(R)→ K̃0(R) is bijective.

Proof. We first prove that f is surjective. Let α = [P ] − [Q] ∈ K̃0(R). Then we
have rank(P ) = rank(Q). Let Q′ be such that Q ⊕ Q′ = Rn for some n ∈ N. We
have

α = [P ]− [Q] = [P ] + [Q′]− [Q]− [Q′] = [P ⊕Q′]− [Rn].

Now rank(P ⊕Q′) = n and it follows that α = fn({P ⊕Q′}). Hence f is surjective.
Let β and γ in P(R) be such that f(β) = f(γ). There exists therefore r, s ∈ N

and {P} ∈ Pr(R), {Q} ∈ Ps(R) such that fr({P}) = fs({Q}) with πr({P}) = β
and πs({Q}) = γ.

Since fr({P}) = fs({Q}), we have [P ] − [Rr] = [Q] − [Rs] and it follows from
Proposition 0.4 that P ⊕Rs+m ' Q⊕Rr+m for some m ∈ N. This yields

β = πr({P} = πr+s+m({P ⊕Rs+m}) = πr+s+m({Q⊕Rr+m}) = πs({Q}) = γ.

�
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Thus we see that K-theory studies the isomorphism classes of projective R-
modules "at the limit". The goal of these lectures is to study the sets Pr(R) and
the maps

sr : Pr(R)→ Pr+1(R)
In lecture 1, we prove the well-known result that sr is a bijection if r ≥ dim(R)+

1. In lecture 2, we give a proof of Suslin’s theorem saying that sd is injective if R
is an affine algebra of dimension d over an algebraically closed field. We also prove
his subsequent result that sd is a bijection in the same situation. In the following
lectures, we introduce the necessary tools in order to prove that sd−1 has a trivial
fiber (i.e. s−1

d−1({Rd}) = {Rd−1}) if R is a normal algebra of dimension d over an
algebraically closed field k with (d− 1)! ∈ k×.

1. Lecture 1

Definition 1.1. Let R be a ring, X = Max(R) and P be a projective R-module.
We say that p ∈ P is unimodular if one of the following equivalent conditions is
satisfied
1. P ' Rp⊕ P ′
2. For any x ∈ X, we have p(x) 6= 0 in P/xP .
3. There exists ϕ : P → R such that ϕ(p) = 1.

Theorem 1.2 (Serre). Let R be a commutative noetherian ring and X = Max(R).
Suppose that X is connected of dimension d. Let P be a projective R-module of
rank r > d. Then P ' P ′ ⊕R.

Proof. For any p1, . . . , pn ∈ P and any j ∈ N, let

Fj(p1, . . . , pn) = {x ∈ X | dim(〈p1(x), . . . , pn(x)〉 ⊂ P/xP ) < j}.
Obviously, we have F0(p1, . . . , pn) = ∅, Fj(p1, . . . , pn) ⊂ Fj+1(p1, . . . , pn) for any
j ∈ N and Fn+1(p1, . . . , pn) = X. Also, it is clear that the subsets Fj(p1, . . . , pn)
are closed in X (adding a complement to P , we may assume that P is free and the
condition Fj expresses as the vanishing of some minors in a matrix).

Assertion 1. For any integer s ≤ r, there exists p1, . . . , ps ∈ P such that we have
codimX(Fj(p1, . . . , ps)) ≥ s+ 1− j for any j = 1, . . . , s.

Suppose first that s = 1. Let X = X1 ∪ . . . ∪ Xm be the (non redundant)
decomposition of X in irreducible components. Choose xi ∈ Xi \ (∪s6=iXs) for any
i = 1, . . . ,m. Since P (xi) = P/xiP is of dimension r ≥ 1, there exists vi ∈ P (xi)
such that vi 6= 0 for any i = 1, . . . ,m. By the Chinese remainder lemma, there
exists p1 ∈ P such that p1 ≡ vi (mod xiP ) for any i. Let Y ⊂ F1(p1) ⊂ X be an
irreducible closed subset. By construction, we have Y ∩Xi ⊂ Xi is of codimension
at least 1 (since xi 6∈ Y ∩Xi). It follows that F1(p1) ⊂ X is of codimension at least
one and we are done in this case.

Suppose now that the result is proved for s − 1 ≤ r − 1. There exists therefore
p1, . . . , ps−1 ∈ P such that codimX(Fj(p1, . . . , ps−1)) ≥ s−j for any j = 1, . . . , s− 1.
We can decompose Fj(p1, . . . , ps−1) as a union of closed subsets

Fj(p1, . . . , ps−1) = Yj,1 ∪ . . . ∪ Yj,uj
∪ Y ′j

such that Yj,i is irreducible with codimX(Yj,l) = s − j for any i = 1, . . . , uj and
codimX(Y ′j ) > s − j. Choose yj,i ∈ Yj,i \ ((∪l 6=iYj,l) ∪ Y ′j ) for any j = 1, . . . , s − 1
and any i = 1, . . . , uj .
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Since yj,i ∈ Fj(p1, . . . , ps−1), we have

dim(〈p1(yj,i), . . . , ps−1(yj,i)〉) < j ≤ s− 1 < r.

Yet dimP/yj,iP = r ≥ s and it follows that there exists vj,i linearly independent
of {p1(yj,i), . . . , ps−1(yj,i)}. The Chinese remainder lemma shows that there exists
ps such that ps ≡ vj,i (mod yj,iP ) for any j, i.

By definition, we have Fj(p1, . . . , ps) ⊂ Fj(p1, . . . , ps−1). Since ps(yj,i) is lin-
early independent of {p1(yj,i), . . . , ps−1(yj,i)}, it follows that Fj(p1, . . . , ps) doesn’t
contain any Yj,i. Thus

codimX(Fj(p1, . . . , ps)) ≥ Fj(p1, . . . , ps−1) + 1 ≥ s+ 1− j.

Assertion 2. Let k ∈ N be a fixed integer. For any p1, . . . , ps ∈ P such that
codimX(Fj(p1, . . . , ps)) ≥ k − j for any j = 1, . . . , s, there exists a1, . . . , as−1 such
that

codimX(Fj(p1 + a1ps, . . . , ps−1 + as−1ps)) ≥ k − j
for any j = 1, . . . , s− 1.

To prove the second assertion, write

Fj+1(p1, . . . , ps) = Zj,1 ∪ . . . ∪ Zj,uj ∪ Z ′j
with Zj,i irreducible of codimension k − j − 1 and Z ′j of codimension ≥ k − j.
Choose zj,i ∈ Zj,i \ ((∪l 6=iZj,l)∪Z ′j ∪Fj(p1, . . . , ps)) for any j = 1, . . . , s− 1. Then
dim(〈p1(zj,i), . . . , ps(zj,i)〉) = j ≤ s−1. There exists therefore a1(zj,i), . . . , as−1(zj,i)
in R/zj,i such that

dim(〈p1(zj,i) + a1(zj,i)ps(zj,i), . . . , ps−1(zj,i) + as−1(zj,i)ps(zj,i)〉) = j.

The Chinese remainder lemma gives a1, . . . , as−1 ∈ R such that al ≡ al(zj,i)
(mod zj,i) for an j, i.

Since Fj+1(p1 + a1ps, . . . , ps−1 + as−1ps) ⊂ Fj+1(p1, . . . , ps), we get

codimX(Fj+1(p1 + a1ps, . . . , ps−1 + as−1ps)) ≥ k − j − 1.

If T is an irreducible component of Fj(p1 + a1ps, . . . , ps−1 + as−1ps)), we see that
zj,i 6∈ T . Thus

codimX(Fj(p1 + a1ps, . . . , ps−1 + as−1ps)) ≥ k − j.

We can now finish the proof of Serre’s theorem. Because P is of rank r > d,
Assertion 1 shows that there exists p1, . . . , pd+1 such that Fj(p1, . . . , ps) is of codi-
mension ≥ d + 2 − j for any j = 1, . . . , d + 1. We can apply Assertion 2 d times
to get p ∈ P such that Fj(p) is of codimension ≥ d + 2 − j for j = 1. Therefore
F1(p) = ∅ and p(x) 6= 0 for any x ∈ X. It follows that p is unimodular. �

Theorem 1.3 (Bass-Schanuel). Let R be a commutative noetherian ring and let
X = Max(R). Suppose that X is connected of dimension d. Let P and P ′ be
projective R-modules of rank r > d. Suppose that there exists a projective R-module
Q such that P ⊕Q ' P ′ ⊕Q. Then P ' P ′.

Proof. Since Q is a projective R-module, there exists a projective module Q′ such
that Q ⊕ Q′ = Rn for some n ∈ N. Since P ⊕ Q ' P ′ ⊕ Q, it follows that
P ⊕Rn ' P ′⊕Rn. By induction, we are reduced to prove the result for n = 1, i.e.
when P ⊕R ' P ′⊕R. Let φ : P ′⊕R→ P ⊕R be such an isomorphism. To prove
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the result, it suffices to show that there exists an automorphism τ of P ⊕ R such
that τφ(0, 1) = (0, 1). Set (p, a) = φ(0, 1).

Since P is of rank r > d, there exists p1 ∈ P such that P = Rp1 ⊕ P1 by Serre’s
theorem. Since (p, a) is unimodular, there exists p2 ∈ P such that p3 := p+ ap2 is
unimodular in P by Bertini’s theorem.

Define g1 : P ⊕ R → P ⊕ R by g1(q, b) = (bp2, 0). Since g2
1 = 0, it follows that

τ1 := Id+ g1 is an automorphism of P ⊕R (with inverse Id− g1) and we have

τ1(p, a) = (p, a) + (ap2, 0) = (p3, a).

Since p3 is unimodular, there exists α : P → R such that α(p3) = 1. Define
g2 : P ⊕R→ P ⊕R by g2(q, b) = (0, (1− a)ϕ(q)). Once again, we have g2

2 = 0 and
thus τ2 := Id+ g2 is an automorphism of P ⊕R. Moreover, we have

τ2τ1(p, a) = τ2(p3, a) = (p3, a) + (0, 1− a) = (p3, 1).

Define finally g3 : P ⊕R→ P ⊕R by g3(q, b) = (−bq, 0). Since g2
3 = 0, we see that

τ3 := Id+ g3 is an automorphism of P ⊕R and

τ3τ2τ1(p, a) = τ3(p3, 1) = (p3, 1) + (−p3, 0) = (0, 1).

Setting τ := τ3τ2τ1, we see that τ(p, a) = (0, 1) and the result is proved. �

2. Lecture 2

LetR be a ring and let a1, . . . , an, b1, . . . , bn ∈ R with n ∈ N. Let a = (a1, . . . , an)
and b = (b1, . . . , bn). Following [14, §5], we define a matrix αn(a, b) ∈ M2n−1(R)
inductively starting with α1(a1, b1) = a1 and

αn(a, b) =
(

a1Id2n−2 αn−1(a′, b′)
−αn−1(b′, a′)t b1Id2n−2

)
where a′ = (a2, . . . , an) and b′ = (b2, . . . , bn).

Lemma 2.1. We have:
1. αn(a, b) · αn(b, a)t = (

∑
aibi) · Id2n−1 .

2. detαn(a, b) = (
∑
aibi)2

n−2
for n ≥ 2.

3. In particular, αn(a, b) ∈ SL2n−1(R) if
∑
aibi = 1.

Lemma 2.2. Let R be a ring and let (a1, . . . , an) ∈ Umn(R). Let m ∈ N. Then

(am1 , a2, . . . , an) ∼En(R) (a1, a
m
2 , a3, . . . , an).

Lemma 2.3. Let R be a ring and a1, . . . , an, b1, . . . , bn ∈ R with n ≥ 2 and∑
aibi = 1. There exists an elementary matrix E(a, b) such that

αn(a, b)E(a, b) =
(
βn(a, b) 0

0 1

)
where βn(a, b) ∈ SLn(R) and e1βn(a, b) = (an−1

1 , an−2
2 , . . . , a2

n−2, an−1, an).

Corollary 2.4. Let R be a ring and let (a1, . . . , an) ∈ Umn(R). Then the unimod-
ular row (a(n−1)!

1 , a2, . . . , an) is completable in an invertible matrix.

Proof. If n ≤ 2, there is nothing to prove. We can thus suppose that n ≥ 3. By
the above lemma, we know that ((an−1

1 , an−2
2 , . . . , a2

n−2, an−1, an) is completable in
an invertible matrix. The result follows then from Lemma 2.2. �

We now have all the tools in hand to prove Suslin’s theorem.
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Theorem 2.5. Let A be an affine algebra of dimension d over an algebraically
closed field k. Then Umd+1(A) = SLd+1(A). In particular any stably free module
of rank d is free.

Proof. Let P be a stably free module of rank d. There exists thus n ∈ N such that
P ⊕An ' An+d. Bass’ cancellation theorem 1.3, shows that the above isomorphism
yields an isomorphism P ⊕ A ' Ad+1. It follows that P is the projective module
associated to a unimodular row (a1, . . . , ad+1). Let B = Ared be the reduced
algebra associated to A. The equivalent conditions of Definition 1.1 shows that
P is free if and only if P ⊗A Ared is free and therefore we can suppose that A
is reduced. Let J ⊂ A the singular locus of A. Because A is reduced, we see
that ht(J) ≥ 1. There exists thus a non zerodivisor s ∈ J . Since A/sA is of
dimension ≤ d − 1, we can use Theorem 0.1 to perform elementary operations on
(a1, . . . , ad+1) in order to find a1 ≡ 1 (mod sA) and ai ∈ sA for i = 2, . . . , d + 1.
Using now Swan’s Bertini theorem 0.2, we see that there exists b1, . . . , bd such that
A/(a1 + b1ad+1, . . . , ad + bdad+1) is smooth of dimension 0 outside J . Since a1 ≡ 1
(mod J) and ad+1 ∈ J , it follows that A/(a1 + b1ad+1, . . . , ad + bdad+1) is actually
smooth. Since k is algebraically closed, we get

A/(a1 + b1ad+1, . . . , ad + bdad+1) = k × . . .× k.

There exists thus b ∈ A such that bd! ≡ ad+1 (mod (a1 + b1ad+1, . . . , ad + bdad+1)).
Altogether, we proved that we can perform elementary operations on the row
(a1, . . . , ad+1) to obtain a row (a′1, . . . , a

′
d, b

d!). It follows from Corollary 2.4 that
this row is completable and therefore P is free. �

Theorem 2.6. Let A be an affine algebra of dimension d over an algebraically
closed field k. Suppose that P, P ′ are projective A-module of rank d such that
P ⊕A ' P ′ ⊕A. Then P ' P ′.

3. Lecture 3

Let R be a ring. We consider triples (P, f1, f2) where P is a finitely gener-
ated projective R-module and f1, f2 : P → P∨ are skew-symmetric isomorphisms.
Two triples (P, f1, f2) and (P ′, f ′1, f

′
2) are isometric if there exists an isomorphism

α : P → P ′ such that fi = α∨f ′iα for i = 1, 2. We denote by [P, f1, f2] the isom-
etry class of a triple (P, f1, f2). We denote by GW 3

1 (R) the free abelian group on
isometry classes of triples [P, f1, f2] subject to the relations
1. [P, f1, f2] + [P, f2, f3]− [P, f1, f3].
2. [P, f1, f2] + [Q, g1, g2]− [P ⊕Q, f1 ⊕ g1, f2 ⊕ g2].

Recall from M. Schlichting notes that there is an exact sequence

K1Sp(R)
f ′ // K1(R) h // GW 3

1 (R)
η // K0SP (R)

f // K0(R)(1)

For any n ∈ N, let S′2n(R) be the set of skew-symmetric invertible matrices of

size 2n. We define ψ2n ∈ S′2n(R) inductively by ψ2 =
(

0 1
−1 0

)
and

ψ2n := ψ2 ⊥ . . . ⊥ ψ2.

We define a map S′2n(R)→ S′2n+2(R) by M 7→M ⊥ ψ2 for any n ∈ N, and we set
S′(R) = limS′2n(R). We say that A ∈ S′2n(R) and B ∈ S′2m(R) are equivalent and
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we write A ∼ B if there exists t ∈ N and a matrix E ∈ E2n+2m+2t(R) such that

Et(A ⊥ ψ2m+2t)E = B ⊥ ψ2n+2t.

Lemma 3.1. The relation ∼ is an equivalence relation. Further, S′(R)/ ∼ endowed
with the operation ⊥ is an abelian group.

Proof. The first assertion is a straightforward exercise. It is clear that ⊥ induces
a well-defined operation on S′(R)/ ∼, and the only non trivial thing to check is
that every matrix A ∈ S′2n(R) has an inverse in S′(R)/ ∼. We follow the proof of
Suslin-Vaserstein in [15, §3].

Let σ2n ∈ GL2n(R) be the matrix defined inductively by σ2 =
(

0 1
1 0

)
and

σ2n = σ2n−2 ⊥ σ2.

Observe that σt2n = σ2n and σ2
2n = Id. Let G ∈ S′2n(R) be a skew-symmetric

invertible matrix. We can write G = H − Ht for some matrix H ∈ M2n(R). We
have(

G 0
0 σ2nG

−1σ2n

)
∼

(
1 0

−σrG−1 1

)(
G 0
0 σ2nG

−1σ2n

)(
1 G−1σ2n

0 1

)
∼

(
G σ2n

−σ2n 0

)
∼

(
1 Hσ2n

0 1

)(
G σ2n

−σ2n 0

)(
1 0

σ2nH
t 1

)
∼

(
0 σ2n

−σ2n 0

)
.

Replacing now G by ψ2n and observing that σ2nψ
−1
2n σ2n = ψ2n, we see that(

G 0
0 σ2nG

−1σ2n

)
∼ ψ4m ∼ ψ2.

It follows that σ2nG
−1σ2n is an inverse of G. �

We denote by W ′E(R) the group S′(R)/ ∼. We now define an analogue of the
long exact sequence (1) for W ′E(R) before proving that this group coincides with
GW 3

1 (R). We follow the steps of [7, §2].
We first define a homomorphism

ϕ : W ′E(R)→ K0Sp(R)

as follows. Let G ∈ S′2n(R). Then G can be seen as a skew-symmetric form
G : R2n → (R2n)∨ and we can consider its class [R2n, G] in K0Sp(R). Similarly,
the matrix ψ2n also defines a class [R2n, ψ2n] and we set

ϕ(G) = [R2n, G]− [R2n, ψ2n].

Suppose that G ∼ H for some H ∈ S′2m(R). There exists therefore t ∈ N and
E ∈ E2n+2m+2t(R) such that Et(G ⊥ ψ2m+2t)E = H ⊥ ψ2n+2t. Since

[R2n+2m+2t, G ⊥ ψ2m+2t] = [R2n+2m+2t, Et(G ⊥ ψ2m+2t)E]

in K0Sp(R), we see that ϕ(G) = ϕ(H) and therefore ϕ induces a well-defined map
WE(R)→ K0Sp(R). It is clear that ϕ is a homomorphism.
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We now define a homomorphism

θ : K1(R)→W ′E(R).

If G ∈ GL2n(R), then we define θ(G) to be the class of Gtψ2nG in W ′E(R). If now
G ∈ GL2n+1(R), then we set θ(G) = (G ⊥ 1)tψ2n+2(G ⊥ 1). We see that these
maps induce a map θ : GL(R)→W ′E(R).

Lemma 3.2. The map θ : GL(R)→W ′E(R) induces a homomorphism

θ : K1(R)→W ′E(R).

Proof. First observe that θ(E(R)) is trivial by definition ofW ′E(R). If G ∈ GLn(R),
then Whitehead lemma reads as(

G−1 0
0 G

)
=
(

1 0
G 1

)(
1 1−G−1

0 1

)(
1 0
−1 1

)(
1 1−G
0 1

)
and shows that the matrix on the left is elementary. If G and H are invertible
matrices, we can stabilize and thus we can suppose that G,H ∈ GL2n(R) for some

n ∈ N. Let E =
(
G−1 0

0 G

)
∈ E4n(R). We find the following sequence of equalities

in W ′E(R)

(HG)tψ2nHG = (HG ⊥ 1)tψ4n(HG ⊥ 1) = Et(HG ⊥ 1)tψ4n(HG ⊥ 1)E

Now (HG ⊥ 1)E = H ⊥ G and we therefore see that θ(HG) = θ(H) ⊥ θ(G). This
proves the lemma. �

Theorem 3.3. The sequence

K1Sp(R)
f ′ // K1(R) θ // W ′E(R)

ϕ // K0Sp(R)
f // K0(R)

is exact.

Proof. We first prove that the sequence is a complex. If G ∈ Sp2n(R), then
Gtψ2nG = ψ2n by definition and it follows that θf ′ = 0. If G ∈ GL2n, then
[R2n, Gtψ2nG] = [R2n, ψ2n] in K0Sp(R). Therefore ϕθ = 0. Finally, the underly-
ing modules of [R2n, G] and [R2n, ψ2n] are the same for any G ∈ S′2n(R) and thus
fϕ = 0.

We now prove the exactness of the sequence. Suppose that θ(G) = 0. We can
suppose that G ∈ GL2n(R) for some n ∈ N. Since θ(G) = 0, there exists t ∈ N and
E ∈ E2n+2t(R) such that

Et(G ⊥ Id2t)tψ2n+2t(G ⊥ Id2t)E = Et(Gtψ2nG ⊥ ψ2t)E = ψ2n+2t.

It follows that H := (G ⊥ Id2t)E ∈ Sp2n+2t(R). By definition, we have G =
f ′(H) ∈ K1(R) and the sequence is exact at K1(R).

Suppose next that ϕ(G) = 0 for some skew-symmetric G ∈ S′2n(R). Therefore
we have [R2n, G] = [R2n, ψ2n] in K0Sp(R). Therefore, there exists m ∈ N and
H ∈ GL2n+2m(R) such that

G ⊥ ψ2m = M tψ2n+2mM.

It follows that G ∼M tψ2n+2mM and then G = θ(M).
Let α ∈ K0Sp(R). By definition of this group, we can write α = [P, f ] − [Q, g]

for some projective modules P,Q and skew-symmetric forms f, g. Let M be such
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that Q ⊕M = R2n for some n ∈ N. Let hM : M ⊕M∨ → M∨ ⊕M be given by
the matrix (

0 1
−1 0

)
.

Then [Q, g] + [Q∨, evQg−1] + [M ⊕M∨, hM ] = [R4n, ψ4n], where evQ : Q→ Q∨∨ is
the canonical isomorphism (exercise). Therefore

α = [P, f ] + [Q∨, evQg−1] + [M ⊕M∨, hM ]− [R4n, ψ4n]

in K0Sp(R). Setting P ′ = P ⊕Q∨ ⊕M ⊕M∨ and f ′ = f ⊥ evQg−1 ⊥ hM we find
α = [P ′, f ′] − [R4n, ψ4n]. Suppose that f(α) = 0. It follows that P ′ is stably free.
Adding if necessary [R2m, ψ2m] for m big enough and using Bass’ theorem 1.3 we
can suppose that P ′ is free. It follows that f ′ is given by a skew-symmetric matrix
G and therefore α = ϕ(G). �

Our next aim is to construct a homomorphism τ : W ′E(R) → GW 3
1 (R). Let

G ∈ S2n(R). As seen before, G can be considered as a skew-symmetric isomor-
phism G : R2n → (R2n)∨, and so does ψ2n. We set τ(G) = [R2n, G, ψ2n]. Since
[R2m, ψ2m, ψ2m] = 0, it follows that τ induces a map S′(R)→ GW 3

1 (R).

Lemma 3.4. The map τ induces a homomorphism τ : W ′E(R)→ GW 3
1 (R).

Proof. Let G ∈ S′2n(R) and H ∈ S′2m(R). By definition of GW 3
1 (R), we find that

[R2n+2m, G ⊥ H,ψ2n+2m] = [R2n, G, ψ2n] + [R2m, H, ψ2m].

Suppose that G ∼ H. There exists therefore t ∈ N and E ∈ E2n+2m+2t(R) such
that

Et(G ⊥ ψ2m+2t)E = H ⊥ ψ2n+2t

By the above remark, we have τ(H ⊥ ψ2n+2t) = τ(H) and τ(G ⊥ ψ2m+2t) = τ(G).
We can therefore suppose that G and H are elements of S2n(R) and that there
exists E ∈ E2n(R) such that EtGE = H. Now we have

τ(G) = [R2n, G, ψ2n] = [R2n, EtGE,Etψ2nE] = [R2n, H, ψ2n]+[R2n, ψ2n, E
tψ2nE].

We are then reduced to show that [R2n, ψ2n, E
tψ2nE] = 0 for any elementary

matrix E ∈ E2n(R). As

[R2n, ψ2n, E
tψ2nE] = [R2n, (E−1)tψ2nE

−1, ψ2n]

we are going to prove instead that [R2n, Etψ2nE,ψ2n] = 0 for any E ∈ E2n(R). In
order to show this, recall that the homomorphism h : K1(R)→ GW 3

1 (R) is defined
by h(G) = [R2n, Gtψ2nG,ψ2n] if G ∈ GL2n(R). It follows that h(E) = 0 and the
result is proved. �

Theorem 3.5. The homomorphism τ : W ′E(R)→ GW 3
1 (R) is an isomorphism.

Proof. It suffices to observe that the following diagram

K1Sp(R) // K1(R) θ // W ′E(R)

τ

��

ϕ // K0Sp(R) // K0(R)

K1Sp(R) // K1(R)
h
// GW 3

1 (R)
η
// K0Sp(R) // K0(R)

commutes by definition of the maps, and to use the five lemma. �
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3.0.1. Pfaffians. We first recall the definition of the Pfaffian homomorphism. Let

B2n = Z[xij |1 ≤ i, j ≤ 2n]/〈xij + xji, xii|1 ≤ i < j ≤ 2n〉

The determinant D of the matrix (xij) is a square in B2n, i.e. there exists Pf ∈ B2n

such that (Pf)2 = D. The polynomial Pf is uniquely determined up to a factor
±1. We can determine this sign by forcing Pf(ψ2n) = 1. We call Pf the Pfaffian
polynomial.

If R is a ring, then we see that S′2n(R) = Homrings(B2n, R). If M ∈ S′2n(R)
corresponds to a ring homomorphism ϕ : B2n → R, then we set Pf(M) = ϕ(Pf).
Since M is invertible, it follows that Pf(M) ∈ R× and we obtain a homomorphism

Pf : S′2n(R)→ R×.

Lemma 3.6. Let R be a ring. Then

1. Pf(HtGH) = Pf(G) · det(H) for any G ∈ S′2n(R) and any H ∈ GL2n(R).
2. Pf(G1 ⊥ G2) = Pf(G1) · Pf(G2) for any G1, G2 ∈ S′2n(R).

Proof. �

For any n ∈ N, we define S2n(R) as the kernel of Pf : S′2n(R) → R×. Since
Pf(ψ2) = 1, it follows that we have a commutative diagram

S2n(R) //

ψ2

��

S′2n(R)

ψ2

��
S2n(R) // S′2n(R).

Setting S(R) = ∪S2n(R), we thus get a map S(R)→ S′(R). Using Lemma 3.6, we
see that ∼ induces an equivalence relation on S(R) and that S(R)/ ∼ is an abelian
group that we denote by WE(R). We obtain a short exact sequence

0 // WE(R) // W ′E(R) // R× // 0

which is split by associating to any a ∈ R× the skew-symmetric matrix
(

0 a
−a 0

)
(exercise).

4. Lecture 4: The Vaserstein symbol

Let R be a ring and (a1, a2, a3) ∈ Um3(R). Choose (b1, b2, b3) ∈ R3 such that∑
aibi = 1. Following [15, §5], we define V (a1, a2, a3) ∈ WE(R) to be the class of

the matrix 
0 −a1 −a2 −a3

a1 0 −b3 b2
a2 b3 0 −b1
a3 −b2 b1 0

 .

It seems a priori that the definition of V (a1, a2, a3) depends on the choice of
(b1, b2, b3) such that

∑
aibi = 1. However, the next lemma proves that this is

not the case.
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Lemma 4.1. Let R be a ring and (a1, a2, a3) ∈ Um3(R). Let (b1, b2, b3) ∈ R3 and
(c1, c2, c3) ∈ R3 be such that

∑
aibi =

∑
aici = 1. Then the matrices

0 −a1 −a2 −a3

a1 0 −b3 b2
a2 b3 0 −b1
a3 −b2 b1 0

 and


0 −a1 −a2 −a3

a1 0 −c3 c2
a2 c3 0 −c1
a3 −c2 c1 0


are equivalent in WE(R).

Proof. We follow the proof of [15, Lemma 5.1]. Let d1 = c3b2−c2b3, d2 = c1b3−c3b1
and d3 = c2b1 − c1b2. Let

α =


1 d1 d2 d3

0 1 0 0
0 0 1 0
0 0 0 1

 .

Then α is elementary and we have

αt


0 −a1 −a2 −a3

a1 0 −b3 b2
a2 b3 0 −b1
a3 −b2 b1 0

α =


0 −a1 −a2 −a3

a1 0 −c3 c2
a2 c3 0 −c1
a3 −c2 c1 0

 .

�

Lemma 4.2. Let a := (a1, a2, a3) ∈ Um3(R) and G ∈ SGL3(R). If aG =
(x1, x2, x3) then (

1 0
0 G

)
V (a1, a2, a3)

(
1 0
0 Gt

)
= V (x1, x2, x3)

in WE(R).

Proof. In view of the above lemma, it suffices to check that the first row and column
of (

1 0
0 G

)
V (a1, a2, a3)

(
1 0
0 Gt

)
are respectively (0,−x1,−x2,−x3) and (0, x1, x2, x3). This is a direct computation.

�

As a corollary of the two previous lemmas, we see that we obtain a well-defined
map

V : Um3(R)/E3(R)→WE(R).

Theorem 4.3. Suppose that R is noetherian of dimension 2. Then V is a bijection.

We now pass to a special case of a result of R. Rao and W. van der Kallen [11].

Theorem 4.4. Suppose that R is a smooth affine algebra of dimension 3 over an
algebraically closed field. Then V is a bijection.

In order to prove the theorem, we will need a few auxiliary results.

Lemma 4.5. Let R be a smooth affine algebra of dimension d over an algebraically
closed field, and let s ∈ R. Suppose that v ∈ Umd+1(R) is congruent to e1 :=
(1, 0 . . . , 0) modulo sR. Then v can be completed in a matrix G ∈ SLd+1(R) such
that G ≡ Idd+1 (mod sR).
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Proof. If Spec(R) is not connected, we write R = R1 × . . . × Rn and we work
component by component. We can thus suppose that R is integral. Let A =
R[X]/〈X2 − sX〉. Since p = X2 − sX is not a zerodivisor in R[X], and is not
invertible, it follows that A is affine of dimension d. As v is congruent to e1 modulo
sR, we can write v = e1 + sw for some w ∈ Rd. We claim that u(X) := e1 + Tw
is unimodular. Indeed, let v′ ∈ Rn be such that v(v′)t = 1. Since v = e1 + sw, we
can write v′ = (1 + sa1, a2, . . . , ad+1). The equality v(v′)t = 1 yields

s(a1 + w1) + s2a1w1 + sa2w2 + . . .+ sad+1wd+1 = 0.

Since R is integral and s 6= 0 (otherwise there is nothing to do), it follows that

(a1 + w1) + sa1w1 + a2w2 + . . .+ ad+1wd+1 = 0.

Consider u′(X) = (1 +Xa1, a2, . . . , ad+1). Then

u(X)(u′(X))t = 1 +X(a1 + w1) +X2a1w1 +Xa2w2 + . . .+Xad+1wd+1.

But X2 = sX in A and thus X(a1 +w1)+X2a1w1 +Xa2w2 + . . .+Xad+1wd+1 = 0.
Therefore u(X) is unimodular. By Suslin’s theorem 2.5, there exists H(X) in
SLd+1(A) such that e1H(X) = u(X). In particular, we have e1H(0) = u(0) = e1
and e1H(s) = u(s) = v. The matrix G = H(0)−1H(s) is such that e1G = v and
G ≡ Idd+1 (mod sR). �

Proposition 4.6. Let R be a smooth affine algebra over an algebraically closed
field k. Let G ∈ SLd+1(R) ∩ E(R). Then there exists H ∈ SLd+1(R[X]) such that
H(0) = Idd+1 and H(1) = G.

Proof. By Vaserstein stability theorem, we see that (1 ⊥ G) ∈ Ed+2(R). There
exists thus M ∈ Ed+2(R[X]) such that M(0) = Idd+2 and M(1) = 1 ⊥ G. Set
R′ = R[X] and s = X2−X. Then R′ is smooth of dimension d+1 and we can apply
the above lemma with v = e1M ∈ Umd+2(R′). There exists thus N ∈ SLd+2(R′)
such that e1N = v = e1M and N ≡ Idd+2 (mod sR′). The matrix MN−1 satisfies
e1MN−1 = e1 and therefore there exists H ∈ SLd+1(R′) and b ∈ (R′)d+1 such that

MN−1 =
(

1 0
bt H

)
.

Since N(0) = N(1) = M(0) = Idd+2 andM(1) = 1 ⊥ G, we see that H(0) = Idd+1

and H(1) = G. �

Corollary 4.7. Let R be a smooth affine algebra over an algebraically closed field
k. Then SLd+1(R) ∩ E(R) = Ed+1(R).

Proof. In view of the above proposition, we know that for any G ∈ SLd+1(R)∩E(R)
there exists H ∈ SLd+1(R[X]) such that H(0) = Id and H(1) = G. By Vorst’s
result [17], we get that H ∈ Ed+1(R[X]). It follows that G ∈ Ed+1(R) and the
result is proved. �

proof of Theorem 4.4. We first show that V is surjective. Let G ∈ S2n(R) with
n ≥ 3. Since G is skew-symmetric, its first row is of the form (0, w) for some
w ∈ Um2n−1(R). Since 2n− 1 > 3 + 1, it follows from Swan’s Bertini theorem that
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there exists an elementary matrix E ∈ E2n−1(R) such that vE = (1, 0, . . . , 0) := e1.

Set F =
(

1 0
0 E

)
∈ E2n(R). Then

EtGE =
(

0 e1
−et1 M

)
for some skew-symmetric matrix M (not necessarily invertible). There exists then
an elementary matrix E2 ∈ E2n(R) such that

Et2E
tGEE2 = ψ2 ⊥ H

for some H ∈ S2n−2(R). It follows that any G ∈ S2n(R) for n ≥ 3 has a represen-
tative in S4(R).

If G ∈ S4(R), then we can write

G =


0 −a1 −a2 −a3

a1 0 −b3 b2
a2 b3 0 −b1
a3 −b2 b1 0


for some a1, a2, a3, b1, b2, b3 ∈ R. SinceG is of Pfaffian 1, it follows that (a1, a2, a3) ∈
Um3(R) and that

∑
aibi = 1. Therefore V is surjective.

Following the arguments of [15, Theorem 5.2(c)], we now show that it is enough
to prove that SL4(R) ∩ E(R) = E4(R) in order to prove that V is injective. In
view of Corollary 4.7, this would conclude the proof. �

Corollary 4.8. Let R be a smooth affine threefold over an algebraically closed field.
Then Um3(R)/E3(R) is endowed with the structure of an abelian group.

We now prove some results in order to understand the group law in Um3(R)/E3(R)
a bit better. We begin with Vaserstein rule.

Lemma 4.9 (Vaserstein rule). Let R be a ring and let (a, b, c) and (a, d, e) be
unimodular rows. Let d′, e′ ∈ R be such that dd′ + ee′ ≡ 1 (mod aR). Then

V (a, b, c) ⊥ V (a, d, e) = V (a,
(
b c

)
·
(
d e
−e′ d′

)
)

in WE(R).

Lemma 4.10 (Rao’s antipodal Lemma). Let R be a ring and (a, b, c) ∈ Um3(R).
Suppose that (a, b, c) and (−a, b, c) are in the same elementary orbit. Then for any
n ∈ N, we have

nV (a, b, c) = V (an, b, c)

in WE(R).

Corollary 4.11. Let R be a ring such that there exists u ∈ R with u2 = 1. Then
for any n ∈ N, we have

nV (a, b, c) = V (an, b, c)

in WE(R).

Proof. �
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5. Lecture 5: Around the cohomology of some sheaves

5.1. Milnor K-theory. Let F be a field, and F× = F \ {0} the (abelian) group
of invertible elements in F . Recall that the Milnor K-theory groups KM

n (F ) of F
are defined as follows (see [9]).

Consider the tensor algebra

T (F×) = Z⊕ F× ⊕ (F× ⊗ F×)⊕ . . .
with its obvious graduation and the ideal I = 〈a ⊗ (1 − a) | a 6= 0, 1〉. It is clear
that I is generated by homogeneous elements, and therefore the quotient algebra
KM
∗ (F ) := T (F×)/I has a natural gradation. We set KM

n (F ) to be the n-th graded
piece of this algebra.

Alternatively, we can define KM
∗ (F ) to be the free associative graded Z-algebra

generated by the elements {a} with a ∈ F× in degree one subject to the relation

{a} · {1− a} = 0

for any a 6= 0, 1. Given a1, . . . , an ∈ F×, we usually write {a1, . . . , an} instead of
{a1} · . . . · {an} in KM

n (F ).

Lemma 5.1. We have
1. {a, a} = {a,−1} for any a ∈ F×.
2. {a1, . . . , an} = 0 if

∑
ai = 0 or

∑
ai = 1.

3. {a, b} = −{b, a} for any a, b ∈ F×.

Proof. �

If F ⊂ L is a field extension, there is an obvious homomorphism KM
∗ (F ) →

KM
∗ (L) induced by {a} 7→ {a}. If i : F → L is the inclusion, we often denote by i∗

the induced map on Milnor K-theory.

5.1.1. Residue homomorphisms. Suppose that F is endowed with a discrete valua-
tion v : F → Z ∪∞ with valuation ring Ov, maximal ideal mv and quotient field
k(v) = Ov/mv. Choose a uniformizing parameter πv ∈ mv and set U = Ov \mv. If
u ∈ U , we denote by u its class in k(v)×.

Lemma 5.2. There exists a unique homomorphism ∂ : KM
n (F ) → KM

n−1(k(v))
such that
1. ∂({πv, u2, . . . , un}) = {u2, . . . , un} for any u2, . . . , un ∈ U .
2. ∂({u1, u2, . . . , un}) = 0 for any u1, . . . , un ∈ U .

Proof. We follow Serre’s idea. Consider the free associative graded Z-algebra gen-
erated by the symbols {a} with a ∈ k(v)× and ξ in degree one subject to the
relations
1. {a, 1− a} = 0 for any a 6= 0, 1.
2. ξ · {a} = −{a} · ξ for any a ∈ k(v)×.
3. ξ2 = ξ · {−1}.
It is clear that this algebra is of the form KM

∗ (k(v))[ξ] and that 1, ξ form a basis of
this algebra as a KM

∗ (k(v))-module.
If a ∈ F×, we can write uniquely a = πivu with i ∈ Z and u ∈ U . Let A be the

free graded associative algebra A generated by the elements {a} with a ∈ F×. We
can then define a map

θ : A→ KM
∗ (k(v))[ξ]
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by θ({a}) = iξ + {u}. Let a ∈ F× be such that a 6= 1. We now check that
θ({a, 1 − a}) = 0. Suppose that a = πivu for u ∈ U . We distinguish three cases.
Suppose first that i > 0. In that case, 1− a = 1− πivu is invertible and 1− a = 1.
It follows immediately that θ({1−a}) = 0 and thus θ({a, 1−a}) = 0. If i = 0, then
1−a = πjvw for some w ∈ U . If j > 0, then we are reduced to the previous case and
we can suppose that j = 0 as well. Since {a, 1− a} = 0, we get θ({a, 1 − a}) = 0.
Suppose finally that a = u/πiv for i > 0. In this case, 1−a = (πiv−u)/πiv. We have

θ({a, 1− a}) = θ({a})θ({1− a}) = (−iξ + {u})(−iξ + {−u}).

Using relations 2. and 3. above, we get

(−iξ + {u})(−iξ + {−u}) = i2{−1}ξ − iξ{−u}+ iξ{u}+ {u}{−u}.

By Lemma 5.1, we have {u}{−u} = 0. Moreover, since {−u} = {−1} + {u}, the
right-hand term becomes i2{−1}ξ + i{−1}ξ. Now {−1} is 2-torsion, the assertion
follows from the fact that i2 + i ≡ 0 (mod 2) for any i ∈ Z.

Therefore, the homomorphism θ induces a homomorphism of graded algebras

θ : KM
∗ (F )→ KM

∗ (k(v))[ξ].

It follows that θ(α) = ψ(α) + ξ∂(α) for any α ∈ KM
∗ (F ). The homomorphism ∂

does the job.
It remains to prove that ∂ is unique. This is clear, since Lemma 5.1 shows that

any α ∈ KM
n (F ) can be written as a sum of symbols of the form {πv, u2, . . . , un}

and {u1, u2, . . . , un}. �

Remark 5.3. Observe that ∂ doesn’t depend on the choice of the uniformizing
parameter πv. This follows from the simple fact that if π′v is another uniformizing
parameter, then π′v = πvu for some unit u. It follows that {π′v} = {πv}+ {u} and
the homomorphism obtain through π′v and πv are the same. On the other hand,
the homomorphism ψ obtained using Serre’s trick is dependent on the choice of πv.

Let F be a field, and let F (X) the field in one indeterminate over F . Let
V be the set of irreducible monic polynomials in F [X]. Any P ∈ V induces a
valuation that we call P -adic valuation with residue field F (P ) and associated
residue homomorphism ∂P : KM

∗ (F (X))→ KM
∗−1(F (P )).

There is yet another interesting valuation on F (X). Associating to a polynomial
Q ∈ F [X] minus its degree yields a valuation v∞ : F (X) → Z ∪ ∞ that we call
valuation at infinity. We denote by ∂∞ : KM

∗ (F (X)) → KM
∗−1(F ) the associated

residue map. It is clear that any α ∈ KM
∗ (F (X)) vanishes under the associated

residue maps for all valuations P ∈ V except a finite number of them.

Theorem 5.4. Let i : F → F (X) be the inclusion. Then the following sequence is
split exact for any n ∈ N

0 // KM
n (F ) i∗ // KM

n (F (X))
P

P∈V ∂v//
⊕
P∈V

Kn−1(F (P )) // 0.

Proof. We first show that i∗ is injective by exhibiting a retraction r. Consider the
homomorphism

{X} : KM
n (F (X))→ KM

n+1(F (X))
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defined by α 7→ {X} · α. We define r as the following composite

KM
n (F (X))

{X} // KM
n+1(F (X))

∂X // KM
n (F ) .

Since X is a uniformizing parameter of the X-adic valuation, it follows essentially
from Lemma 5.2 that ri∗ = Id.

We now follow Milnor to prove at the same time that the sequence is exact in
the middle and on the right. Let Ld ⊂ KM

n (F (X)) be the subgroup generated
by elements of the form {f1, . . . , fn} with fi of degree ≤ d for any i = 1, . . . , n.
Observe that L0 is precisely i∗(KM

n (F )) (and is therefore a direct factor) and that
we have a filtration

L0 ⊂ L1 ⊂ L2 ⊂ . . .
with ∪Li = KM

n (F (X)).
Let P be an irreducible monic polynomial of degree d. Consider the map

hP : F (P )× × . . .× F (P )× → Ld/Ld−1

defined by hP (g1, . . . , gn−1) = {P, g1, . . . , gn−1} where gi is the unique polynomial
of degree < d representing gi for any i = 1, . . . , n − 1. We first prove that hP
induces a homomorphism

hP : F (P )× ⊗ . . .⊗ F (P )× → Ld/Ld−1

Suppose that g1 = g′1g
′′
1 . Let g′1 and g′′1 be the unique polynomials of degree < d

representing these polynomials. Then g1 = g′1g
′′
1 +fP for some polynomial f , which

is easily seen to be of degree < d. If f = 0 there is nothing to do, and we may
suppose that f 6= 0. It follows that 1 = g′1g

′′
1/g1 +fP/g1 and thus Lemma 5.1 gives

({f}+ {P} − {g1})({g′1}+ {g′′1} − {g1}) = 0

in KM
2 (F (X)). Multiplying on the right by {g2, . . . , gn−1} and reducing modulo

Ld−1, we obtain

{P, g′1, g2, . . . , gn−1}+ {P, g′′1 , g2, . . . , gn−1} − {P, g1, g2, . . . , gn−1} = 0.

Therefore we get the desired homomorphism

hP : F (P )× ⊗ . . .⊗ F (P )× → Ld/Ld−1.

Suppose that gj + gj+1 = 1 for some j = 1, . . . , n− 2. It follows that gj + gj+1 = 1
and we therefore see that hP induces a homomorphism

hP : KM
n−1(F (P ))→ Ld/Ld−1.

We thus obtain a homomorphism

hd :
⊕

P∈V of degree d

KM
n−1(F (P ))→ Ld/Ld−1.

On the other hand, it is clear that
∑
P∈V ∂P : KM

n (F (X)) →
⊕
P∈V

KM
n−1(F (P ))

induces a homomorphism

∂d : Ld/Ld−1 →
⊕

P∈V of degree d

KM
n−1(F (P ))

and it is easy to check that ∂dhd = Id. Therefore hd is an isomorphism if and only
if it is surjective.
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Any generator of Ld can be expressed as {f1, . . . , fs, gs+1, . . . , gn} with deg(fi) =
d and deg(gj) < d. We can further suppose that fi is monic for any i = 1, . . . , s.
Suppose that s ≥ 2. In that case, we can write f2 = f1 + g for some g of degree
< d. If g = 0, we can use Lemma 5.1 to get rid of f2. We suppose therefore that
g 6= 0. Since f1/f2 + g/f2 = 1, we can use Lemma 5.1 to get

0 = ({f1} − {f2})({g} − {f2}) = {f1, g} − {f1, f2} − {f2, g}+ {f2,−1}.
It follows that Ld is generated by elements of the form {f, g2, . . . , gn} with deg(f) =
d and deg(gi) < d. If f is reducible, then {f, g2, . . . , gn} splits as a sum of elements
of Ld−1 and then vanishes in Ld/Ld−1. It follows that Ld/Ld−1 is generated by
elements of the form {f, g2, . . . , gn} with f irreducible and monic. Therefore hd is
an isomorphism.

We conclude by induction that
∑
P∈V ∂v induces an isomorphism

KM
n (F (X))/KM

n (F )→
⊕
P∈V

Kn−1(F (P )).

The theorem follows. �

5.1.2. The transfer maps. Let P be an irreducible monic polynomial in F [X]. Let
i : F → F (P ) be the inclusion. For any n ∈ N, we define a homomorphism

i∗ : KM
n (F (P ))→ KM

n (F )

as the composite

KM
n (F (P )) //

⊕
P∈V

Kn−1(F (P )) s // KM
n+1(F (X))

−∂∞ // KM
n (F )

where s is any section of
∑
P∈V ∂v. Since ∂∞i∗ = 0, it follows from Theorem 5.4

that i∗ doesn’t depend on the choice of s.
Suppose now that F ⊂ K is a finitely generated algebraic field extension. Denote

by i : F → K the inclusion. We have a filtration

F = K0 ⊂ K1 ⊂ . . . ⊂ Kd = K

where Kj = Kj−1[X]/Pj for some irreducible monic polynomial Pj for any j =
1, . . . , d. Composing the successive residue maps, we obtain a homomorphism

i∗ : KM
n (K)→ KM

n (F ).

Theorem 5.5. Let i : F → K be a field homomorphism such that K is finitely
generated and algebraic over F . Then i∗ : KM

n (K) → KM
n (F ) doesn’t depend on

the choice of a filtration

F = K0 ⊂ K1 ⊂ . . . ⊂ Kd = K

such that Kj = Kj−1(θj) for any j = 1, . . . , d.

5.1.3. The Gersten complex. Let X be a smooth scheme over a field k. For any
i ∈ N, we denote by X(i) the set of points x ∈ X of codimension i (i.e. dim(OX,x) =
i). Let x ∈ X(i) for some i ∈ N and let y ∈ X(i+1) be in the closure of x. Then
OX,y/xOX,y is a one dimensional local k-algebra with quotient field k(x). Let B(y)
be the integral closure of OX,y/xOX,y in k(x). Then B(y) is a finite OX,y/xOX,y-
module and the finitely many closed points z1, . . . , zn of Spec(B(y)) yields finitely
generated field extensions k(y) ⊂ k(zj) for any j = 1, . . . , n.
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Since B(y) is of dimension 1 and normal, it follows that it is regular. Therefore,
we see that B(y)zj is a valuation ring for any zj with residue field k(zj). We get a
residue map

∂ : KM
n (k(x))→

⊕
zj

KM
n−1(k(zj))

and a transfer map ⊕
zj

KM
n−1(k(zj))→ KM

n−1(k(y)).

We define the residue homomorphism

∂yx : KM
n (k(x))→ KM

n−1(k(y))

as the composite of the two previous maps. If y is not in the closure of x, we then
set ∂yx = 0.

It is clear that given an element α ∈ KM
n (k(x)), there are only a finite number

of y ∈ X(i+1) such that ∂yx(α) 6= 0 and we see that we finally get a homomorphism

∂i :
⊕
x∈X(i)

KM
n (k(x))→

⊕
x∈X(i+1)

KM
n−1(k(x)).

For any smooth scheme X of dimension d and any n ∈ N, we denote by C(X,KM
n )

the sequence of abelian groups⊕
x∈X(0)

KM
n (k(x)) ∂0

//
⊕

x∈X(1)

KM
n−1(k(x)) ∂1

// . . .
∂d−1

//
⊕

x∈X(d)

KM
n−d(k(x))

We see thus sequence as a cochain complex with the gradation given by the codi-
mension.

Theorem 5.6. For any smooth scheme X and any n ∈ N, the sequence C(X,KM
n )

is a complex.

In view of the theorem, we can consider the cohomology groups Hi(X,KM
n ) of

the complex C(X,KM
n ).

5.2. Galois cohomology.

5.2.1. The Galois symbol. Let p be a prime number, F be a field of characteristic
different from p and let Fsep be a separable closure of F . We denote by GF the
Galois group of Fsep over F . Suppose that m ∈ N is prime to the characteristic of
F . The Kummer exact sequence of (continuous) GF -modules

0 // µn // F×sep
n // F×sep // 0

yields an exact sequence

F×
n // F×

δ // H1(GF , µn) // H1(GF , F×).

By Hilbert Theorem 90, we have H1(GF , F×) = 0 and therefore δ induces an
isomorphism F×/(F×)n → H1(GF , µ2). If a ∈ F×, we denote by (a) ∈ H1(GF , µn)
its image under δ. We obtain an isomorphism

χ(n)1 : KM
1 (F )/n→ H1(GF , µn)

given by {a} 7→ (a).
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Lemma 5.7. The map χ(n)1 extends to a homomorphism of graded rings

χ(n)∗ : KM
∗ (F )/n→ H∗(GF , µ⊗∗n ).

Proof. It suffices to prove that (a) ∪ (1− a) = 0 in H2(GF , µ⊗2
n ). Let

Xn − a =
k∏
i=1

pi(X)ni

by the decomposition of Xn − a in irreducible (monic) polynomials over F [X].
Let αi ∈ Fsep be such that F (αi) = 0 and let Fi = F (αi) = F [X]/pi(X). Then
NFi/F (1− αi) = pi(1) (exercise) and we find

1− a =
k∏
i=1

pi(1)ni =
k∏
i=1

NFi/F (1− αi)ni .

It follows that (1− a) =
∑k
i=1 ni(NFi/F (1− αi)) =

∑k
i=1 niNFi/F (1− αi) where

NFi/F : H1(GFi
, µn)→ H1(GF , µn)

is the corestriction map. It follows from the projection formula that

(a) ∪ (1− a) = (a) ∪
k∑
i=1

niNFi/F (1− αi) =
k∑
i=1

niNFi/F ((a) ∪ (1− αi)).

Now a = αni in Fi and thus (a) = (αi)n = 0 in KM
1 (Fi)/n. The result is therefore

proved. �

It follows directly from the definition that χ(n) induces an isomorphism in degree
≤ 1. The question to know if χ(n)i is also an isomorphism for i ≥ 2 is known as the
Block-Kato conjecture. The case i = 2 was proved by Merkurjev and Suslin, and
recently the general case was proved by Voevodsky-Suslin, together with Weibel’s
patch. We will only need the result for i = 2 and we state it for further reference.

Theorem 5.8 (Merkurjev-Suslin). Let F be a field and n ∈ N be an integer prime
to char(k). Then the Galois symbol

χ(n)2 : KM
2 (F )/n→ H2(GF , µ⊗2

n )

is an isomorphism.

5.2.2. Cohomological dimension. Let F be a field and let GF be its absolute Galois
group and let p be a prime number. We say that F is of p-cohomological dimension
≤ n and we write cdp(F ) ≤ n if Hq(GF , A) = 0 for any q > n and any discrete
GF -module A whose torsion is p-primary. We say that F is of p-cohomological
dimension n and we write cdp(F ) = n if cdp(F ) ≤ n and cdp(F ) 6≤ n− 1. We write
cd(F ) = sup(cdp(F )).

We recall the following results due to Serre:

Proposition 5.9. Suppose that F is of characteristic p > 0. Then cdp(F ) ≤ 1.

Proposition 5.10. Let F ⊂ F ′ be a field extension of transcendence degree n, and
let p be a prime number. Then

cdp(F ′) ≤ cdp(F ) + n.

The inequality is an equality if F ′ is finitely generated over F , cdp(F ) < ∞ and
p 6= char(k).
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Corollary 5.11. Let F be an algebraically closed field and let F ⊂ F ′ be a finitely
generated field extension. Then cd(F ′) = trdeg(F ′/F ).

Proof. Since F is algebraically closed, if follows that cd(F ) = 0. If F ′ is algebraic
over F , then there is nothing to prove since F = F ′. Suppose then that F ⊂ F ′ is
of transcendence degree n ≥ 1. If p 6= char(F ), then Proposition 5.10 shows that
cdp(F ′) = n. If p = char(F ), then cdp(F ′) = 1 by Proposition 5.9 and it follows
that cd(F ′) = n = trdeg(F ′/F ). �

5.2.3. Etale cohomology. Let X be a smooth scheme over a field k, and let Y be
a scheme. Recall that a morphism f : Y → X is said to be étale if the following
conditions are satisfied:
1. f is flat.
2. f is of constant relative dimension 0.
3. ΩY/X = 0.

In particular, Y is smooth if f is étale. We can form the category Et(X) whose
objects are the schemes Y over X such that the structural morphism p : Y → X
is étale and whose morphisms are morphisms of X-schemes. It follows from ??
that morphisms in Et(X) are indeed étale morphisms. If Y ∈ Et(X) is a scheme,
then a covering of Y is a family of étale morphisms (gi : Ui → Y )i∈I such that
∪gi(Ui) = Y . This defines a topology on Et(X), the étale topology.

An étale presheaf of abelian groups on Et(X) is a contravariant functor

F : Et(X)→ Ab

such that F (∅) = 0. As usual, if f : U → V is a morphism in Et(X) we denote by
s|U the element F (f)(s) for any s ∈ V .

A morphism of presheaves is a natural transformation F → G. We can define
in an obvious way the notions of kernel and cokernel and we obtain an abelian
category Psh(X) of presheaves on Et(X). A sheaf on Et(X) is a presheaf F such
that the following sequence of abelian groups

F (U) // ∏
i∈I F (Ui) // //

∏
i,j∈I F (Ui × Uj)

is exact (i.e. F (U) is the equalizer of the diagram on the right) for any covering
(gi : Ui → U)i∈I of U . We denote by Sh(X) the category of étale sheaves on Et(X).

Remark 5.12. Let X = Spec(k), where k is a field. Then Y ∈ Et(X) if and only
if Y =

∐n
i=1 Li for separable algebraic extensions Li/k. Let k be the separable

closure of k, and Gk = Gal(k/k) be its Galois group.
Suppose that F is a sheaf on Et(X) and that L/k is a a finite separable field

extension. Then G acts on L (say on the left) and therefore also on F (L). If L′/L
is also a finite separable extension, then the map

F (L)→ F (L′)

is a homomorphism of G-modules. We can thus define a G-module MF by setting

MF := limF (L)

where L runs through the finite separable extensions of k in k. Let x ∈MF . There
exists then L/k finite and separable such that x is in the image of the canonical
morphism F (L) → MF . It follows that H := Gal(k/L) acts trivially on x and
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by consequence the stabilizer of x is open in G since it contains H. Therefore the
action of G on MF is continuous.

Conversely, let M be a discrete abelian group endowed with a continuous action
of G. We can define a presheaf FM as follows. If L/k is a finite separable extension
and H := Gal(k/L) then we set F (L) = MH . We extend this definition to schemes
Y =

∐n
i=1 Li with Li finite and separable over k by putting M(Y ) =

∏n
i=1 F (Li).

It is easy to check that F is indeed a presheaf. It is even a sheaf by [8, Chapter II,
Lemma 1.8].

We can easily check that the correspondences F →MF andM → FM are inverse
to each other.

Theorem 5.13. Let F be a presheaf on Et(X). Then there exists a sheaf aF and
a morphism of presheaves φ : F → aF such that for any morphism of presheaves
F → G with G a sheaf there exists a unique morphism of sheaves ψ : aF → G such
that the diagram

F
φ //

  B
BB

BB
BB

B aF

ψ

��
G

commutes.

Recall that a sheaf I on Et(X) is injective if the functor F → homSh(X)(F, I) is
exact.

Proposition 5.14. The category Sh(X) has enough injectives.

Proof. For any x ∈ X, choose a separable closure k(x) of k(x). Let x := Spec(k(x))
and ux : x→ X be the associated morphism.

Let F be a sheaf on Et(X). The stalk u∗xF of F at x is the limit limF (U) on
étale morphisms f : U → X such that the map ux : x → X factors through U
(or more precisely the sheaf associated to this limit). Since the category Et(x) is
equivalent to the category of abelian groups, it follows that there exists an injective
abelian group Ix and a monomorphism jx : u∗xF → Ix.

For any sheaf G ∈ Et(x), denote by (ux)∗G the sheaf whose sections on U in
Et(X) is the abelian group G(U ×X x). It is a straightforward exercise to check
that (ux)∗ is left exact, and it follows that jx : u∗xF → Ix induces a monomorphism
ix : (ux)∗u∗xF → (ux)∗Ix. The functors u∗x and (ux)∗ are adjoint to each other, and
the unit of the adjunction reads as a morphism ηx : F → (ux)∗u∗xF . We obtain a
sequence of morphisms

F

Q
ηx // ∏

x∈X(ux)∗u∗xF
Q
ix // ∏

x∈X(ux)∗Ix.

We claim that the composite is a monomorphism and that
∏
x∈X(ux)∗Ix is injective.

The first assertion follows from the fact that a morphism of sheaves f : F → G is a
monomorphism if and only if u∗xf : u∗xF → u∗xG is a monomorphism for any geomet-
ric point x→ X. Indeed, if y ∈ X is a point and y is the geometric point associated
to y, then u∗y

∏
x∈X(ux)∗u∗xF = u∗y(uy)∗u∗yF and u∗yηy : u∗yF → u∗y(uy)∗u∗yF is split

injective. The second assertion follows from the fact that (ux)∗Ix is injective for
any x ∈ X by adjunction and that a product of injectives is still injective. �
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We can this define the cohomology groups of a sheaf F ∈ Et(X) using the usual
procedure. Namely, choose an injective resolution

0 // F // I0 // I1 // . . .

of F and define the cohomology groups Hi
et(X,F ) as the cohomology groups of the

complex
0 // I0(X) // I1(X) // . . .

If X = Spec(k) for some field k with Galois group Gk, then the equivalence of
categories between sheaves on Et(X) and discrete Galois modules yields a canonical
isomorphism Hi

et(X,F ) = Hi(Gk,MF ) for any i ∈ N.
Let Z ⊂ X be a closed subset, and U = X \ Z. We define the functor

ΓZ(X,_) : Sh(X)→ Ab
by ΓZ(X,F ) := ker(F (X)→ F (U)). A simple diagram chase shows that ΓZ(X,_)
is left exact and we define Hi

et,Z(X,F ) as the derived functors of ΓZ(X,_).

Proposition 5.15. For any F ∈ Sh(X), we have a long exact sequence

0 // H0
et,Z(X,F ) // F (X) // F (U) // H1

et,Z(X,F ) // . . . // Hi
et(X,F ) //

// Hi
et(U,F ) // Hi+1

et,Z(X,F ) // . . .

Proof. �

Corollary 5.16 (Excision). Let Z ⊂ X be a closed subset and X ′ be a scheme and
f : X ′ → X be an étale morphism. Let Z ′ = f−1(Z) and suppose that f induces
an isomorphism f : Z ′ → Z. Then f induces isomorphisms

f∗ : Hi
et,Z(X,F )→ Hi

et,Z′(X
′, f∗F )

for any i ∈ N and any sheaf F on Et(X).

Proof. For any sheaf F ∈ Sh(X), the morphism of sheaves F → f∗f
∗F yields a

commutative diagram

F (X) //

��

F (U)

��
f∗F (X ′) // f∗F (U ′).

(2)

where U ′ = X ′×XU , and therefore a homomorphism φ : ΓZ(X,F )→ ΓZ′(X ′, f∗F ).
Using the adjunction between f∗ and f∗, it is easy to see that f∗ preserves injective
sheaves and it suffices therefore to prove that φ is an isomorphism to conclude. In
order to do this, it suffices to prove that diagram (2) is Cartesian.

Since f is étale, we have f∗F (X ′) = f(X ′) and f∗F (U ′) = f(U ′). Thus diagram
(2) becomes

F (X) //

��

F (U)

��
F (X ′) // F (U ′)

which is clearly Cartesian since (X ′, U) is a covering of X. �
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We now deal with dévissage questions. Let n ≥ 2 be an integer prime to the
characteristic of the base field. We consider the sheaves F (i) for i ∈ Z on Et(X)
defined by

F (i) =


µ⊗in if i ≥ 1.
Z/n if i = 0.
HomSh(X)(µ⊗−in ,Z/n) if i ≤ 1.

F = µ⊗in where n is prime to the characteristic of the base field and i ≥ 1 is an
integer. If k contains a primitive n-th root of unity ξ, then µn ' Z/n and thus
F (i) ' Z/n for any i ∈ Z.

It is straightforward to check that we have isomorphisms F (i)⊗F (j) ' F (i+ j)
for any i, j ∈ Z.

Theorem 5.17 (Dévissage). Suppose that Z ⊂ X is a closed subset of pure codi-
mension c. Suppose moreover that Z is smooth. Then we have isomorphisms

Hi−2c
et (Z,F (j − c))→ Hi

et,Z(X,F (j)).

for any i ∈ N and any j ∈ Z.

5.2.4. The weak Lefschetz theorem. Let X be a scheme and p be a prime number.
A sheaf F ∈ Sh(X) is said to be p-torsion if F (U) is a p-primary torsion abelian
group for any quasi-compact U ∈ Et(X). The scheme X is of p-cohomological
dimension n ∈ N if Hi

et(X,F ) = 0 for any i > n and any p-torsion sheaf F . We
write cdp(X) = n in that case, and cdp(X) =∞ if such an integer n doesn’t exist.
We define the cohomological dimension of X as cd(X) := suppcdp(X). The purpose
of this section is to prove the following theorem:

Theorem 5.18. Let X be a smooth affine scheme of dimension d over a separably
closed field k. Then cd(X) = dim(X) = d.

5.2.5. The Bloch-Ogus spectral sequence. In this section, we recall the construc-
tion of the Bloch-Ogus spectral sequence following [5, §1]. To avoid overloading
the notations, we simply write Hi(X,F ) and Hi

Z(X,F ) instead of Hi
et(X,F ) and

Hi
et,Z(X,F ). We also assume that X is equidimensional.
Let X be a scheme and let

~Z : ∅ ⊂ Zd ⊂ Zd−1 ⊂ . . . ⊂ Z1 ⊂ Z0 = X

be a filtration of X by closed subsets Zi ⊂ X. For convenience, we set Zi = ∅ if
i > d and Zi = X if i < 0. We also assume that codimX(Zp) ≥ p for any p ∈ Z.

For any p ∈ Z, any F ∈ Sh(X) and any pair (Zp+1, Zp), Proposition 5.15 yields
a long exact sequence of localization

. . . // Hp+q
Zp+1

(X,F ) ip+1,q−1
// Hp+q

Zp
(X,F )

jp,q

//

jp,q
// Hp+q

Zp\Zp+1
(X \ Zp+1, F )

kp,q
// Hp+q+1

Zp+1
(X,F )

ip+1,q

// . . .
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Setting Dp,q := Hp+q
Zp

(X,F ) and Ep,q := Hp+q
Zp\Zp+1

(X \ Zp+1, F ), we obtain an
exact couple in the sense of [18, §5.9]

Dp+1,q−1 ip+1,q−1
// Dp,q

jp,q

{{ww
ww

ww
ww

w

Ep,q
kp,q

eeKKKKKKKKKK

with kp,q of degree (0, 1). We thus get a spectral sequence

Ep,q =⇒ Hp+q(X,F ).

By definition Ep,q1 = Hp+q
Zp\Zp+1

(X\Zp+1, F ) and the differential dp,q1 : Ep,q1 → Ep+1,q
1

is the composite

Hp+q
Zp\Zp+1

(X \ Zp+1, F ) kp,q
// Hp+q+1

Zp+1
(X,F ) ip+1,q

// Hp+q+1
Zp+1\Zp+2

(X \ Zp+2, F )

If
~Z ′ : ∅ ⊂ Z ′d ⊂ Z ′d−1 ⊂ . . . ⊂ Z ′0 = X

is another filtration of X, then we say that ~Z ≤ ~Z ′ if Zp ⊂ Z ′p for any p ∈ Z. It is
clear that the exact couple above is functorial in ~Z with respect to this ordering. We
can pass to the limit and obtain a new exact couple with Dp,q := lim~Z H

p+q
Zp

(X,F )
and Ep,q := lim~Z H

p+q
Zp\Zp+1

(X \ Zp+1, F ).

If x ∈ X(p), we set Hp+q
x (X,F ) := limx∈U H

p+q

{x}∩U
(U,F ) where {x} is the closure

of x.

Lemma 5.19. We have

lim
~Z
Hp+q
Zp\Zp+1

(X \ Zp+1, F ) =
⊕

x∈X(p)

Hp+q
x (X,F ).

Proof. Let Y1, . . . , Yn be the irreducible components of codimension p in Zp. Then
Yi ∩ Yj is of codimension ≥ p + 1 for any i, j and we can refine Zp+1 by adding
these intersections and the higher codimensional components of Zp. We can thus
suppose that Yi ∩ Yj ⊂ Zp+1 for any i, j. We then have Zp \ Zp+1 =

∐
Yi \ Zp+1.

The lemma follows then from the following assertion.

Assertion 3. Let T1, T2 ⊂ X be closed subsets such that T1 ∩ T2 = ∅. Then
Hi
T1∪T2

(X,F ) = Hi
T1

(X,F )⊕Hi
T2

(X,F ).

Indeed, the localization sequences for T1 ⊂ T1 ∪ T2 and T2 ⊂ T1 ∪ T2 yield a
diagram

Hi
T1

(X,F )

�� ((QQQQQQQQQQQQQ

Hi
T2

(X,F ) //

''OOOOOOOOOOOO
Hi
T1∪T2

(X,F ) //

��

Hi
T1

(X \ T2, F )

Hi
T2

(X \ T1, F )

The diagonal arrows are isomorphism by excision. �
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It follows from the lemma that the spectral sequence above has a first page whose
line q is equal to⊕

x∈X(0)

Hq
x(X,F ) //

⊕
x∈X(1)

Hq+1
x (X,F ) // . . . //

⊕
x∈X(d)

Hq+d
x (X,F ).

We now assume that the base field k is perfect, X is smooth and that F = µ⊗mn
for some integer n prime to char(k) and some m ∈ N . If x ∈ X(p), then there
exists U ⊂ X such that {x} ∩ U is smooth. In view of Theorem 5.17, we have an
isomorphism

Hp+q

{x}∩U
(U, µ⊗mn ) ' Hp−q(k(x), µ⊗(m−p)

n )

and it follows that the q-th line at the first page of the spectral sequence looks like⊕
x∈X(0)

Hq(k(x), µ⊗mn ) // . . . //
⊕

x∈X(d)

Hq−d(k(x), µ⊗(m−d)
n ).(3)

If moreover k contains a primitive n-th root of unity ξ, then we can replace µ⊗(m−i)
n

by Z/n everywhere in the sequence.

Theorem 5.20. Let n be an integer prime to char(k). The Galois symbols

χ(n)q−p : KM
q−p(k(x))/n→ Hq−p(k(x), µn⊗(q−p))

induce a morphism of complex⊕
x∈X(0)

KM
q (k(x))/n //

χ(n)q

��

. . . //
⊕

x∈X(d)

KM
q−d(k(x))/n

χ(n)q−d

��⊕
x∈X(0)

Hq(k(x), µ⊗qn ) // . . . //
⊕

x∈X(d)

Hq−d(k(x), µ⊗(q−d)
n )

Proof. �

Suppose that V ∈ Et(X). Then we can consider the group Hq(V, µ⊗mn ). If
f : V ′ → V is a morphism in Et(X) then f is in particular étale and induces a
homomorphism

f∗ : Hq(V, µ⊗nm )→ Hq(V ′, f∗µ⊗nm ) = Hq(V ′, µ⊗nm ).

We therefore obtain a presheaf

Hq(n,m) : Et(X)→ Ab

defined by V 7→ Hq(V, µ⊗mn ). We also denote by Hq(n,m) the Zariski sheaf asso-
ciated to the presheaf Hq(n,m).

Theorem 5.21 (Gersten conjecture). For any q ≥ 0 the complex (3) is a flabby
resolution of the sheaf Hq(n,m). In particular, its cohomology groups compute the
cohomology of the sheaf Hq(n,m) and Hi(Hq(n,m)) = 0 if i ≥ q + 1.

Proof. �
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Corollary 5.22. Let k be a field and n ∈ N be prime to char(k). Let X be a
smooth scheme over k. Then the morphism of complexes χ of Theorem 5.20 induces
isomorphisms

Hi(X,Kj/n) ' Hi(X,Hj(n, j))
for any i, j ∈ N such that i ≥ j − 1.

Proof. This is a straightforward consequence of Theorems 5.20 and 5.8. �

Remark 5.23. Of course, the positive answer to the Bloch-Kato conjecture implies
that χ induces isomorphisms for any i, j ∈ N.

Corollary 5.24. Let X be a smooth affine scheme of dimension d ≥ 2 over an
algebraically closed field k. Let n ∈ N be such that (n, char(k)) = 1. Then

Hd−1(X,KM
d /n) = Hd(X,KM

d /n) = 0.

Proof. Since k is algebraically closed, we have µn = Z/n and therefore we have
Hi(k(x), µ⊗mn ) = Hi(k(x),Z/n) for anym ∈ N. In view of this the sheavesHi(n,m)
are all isomorphic to Hi(n, 0), that we write Hi(n) to lighten the notations.

By Corollary 5.11, we know that cd(k(x)) = d − p for any x ∈ X(p). It follows
that Hi(k(x),Z/n) = 0 for any i > d − p. We can therefore write the non trivial
group appearing at page 2 of the Bloch-Ogus spectral sequence as

H0(X,Hd(n)) H1(X,Hd(n)) . . . Hd−1(X,Hd(n)) Hd(X,Hd(n))

H0(X,Hd−1(n)) H1(X,Hd−1(n)) . . . Hd−1(X,Hd−1(n))

...
. . . . . .

H0(X,H0(n))

Therefore Hd−1(X,Hd(n)) and Hd−1(X,Hd(n)) cannot be neither the target nor
the source of any non trivial differential. Thus Ed−1,d

∞ = Hd−1(X,Hd(n)) and
Ed,d∞ = Hd(X,Hd(n)). Now the Bloch-Ogus spectral sequence converges to the
groups Hp+q

et (X,Z/n). Looking at the diagonal p+q = d−1 and p+q = d, we thus
see that H2d−1

et (X,Z/n) = Hd−1(X,Hd(n)) and H2d
et (X,Z/n) = Hd(X,Hd(n)).

Since d ≥ 2, we have 2d− 1 > d and we can apply Theorem 5.18 to conclude. �

We can now state the following result, which is one of the main ingredients of
Theorem 7.1.

Theorem 5.25. Let X be a smooth affine scheme of dimension d over an alge-
braically closed field k. Then Hd−1(X,KM

d ) is divisible prime to the characteristic
of k.

Proof. In order to prove the theorem, it suffices to show that if n ∈ N is prime to
char(k), the multiplication by n

Hd−1(X,KM
d ) n // Hd−1(X,KM

d )
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is surjective. Consider the multiplication by n morphism

C(X,KM
d ) n // C(X,KM

d ).

The cokernel of this multiplication is the complex C(X,KM
d /n) and we denote by

B(n) the kernel. We have therefore a commutative diagram

B(n)d−2
//

��

B(n)d−1
//

��

B(n)d

��⊕
x∈X(d−2)

KM
2 (k(x)) //

n

��

⊕
x∈X(d−1)

KM
1 (k(x)) //

n

��

⊕
x∈X(d)

KM
0 (k(x))

n

��⊕
x∈X(d−2)

KM
2 (k(x)) //

��

⊕
x∈X(d−1)

KM
1 (k(x)) //

��

⊕
x∈X(d)

KM
0 (k(x))

��⊕
x∈X(d−2)

KM
2 (k(x))/n //

⊕
x∈X(d−1)

KM
1 (k(x))/n //

⊕
x∈X(d)

KM
0 (k(x))/n

with exact columns. Since K0(F ) = Z for any field F , we see that B(n)d = 0. By
Corollary 5.24, we know that the bottom sequence is exact in the middle. A simple
diagram chase shows that the multiplication by n

n :
⊕

x∈X(d−1)

KM
1 (k(x))→

⊕
x∈X(d−1)

KM
1 (k(x))

induces the required surjection after taking cohomology. �

6. Lecture 6: The Gersten-Grothendieck-Witt spectral sequence

We refer here to M. Schlichting lectures for the general framework of higher
Grothendieck-Witt groups of schemes.

Let k be a field of characteristic different from 2 and let X be a quasi-projective
smooth scheme over k. Let Vect(X) be the category of coherent locally free OX -
modules. We denote by Chb(X) the category of bounded complexes of objects in
Vect(X). This category is endowed with a tensor product _ ⊗ _ and an internal
hom object [_,_] defined as follows. Let E and F be objects of Chb(X). Then
E ⊗ F is the complex such that

(E ⊗ F )i =
⊕

m+n=i

(Em ⊗ Fn)

and differential d(x⊗ y) = dx⊗ y + (−1)mx⊗ y if x⊗ y ∈ Em ⊗ Fn, and [E,F ] is
the complex

[E,F ]i = Hom(E[i], F )
where E[i] is the complex such that E[i]j := Ej−i and the differential is given by
dE[i] = (−1)idE . The differential

d : [E,F ]i → [E,F ]i−1

is defined by d(ϕ) = dF ◦ ϕ+ (−1)iϕ ◦ dE[i] = dF ◦ ϕ+ ϕ ◦ dE .
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We say that a morphism of complexes f : E → F is a quasi-isomorphism if
it induces an isomorphism in homology. We denote by quis the class of quasi-
isomorphisms in Chb(X).

Suppose that L is a line bundle overX. We consider L as a complex concentrated
in degree 0. To avoid complicated notation, we denote by (_)]

n
L the contravariant

functor
[_, L[n]] : Chb(X)→ Chb(X),

which defines a duality on Chb(X). A direct computation shows that this duality
preserves the quasi-isomorphisms. We have a natural isomorphism

$L : 1→ (_)]
n
L]

n
L

given by the evaluation isomorphisms ev : Ei → Hom(Hom(Ei, L), L). We set
$n
L = (−1)

n(n−1)
2 $L

Altogether, (Chb(X), quis, ]nL, $
n
L) is a dg-category with weak-equivalences and

duality in the sense of [12]. We can thus consider its n-th shifted Grothendieck-Witt
spectrum with coefficients in L denoted by GW [n](X,L).

We denote by GWn
i (X,L) the homotopy groups πi(GW [n](X,L)) (beware that

i might be negative). When L = OX , we omit it from the notation.
We now collect some results in order to define the spectral sequence we will need.

For simplicity, we suppose that X is integral.
For any i ∈ N, let Chb(X)i be the full subcategory of Chb(X) of objects E whose

homology is supported in degree ≥ i. It is clear that we have a filtration

0 ⊂ Chb(X)d ⊂ Chb(X)d−1 ⊂ . . . ⊂ Chb(X)1 ⊂ Chb(X)

where d = dim(X). Let i ∈ N and let j ∈ N be such that j ≥ i. We denote by
quisj the class of morphisms in Chb(X)i whose cone lies in Chb(X)j . Observe that
a quasi-isomorphism in Chb(X) belongs to quisj for any j ∈ N and we obtain a
filtration

quis = quisd+1 ⊂ quisd ⊂ . . . ⊂ quisi+1 ⊂ quisi

for any i ∈ N.

Lemma 6.1. Let L be a line bundle over X and n ∈ N. For any i, j ∈ N such
that j ≥ i, the duality ](n)L preserves the category Chb(X)i and the class quisj.
In particular, the quadruple (Chb(X)i, quisj , ]nL, $

n
L) is a dg-category with weak-

equivalences and duality.

Proof. Let E be an object of Chb(X)i. Let Supp(E) = {x ∈ X|H∗(Ex) 6= 0}. We
first prove that Supp(E]

n
L) ⊂ Supp(E). Indeed, suppose that x ∈ X is such that

Ex is exact. Then (E]
n
L)x = ([E,L[n]]x ' [Ex, Lx[n]] is also exact. Dualizing once

again, we see that Supp(E]
n
L]

n
L) ⊂ Supp(E]

n
L). Since E]

n
L]

n
L ' E it follows that

Supp(E]
n
L) = Supp(E).

Let now f : E → F in quisj . Let C(f) be the cone of f . By definition, there is
an exact sequence of chain complexes

0 // F // C(f) // E[1] // 0.

Accordingly, the cone of f ]
n
L fits into the exact sequence

0 // E]
n
L // C(f ]

n
L) // F ]

n
L [1] // 0
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The functor ]nL is exact on Chb(X)i and we can dualize the first sequence to obtain
a sequence

0 // E]
n
L [−1] // C(f)]

n
L // F ]

n
L // 0

Comparing the two last exact sequences, we see that C(f)]
n
L [1] ' C(f ]

n
L). Thus

Supp(C(f ]
n
L)) = Supp(C(f)]

n
L [1]) = Supp(C(f)]

n
L) = Supp(C(f)).

Therefore ]nL preserves quisj . �

For any j ≥ i, we therefore get a sequence of dg categories with weak-equivalences
and duality

(Chb(X)j , quis, ]nL, $
n
L)→ (Chb(X)i, quis, ]nL, $

n
L)→ (Chb(X)i, quisj , ]nL, $

n
L)

For any i, j ∈ N such that j ≥ i, letDb(X)i be the triangulated category obtained
by formally inverting the weak-equivalences, and Db(X)i/j be the triangulated cat-
egory obtained from Chb(X)i by inverting the class quisj .

Lemma 6.2. The sequence

Db(X)j → Db(X)i → Db(X)i/j

is an exact sequence of triangulated categories.

Proof. We observe first that Db(X)j ⊂ Db(X)i is a full thick subcategory by very
definition. The quotientDb(X)i/Db(X)j is the triangulated category obtained from
Db(X)i by inverting the class of morphisms whose cone is in Db(X)j . The functor
Db(X)i → Db(X)i/j therefore induces a functor Db(X)i/Db(X)j → Db(X)i/j .
On the other hand, the functor Chi(X)i → Db(X)i/Db(X)j induces a functor
Db(X)i/j → Db(X)i/Db(X)j and we check that the two functors are mutually
inverse to each other. �

It follows from [12, Theorem 6.6] that we obtain a homotopy fibration of Grothendieck-
Witt spaces

GW [n](Chb(X)j , quis, ]L, $L) // GW [n](Chb(X)i, quis, ]L, $L)

��
GW [n](Chb(X)i, quisj , ]L, $L)

We state this result in a slightly different form in the next result. We denote by
GWn

m(Chb(X)i, L) the homotopy groups πm(GW [n](Chb(X)i, quis, ]L, $L)) and by
GWn

m(Chb(X)i/j , L) the homotopy groups πm(GW [n](Chb(X)i, quisj , ]L, $L)).

Proposition 6.3. Let L be a line bundle and let n ∈ N. Let i, j ∈ N be such that
j ≥ i. Then we have a long exact sequence

. . . // GWn
m(Chb(X)j , L) // GWn

m(Chb(X)i, L) // GWn
m(Chb(X)i/j , L) //

// GWn
m−1(Chb(X)j , L) // GWn

m−1(Chb(X)i, L) // . . .

We now have everything in hand to construct the spectral sequence we need.
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Theorem 6.4. Let X be a smooth scheme of dimension d over a field k such that
char(k) 6= 2 . For any n ∈ Z and any line bundle L over X, there is a spectral
sequence of Grothendieck-Witt groups converging to E(n)m = GWn

n−m(X,L) with
terms on the first page

E(n)pq1 =

{
GWn

n−p−q(Ch
b(X)p/p+1, L) if 0 ≤ p ≤ d.

0 otherwise.

Proof. Consider the filtration of the category Chb(X):

0 = Chb(X)d+1 ⊂ Chb(X)d ⊂ . . . ⊂ Chb(X)1 ⊂ Chb(X)0 = Chb(X).

We know that for any i, j ∈ N such that j ≥ i we have a sequence of dg-categories
with weak-equivalences and duality

(Chb(X)j , qis, ]nL, $
n
L)→ (Chb(X)i, qis, ]nL, $

n
L)→ (Chb(X)i, qisj , ]nL, $

n
L).

By Proposition 6.3, we have a long exact sequence of Grothendieck-Witt groups
associated to this sequence.

IfA(n)p,q := GWn
n−p−q(Ch

b(X)p, L) and E(n)p,q := GWn
n−p−q(Ch

b(X)p/p+1, L),
this long exact sequence reads as

. . . // A(n)p+1,q−1 // A(n)p,q // E(n)p,q // A(n)p+1,q // . . .

Let A(n) :=
⊕

p,q A(n)p,q and E(n) :=
⊕

p,q E(n)p,q. We obtain an exact couple
([18, §5.9])

A(n) // A(n)

{{xxxxxxxx

E(n)

ccFFFFFFFF

which gives a spectral sequence starting with E(n)p,q1 = GWn
n−p−q(D

b(X)p/p+1, L).
This exact couple is bounded below because A(n)p,q = 0 if p < 0 or p ≥ d. Therefore
the spectral sequence converges to E(n)m := limA(n)−p,m+p = GWn

n−m(X,L) by
[18, Theorem 5.9.7]. �

Under this form, the spectral sequence is quite abstract, since it is hard to grasp
the groups GWn

n−p−q(Ch
b(X)p/p+1, L) involved. Our next aim is to provide a

computation of these groups.
If x ∈ X(p), we denote by ω]Lx the k(x)-vector space ExtpOX,x

(k(x), L⊗OX,x) and
we can consider the Grothendieck-Witt groups GWn

m(k(x), ω]Lx ) for any m,n ∈ Z.

Proposition 6.5 (Dévissage). We have isomorphisms

GWn
m(Chb(X)p/p+1, L) '

⊕
x∈X(p)

GWn−p
m (k(x), ω]Lx )

for any p ∈ N and any m,n ∈ Z.

Proof. Let x ∈ X(p) be a point of codimension p. Denote by Chbfl(OX,x) the
category of bounded complexes of free (coherent) OX,x-modules whose homology is
of finite length. The duality HomOX,xp

(_, L⊗OX,x) on free OX,x-modules induces
a duality on Chbfl(OX,x) that we still denote by ]L. It is straightforward to check
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that (Chbfl(OX,x), quis, ]nL, $
n
L) is a dg-category with weak-equivalences and duality.

Moreover, the localization functor (at x)

(Chb(X)p, quisp+1, ]nL, $
n
L)→ (Chbfl(OX,x), quis, ]nL, $

n
L)

is a functor of dg-categories with weak-equivalences and duality. Summing these
functors for any x ∈ X(p), we get a functor

(Chb(X)p, quisp+1, ]nL, $
n
L)→

∐
x∈X(p)

(Chbfl(OX,x), quis, ]nL, $
n
L)

which induces an equivalence of triangulated categories with duality ([2, Proposition
7.1])

Db(X)p/p+1 '
∐

x∈X(p)

Db
fl(Spec(OX,x)).

Such an equivalence induces an isomorphism

GWn
m(Chb(X)p/p+1, L) '

⊕
x∈X(p)

GWn
m(Chbfl(Spec(OX,x)), L⊗OX,x)(4)

by [12, Theorem 6.5].
Consider next the exact category OX,x − fl of finite length OX,x-modules and

the exact category Chb(OX,x − fl) of bounded complexes of finite length modules.
The duality [(_) := ExtpOX,x

(_, L⊗OX,x) and the natural isomorphism (see [2, §6
(18),§6 (19)])

$ext : 1→ ExtpOX,x
(ExtpOX,x

(_, L⊗OX,x), L⊗OX,x)

induces a duality on Chb(OX,x − fl) and a natural isomorphism. It turns out that
(Chb(OX,x− fl), quis, [,$ext) is a dg-category with weak-equivalences and duality.

Let C be the dg-category whose objects P•,• →M• are bounded bicomplexes of
the form

. . . // Mi+1
d // Mi

d // Mi−1
// . . .

. . . // Pi+1,0
∂ //

δ

OO

Pi,0
∂ //

δ

OO

Pi−1,0
//

δ

OO

. . .

. . . // Pi+1,1
∂ //

δ

OO

Pi,1
∂ //

δ

OO

Pi−1,1
//

δ

OO

. . .

. . . // . . .

OO

// . . .

OO

// . . .

OO

// . . .

where the Mi are finite length OX,xp
-modules, the Pij are free OX,xp

-modules such
that each column is a (bounded) free resolution of Mi and the mapping complex
C(P•,• →M•, Q•,• → N•) is given in degree n ∈ N by

C(P•,• →M•, Q•,• → N•)n :=
⊕
i,j

Hom(Pi−n,j , Qi,j)⊕
⊕
i

Hom(Mi−n, Ni)

with obvious differentials. The projection of such a bicomplex to the complex M•
yields a dg-functor p : C→ Chb(OX,xp

− fl). We say that a morphism f in C is a
weak-equivalence if p(f) is a weak equivalence in Chb(OX,xp

− fl).
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Moreover, C is endowed with a duality, obtained by sewing the dualities on
Chb(OX,xp − fl) and Chb(OX,xp)fl (see [2, proof of Lemma 6.4]). So finally we see
that C is a dg-catgeory with weak-equivalences and duality. The functor p : C →
Chb(OX,xp

− fl) preserves these structures. Moreover, taking the total complex
associated to P•,• (without M•, see [2, loc. cit.]), we also get a dg functor q : C→
Chb(OX,xp

)fl preserving the weak-equivalences and dualities. Both q and p yield
equivalences at the level of the associated triangulated categories and therefore we
get isomorphisms for any m,n by [12, Theorem 6.5] (after twisting n− p times):

(5) GWn
m(Db

fl(Spec(OX,xp
)), Lxp

) ' GWn−p
m (Db(OX,xp

− fl), [,$ext).

Let V(p) be the category of finite dimensional k(xp)-vector spaces. There is
a duality (_)∗ := Homk(xp)(_, ω]Lxp

) on V(p) where ωxp
is the one dimensional

vector space mxp/m
2
xp

and ω]Lxp
is Homk(xp)(ωxp , Lxp ⊗ k(xp)). The usual canonical

isomorphism 1→ (_)∗∗ is denoted by can. Now V(p) ⊂ OX,xp−fl and the functor

(Chb(V(p)), qis, (_)∗, can)→ (Chb(OX,xp − fl), qis, [,$ext)

is a functor of dg-categories with weak-equivalences and duality (use the canonical
isomorphism ω]Lxp

' ExtpOX,xp
(k(xp), Lxp

)). It induces an isomorphism in K-theory
and an isomorphism of Witt groups. By Karoubi induction ([12, Lemma 6.4]), this
functor induces an isomorphism

(6) GWn−p
m (Db(k(xp)), (_)∗, can) ' GWn−p

m (Db(OX,xp
− fl), [,$ext).

According to our conventions, the group GWn−p
m (Db(k(xp)), (_)∗, can) is denoted

by GWn−p
m (k(xp), ω]Lxp

). Putting (4), (5) and (6), we get the result. �

6.0.6. Some computations. The goal of this section is to compute some low dimen-
sional Grothendieck-Witt groups of fields whose characteristic is different from 2.
We first recall from M. Schlichting’s lectures that for any ring R such that 1

2 ∈ R
we have GW 0

i (R) = KiO(R) and GW 2
i (R) = KiSp(R).

Lemma 6.6. Let F be a field with char(F ) 6= 2. Then the hyperbolic map K0(F )→
GW 2(F ) is an isomorphism. Moreover, GW 2

1 (F ) = K1Sp(F ) = 0.

Proof. If V is an even-dimensional vector space and φ : V → V ∗ is a skew-symmetric
isomorphism, then there exists n ∈ N and α : F 2n → V such that αtφα = ψ2n. It
follows that the hyperbolic map is surjective. The map is also injective since two
modules of different ranks cannot be conjugate under an invertible matrix.

It follows from Vaserstein stability thm that Sp2(F ) → K1Sp(F ) is surjective.
Moreover, we have E2(F ) = SL2(F ) = Sp2(F ). Since E2(F ) ⊂ ESp2(F ), this
shows that K1Sp(F ) = 0. �

Lemma 6.7. The hyperbolic map K1(F )→ GW 3
1 (F ) is an isomorphism.

Proof. The Bott sequence reads as

GW 2
1 (F ) // K1(F ) // GW 3

1 (F ) // GW 2(F ) // K0(F ).

The above lemma shows that GW 2
1 (F ) = 0 and that the hyperbolic map K0(F ) =

Z→ GW 2(F ) is an isomorphism. Moreover, it is easy to see that the composite

K0(F ) H // GW 2(F )
f // K0(F )
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is equal to the multiplication by 2. Thus the hyperbolic map H is injective. The
Bott sequence yields the result. �

Remark 6.8. Alternatively, one can show by hand that WE(F ) = 0 and that the
Pfaffian homomorphism W ′E(F )→ F× is an isomorphism.

Consider now the Witt ring W (F ) and the fundamental ideal I(F ) ⊂ W (F ). If
n ∈ N, we denote by In(F ) the n-th power of this ideal.

Lemma 6.9. The forgetful homomorphism GWn
i (F ) → Kn(F ) induces an exact

sequence
0 // In+1(F ) // GWn

n (F ) // Kn(F ) // 0

for 0 ≤ n ≤ 2.

Proof. For n = 0, this is obvious. For n = 1, we refer to [3, Corollaire 4.5.1.5] and
the case n = 2 follows from [13, Corollary 6.4]. �

Corollary 6.10. We have GWn+1
n (F ) = 0 for 0 ≤ n ≤ 2.

Proof. Using the Bott sequence, we obtain

GWn
n (F ) // Kn(F ) // GWn+1

n (F )
η // GWn

n−1(F ) // Kn−1(F ) // GWn+1
n−1 (F )

If we specialize the above sequence at n = 1, we obtain a sequence

GW 1
1 (F ) // K1(F ) // GW 2

1 (F )
η // GW 1

0 (F ) // K0(F ) // GW 2(F )

and Lemma 6.6 shows that GW 1
0 (F ) = 0. Specializing now at n = 2, we get

GW 2
2 (F ) // K2(F ) // GW 3

2 (F )
η // GW 2

1 (F ) // K1(F ) // GW 3
1 (F )

Lemma 6.6 shows that GW 2
1 (F ) = 0, and Lemma 6.9 proves that GW 2

2 (F ) →
K2(F ) is surjective. Therefore GW 3

2 (F ) = 0. �

For an abelian group A, we denote by nA the elements of n-torsion in A.

Lemma 6.11. The forgetful functor induces surjections f : GW i−1
i (F )→ 2Ki(F )

for i = 1, 2. Moreover, if F is algebraically closed then f : GW 0
1 (F )→ {±1} is an

isomorphism.

Proof. For any field F , the Bott sequence sequence

GW i−1
i (F )

f // Ki(F ) H // GW i
i (F )

and Lemma 6.9 yield surjective homomorphisms

GW i−1
i (F )→ 2Ki(F )

for i = 1, 2. Suppose now that F is algebraically closed. The Bott exact sequence

GW 3
1 (F )

f // K1(F ) H // GW 0
1 (F ) // GW 3(F )

f // K0(F ) H // GW (F )

and Lemma 6.7 (together with the easy fact that H : K0(F )→ GW (F ) is injective)
give an exact sequence

0 // K1(F )/2 // GW 0
1 (F ) // GW 3(F ) // 0 .

Since F is algebraically closed, the left term is trivial. Now GW 3(F ) = Z/2 by
Lemma 6.6 and the Bott sequence once again. �
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We now have all the tools in hand to prove the main theorem of the section.

Theorem 6.12. Let X be a smooth affine threefold over an algebraically closed
field k. Then the Gersten-Grothendieck-Witt spectral sequence E(3)p,q yields an
isomorphism

WE(X) ' H2(X,K3).

Proof. First observe that the line q = 1 is trivial by Corollary 6.10. The line q = 2
reads as follows:

GW 3
1 (k(X), ωX) //

⊕
x∈X(1)

GW 2(k(x), ωx) // 0

Lemmas 6.6 and 6.7 show that this is isomorphic, via the hyperbolic homomorphism
H, to

K1(k(X)) //
⊕

x∈X(1)

K0(k(x)) // 0

whose homology at degree 0 is just OX(X)×. Now the Pfaffian homomorphism
GW 3

1 (X)→ OX(X)× is clearly split, and we see that the kernel of the edge homo-
morphism GW 3

1 (X)→ E(3)0,2∞ is precisely WE(X).
We now show that E(3)2,0∞ ' H2(X,K3). By definition, E(3)2,0∞ is the homology

of the complex⊕
x∈X(1)

GW 2
2 (k(x), ωx) //

⊕
x∈X(2)

GW 1
1 (k(x), ωx) //

⊕
x∈X(3)

GW (k(x), ωx).

We use the forgetful functor to compare this sequence with the corresponding se-
quence ⊕

x∈X(1)

K2(k(x)) //
⊕

x∈X(2)

K1(k(x)) //
⊕

x∈X(3)

K0(k(x))

inK-theory. Now the choice of a generator of ωx induces isomorphismsGWn
m(k(x))→

GWn
m(k(x), ωx) such that the following diagram commutes for any m,n ∈ N

GWn
m(k(x))

f //

��

Km(k(x))

GWn
m(k(x), ωx)

f
// Km(k(x)).

Lemma 6.9 now yields exact sequences

0 // In+1(k(x)) // GWn
n (k(x))

f // Kn(k(x)) // 0

for any 0 ≤ n ≤ 2 and any x ∈ X(n). If x ∈ X(n), then cd(k(x)) ≤ 3 − n
by Corollary 5.11. Hence H4−n(k(x), µ2) = 0 and the latter is isomorphic to
I4−n(k(x))/I5−n(k(x)) by [10, Theorem 4.1] and [16, Theorem 7.4]. The Arason-
Pfister Hauptsatz [1] then shows that I4−n(k(x)) = 0. The forgetful homomorphism
therefore induces an isomorphism of complexes between⊕

x∈X(1)

GW 2
2 (k(x), ωx) //

⊕
x∈X(2)

GW 1
1 (k(x), ωx) //

⊕
x∈X(3)

GW (k(x), ωx)
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and ⊕
x∈X(1)

K2(k(x)) //
⊕

x∈X(2)

K1(k(x)) //
⊕

x∈X(3)

K0(k(x)).

To conclude, we prove that E(3)3,−1
∞ = 0. It suffices to show that the cokernel

of the homomorphism⊕
x2∈X(2)

GW 1
2 (k(x2), ωx2) //

⊕
x3∈X(3)

GW 0
1 (k(x3), ωx3)

is trivial. Lemma 6.11 yields a commutative diagram⊕
x2∈X(2)

GW 1
2 (k(x2), ωx2) //

f

��

⊕
x3∈X(3)

GW 0
1 (k(x3), ωx3)

f

��⊕
x2∈X(2)

2K2(k(x2)) //
⊕

x3∈X(3)

2K1(k(x3))

in which the left vertical map is surjective and the right vertical map is an isomor-
phism. Hence both sequences have the same cokernel.

For any field F and any integer n ∈ N, define a homomorphism gn : Kn(F )/2→
2Kn+1(F ) by α 7→ {−1}·α. It is clear that g0 is an isomorphism, and g1 is surjective
by [13].

Using the definition of the residue homomorphisms, it is straightforward to check
that the diagram ⊕

x2∈X(2)

K1(k(x2))/2 //

P
g1

��

⊕
x3∈X(3)

K0(k(x3))/2

P
g0

��⊕
x2∈X(2)

2K2(k(x2)) //
⊕

x3∈X(3)

2K1(k(x3))

commutes and therefore the cokernels of the rows are isomorphic. The cokernel of
the top homomorphism is CH3(X)/2 which is trivial by [6, Lemma 1.2]. The result
follows. �

7. Lecture 7: Proof of the main theorem

Theorem 7.1. Let R be a d-dimensional normal affine algebra over an algebraically
closed field k such that gcd((d− 1)!, char(k)) = 1. If d = 3, suppose moreover that
R is smooth. Then every stably free R-module P of rank d− 1 is free.

Proof. Let P be a stably free module of rank d− 1. Since the result is clear when
d ≤ 2, we assume that d ≥ 3. Using Suslin’s cancellation theorem 2.5, we can
suppose that there is an isomorphism P ⊕ R ' Rd, and therefore that P is given
by a unimodular row (a1, . . . , ad). In view of Corollary 2.4, to prove that P is
free it suffices to show that there exists a unimodular row (b1, . . . , bd) such that
(a1, . . . , ad) = (b(d−1)!

1 , . . . , bd) in Umd(R)/Ed(R).
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Suppose that d ≥ 4. Let J be the ideal of the singular locus of R. Since R is
normal, J has height at least 2 and dim(R/J) ≤ d − 2. It follows from [4, Theo-
rem 3.5] that Umd(R/J) = e1Ed(R/J) and we can therefore assume, performing
elementary operations if necessary, that ad ≡ 1 (mod J) and a1, . . . , ad−1 ∈ J .
Using now Swan’s Bertini theorem 0.2, we can perform elementary operations on
(a1, . . . , ad) such that B := R/(a4, . . . , ad) is either empty, either a non-singular
threefold outside the singular locus of R. In the first case, the row (a4, . . . , ad)
is unimodular, and therefore the row (a1, . . . , ad) is completable in an elementary
matrix. Thus we can restrict to the second case. In this situation, we see that B is
actually smooth since ad ≡ 1 (mod J).

Given a unimodular row (a, b, c) on B, we can choose lifts a, b, c ∈ R and consider
the unimodular row (a, b, c, a4, . . . , ad) on R. It is straightforward to check that this
gives a well-defined map

Um3(B)/E3(B)→ Umd(R)/Ed(R),

showing that (a1, . . . , ad) comes from the unimodular row (a1, a2, a3) on B. We
are thus reduced to the case where R is the affine algebra of a smooth threefold.
By Theorem 4.4, the set Um3(R)/E3(R) is in bijection with WE(R) and is thus
endowed with the structure of an abelian group. Since −1 is a square in k, Lemma
4.11 shows that n · (a1, a2, a3) = (an1 , a2, a3) in Um3(R)/E3(R) for any n ∈ N. Now
Theorems 6.12 and 5.25 show that Um3(R)/E3(R) is a divisible group prime to the
characteristic of k. Since gcd((d− 1)!, char(k)) = 1, there exists a unimodular row
(b1, b2, b3) ∈ Um3(R) such that

(a1, a2, a3) = (d− 1)! · (b1, b2, b3) = (b(d−1)!
1 , b2, b3)

in Um3(R)/E3(R). The result follows. �
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