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1 Disclaimer
These are preliminary notes of the talks given by Marco at the ICTP workshop on classical non-stable
K-theory. I take full responsibility for all errors and typos.

2 Preliminaries
Throughout this talk we assume for simplicity that R is a commutative ring and ε ∈ {±1}.

Definition 2.1. An inner product space (P, 〈−,−〉) (IPS) is a pair of a finitely generated projective
R-module P and a non degenerate ε-symmetric bilinear form 〈−,−〉 on P . Here, a bilinear form is
non-degenerate if the adjoint map P

∼=−→ P ∗ = HomR(P,R) : x 7→ 〈x,−〉 is an isomorphism, and the
form is ε-symmetric if 〈x, y〉 = ε 〈y, x〉. Further let εIPS(R) be the set of isometry classes inner product
spaces.
For two IPS V and W we denote by V⊥W the orthogonal sum. Then the triple (εIPS(R),⊥, 0) is an
abelian monoid.

Remark 2.2. If ε = 1 we usually omit the index corresponding to ε in the notation.

Recall 2.3. Let (M,+, 0) be an abelian monoid. Then

K0(M,+, 0) = {(a, b)|a, b ∈M}/ ∼

where (a, b) ∼ (a′, b′) if ∃c ∈M , s.t a+ b′ + c = a′ + b+ c. K0 is the left adjoint of the forgetful functor
abeliangroups → abelianmonoids. We often write a − b or [a] − [b] instead of (a, b) for an element of
K0(M,+, 0).

Definition 2.4. The Grothendieck-Witt group of R is defined as

εGW0(R) = K0(εIPS(R),⊥, 0) (1)

Example 2.5. • rk : GW0(F )
∼=−→ Z for an algebraically closed field F

• GW0(Z)
∼=−→ GW0(R)

∼=−→ Z ⊕ Z, where the second isomorphism is given by P 7→ (i+(P ), i−(P )).
Here, i±(P ) := #{i| ± 〈bi, bi〉 > 0} for an orthogonal basis {b1, . . . , bn} of P .

• (rk, det) : GW0(F )
∼=−→ Z⊕ F ∗/F 2∗ for a finite field F .

• GW0(Q)
∼=−→ GW (R)⊕

⊕
p∈Z

prime
W0(Fp), where W0 is the Witt group of R as defined below.

Definition 2.6. Let P(R) be the category of f.g. projective modules. Moreover let iP(R) denote the
set of isomorphism classes. Define the Grothendieck group of R as

K0(R) := K0(iP(R),⊕, 0) (2)

Definition 2.7. The hyperbolic map

K0(R) εH−−→ εGW0(R) (3)

is defined by
P 7→ εHP (4)

where εHP is the inner product space P ⊕P ∗ with ε-symmetric bilinear form 〈x, f |y, g〉 = g(x) + εf(y).
Moreover define the (ε-symmetric) Witt group of R as the cokernel

W0(R) := coker(εH : K0(R)→ εGW0(R)) (5)
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3 The aim of the talks
We want to define groups GWi(R) for all i ∈ Z and rings R and more generally groups GWi(X) for all
i ∈ Z and schemes X. Moreover we show that these define cohomology theories.
For now we define GWi(R), i ≥ 1.

4 Definition of the groups GWi(R) for i ≥ 1

4.1 The classifying space of a group
Reference here is [Hus94, Definition 10.5 and Summary 12.5]. Let G be a topological group (which has
the homotopy type of a CW complex and for which 1 ∈ G is retract of some neighbourhood), then the
classifying space BG is a topological space (of the homotopy type of a CW complex) defined by the
property that for all CW-complexes X we have

[X,BG] ∼= isomorphism classes of principal G-bundles (6)

Example 4.1. Let G be a discrete group, then BG is a pointed CW space determined by the property

πiBG =

{
∗ i 6= 1
G i = 1

(7)

4.2 Plus construction
References here are [Lod76], [Ber82].

Proposition 4.2. Let X be a connected CW-complex such that π1X is quasi-perfect, i.e. the commutator
subgroup G = [π1X,π1X] is perfect, i.e. [G,G] = G. Then there exists a continuous map of CW spaces
X → X+, unique up to homotopy, such that

H∗(X,A)
∼=−→ H∗(X+, A) (8)

for all local coefficient systems A on X+ and

π1X → π1X
+ = π1X/[π1X,π1X] = (π1X)ab (9)

X+ obtained form X by attaching 2- and 3-cells.

4.3 The infinite orthogonal group
Definition 4.3. [Kar73, p. 8] Let V ∈ IPS then O(V ) := group of isometries of V .
Further we define

εO∞(R) =
⋃
n≥0

O(εH(Rn)), (10)

where O(εHn) ⊂ O(εHn+1) via g 7→
(
g

1H

)
Lemma 4.4. O∞(R) is quasi-perfect.

Proof. Set E := [O∞, O∞], the commutator subgroup of O∞. Recall that this subgroup is normal in
O∞. We need to show [E,E] ⊃ E. Thus let g, h ∈ O∞ ⇒ g, h ∈ O(Hn) for some n.
Clearly we have ghg−1h−1

1
1

 =

g g−1

1

 ,

h 1
h−1

 (11)
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Hence it suffices to show that

g g−1

1

 ∈ E.

The permutation matrices are clearly isometries: Σ3 ⊂ O((Hn)3) and an easy computation shows:

(123) = [(23), (12))] ∈ E (12)

Finally observe
(1⊕ g−1 ⊕ 1)(123)(g ⊕ 1⊕ 1) = (123) (13)

Therefore g g−1

1

 = 1 mod E (14)

Remark 4.5. Similarly Gl(R) :=
⋃
Gln(R) is quasi-perfect.

Definition 4.6. We define

• εGWi(R) = πiBεO∞(R)+ for i ≥ 1 and 2 ∈ R∗ (Karoubi [Kar73])

• Ki(R) = πiBGl(R)+ for i ≥ 1 (and R arbitrary) (Quillen ’70 [Gra76]).

Corollary 4.7. By construction we have

• K1(R) = Gl(R)ab

• εGW1(R) = εO∞(R)ab

5 Karoubi’s fundamental theorem and Bott periodicity
We will define spaces εGW (R), K(R) such that

εGWi(R) = πiεGW (R) (15)

and
Ki(R) = πiK(R) (16)

Warning 5.1. As functors in R
K(R) � K0(R)×BGL(R)+ (17)

and
GW (R) � GW0(R)×BO∞(R)+ (18)

For an explanation, see [Sch11, 2.2.9].

Proposition 5.2. There exists a map

εH : K(R)→ εGW (R) (19)

such that the induced map
K0(R)→ εGW0(R) (20)

is given by P 7→ εHP and
BGL+ → BO+

∞ (21)

is given level-wise by the maps
Aut(Rn) = Gln → O(Hn) (22)

which sends g 7→
(
g

(g∗)−1

)
.

Moreover there is the forgetful map
F : εGW (R)→ K(R) (23)

defined by (P, 〈, 〉) 7→ P .
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Definition 5.3. Let f : X → Y be a map of topological spaces and y ∈ Y . Then we define the fibre of
f as

Fibrey(f) = {(σ, x)|σ : I → Y, x ∈ X, σ(0) = y, σ(1) = f(x)} (24)

Proposition 5.4 ([Whi78]). There exists a long exact sequence in homotopy

· · · → πn(Fibrey(f))→ πn(X)→ πn(Y )→ πn−1(Fibrey(f))→ · · · (25)

Definition 5.5. [Kar73] Set

• εU(R) = Fibre(εH : K(R)→ εGW (R))

• εV (R) = Fibre(F : εGW (R)→ K(R))

Remark 5.6. To remember which one is which it is convenient to know that “V=vergessen” is German
for “to forget” though this is probably not the reason for why it is called V -theory...

Theorem 5.7 (Fundamental Theorem, Karoubi ’73, ’80 [Kar73], [Kar80]). If 2 ∈ R∗ then

−εV (R) ∼ ΩεU(R) (26)

Theorem 5.8 (Bott Periodicity). Z×BOtop ∼ Ω8(Z×BOtop)

The topological version of the Fundamental Theorem implies Bott periodicity:

Definition 5.9. Let A be a Banach algebra with involution. Then define

• εGW
top
0 (A) = εGW

top
0 (εIPS(A))

• εGW
top
i (A) = πiBO

top
∞ (A)

If we apply the topological version of the Fundamental Theorem to A = R,C,H, where he first two come
with the trivial involution, and H with the usual involution i, j, k 7→ −i,−j,−k we obtain the list where
V and U denote V top and U top

V (R) ∼ Z×BO V (C) ∼ U/O V (H) ∼ Z×BSp
U(R) ∼ O U(C) ∼ O/U U(H) ∼ Sp

−V (R) ∼ O/U −V (C) ∼ U/Sp −V (H) ∼ Z× Sp/U
−U(R) ∼ U/O −U(C) ∼ Sp/U −U(H) ∼ U/Sp

Hence, the homotopy equivalence −εV (R) ∼ ΩεU(R) together with the canonical homotopy equivalences
O ∼ Ω(BO) and Sp ∼ Ω(BSp) imply

Z×BO ∼ Ω(U/O) ∼ Ω2(Sp/U) ∼ Ω3(Sp) ∼ Ω4(Z× Sp) ∼ Ω5(U/Sp)

∼ Ω6(O/U) ∼ Ω7(O) ∼ Ω8(Z×BO)

6 Addendum: On the order of K3(Z)

One of the first applications of hermitianK-theory was to disprove a conjecture of Lichtenbaum predicting
K3(Z) to be Z/24. To explain the context, consider the string of maps

Z ∼= π3O
J→ π3Ω∞S∞ = πs3S

0 → K3(Z)

in which the isomorphism π3O = π4BO = Z is by Bott periodicity, the map J is Adams’ J-homomorphism
[Ada66], and the last map is the unit map S0 → K(Z) of the ring spectrum K(Z). Adams showed in
[Ada66, Theorem 1.5] that the image of Z in πs3S0 is Z/24, and Quillen showed in [Qui76, p. 183] that
the map πs3S

0 → K3(Z) is injective on the image of J , that is, we have an injection Z/24 ⊂ K3(Z).
Lichtenbaum predicted that this inclusion is in fact an isomorphism (compare [Lic73, 2.6]
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Proposition 6.1 (Karoubi ’74 [Kar74]). The order of K3(Z) is divisible by 48.

Proof. For a finite abelian group A, write A(2) for the 2-primary torsion subgroup. Also, write Z′ for
Z[1/2]. Quillen showed that the map K3(Z′)→ K3(Z) is an isomorphism on 2-primary subgroups (since
kernel and cokernel are quotient and subgroup of K3(F2) and K2(F2) both of which are finite groups
without 2-primary torsion). The map πs3S

0 → K3(Z) factors through GW3(Z′) F→ K3(Z′) → K3(Z)
(simply because the maps GW (Z′) F→ K(Z′)→ K(Z) are maps or ring spectra).
By Quillen’s result that πs3S0 → K3(Z) is injective on the image of J , the same has to be true for the map
πs3S

0 → GW3(Z′). In particular, Z/8 ⊂ GW3(Z′)(2). Now, the map H : K3(Z′)→ GW3(Z′) is surjective
(we will learn later how to prove this, see Lemma ?? below). In particular, |K3(Z)(2)| = |K3(Z′)(2)| ≥
|GW3(Z′)(2). Therefore, if Z/24 ∼= K3(Z), then Z/8 ∼= K3(Z)(2), and 8 ≤ GW3(Z′)(2) ≤ |K3(Z′)(2)| = 8.
Hence H : K3(Z′)(2) → GW3(Z′)(2) and F : GW3(Z′)(2) → K3(Z′)(2) have to be isomorphisms. The
composition

K3(Z′)(2)
H→ GW3(Z′)(2)

F→ K3(Z′)(2)

is of the form 1 + ∗ with ∗ : P 7→ P ∗ a map inducing an isomorphism on K-groups. But a map of the
form 1 + ∗ can never be an isomorphism between finite 2-primary torsion groups.

Later Lee and Szczarba proved in [LS76] that K3(Z) ∼= Z/48. Nowadays, we know all groups K2n+1(Z),
we know the orders of the groups K4n+2(Z) which are predicted to be cyclic, and the groups K4n(Z) are
conjectured to be 0 except for n = 0 (where K0(Z) = Z) and n = 1 (where it is known that K4(Z) = 0
due to Soulé and Rognes). The last conjecture is equivalent to Vandiver’s conjecture and implies the
previous conjecture on the structure of the groups K4n+2(Z). For a survey about these statements, see
[Wei05].

7 Grothendieck-Witt groups of exact categories

7.1 Motivation
Even if we are only interested in the K-groups of rings (and possibly schemes) it is necessary to work in
a more general framework: at least in the framework of exact categories. Here are two reasons why.

• Consider the localization map R→ S−1R, where S ⊂ R is a multiplicative set of non-zero-divisors.
Then there exist induced maps Kn(R) → Kn(S−1R). These maps fit into a long exact sequence
[Gra76, Theorem, p. 229]

· · · → Kn(E )→ Kn(R)→ Kn(S−1R)→ Kn−1(E )→ · · · (27)

where the additional terms are not defined as the K-theory of a ring but rather of some exact
category E .

• Let X be a scheme and let V ect(X) denote the category of vector bundles over X. Then V ect(X) is
an exact category and the K-theory K(X) is defined using this structure. This will be the example
to keep in mind in what follows.

8 Exact categories
Definition 8.1 (Quillen [Qui73]). An exact category is an additive category E together with a choice
of a class of sequences

A � B � C (28)

called admissible exact sequences or conflations. Maps that occur as the first map in a conflation are
called admissible monomorphisms or inflations and are depicted as �, maps that occur as the second
map in a conflation are called admissible epimorphisms or deflations and are depicted as �. The class
of conflations is subject to some axioms. We omit listing these axioms in favour of the characterisation
below.
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Lemma 8.2 (Appendix A in [TT90], Appendix in [Kel90]). A small additive category E together with a
set of sequences A � B � C is an exact category if and only if there exists a full and faithful embedding
E ⊂ A into an abelian category A such that a sequence in E is admissible exact if and only if its image
in A is exact (in the sense of abelian categories) and E is closed under extensions in A .

Definition 8.3. Let E be an exact category. Then K0(E ) is the abelian group generated by symbols
[E], one for each E ∈ ObE subject to the relations

• [E] = [F ] if E ∼= F

• [B] = [A] + [C] for each admissible exact sequence A � B � C.

Remark 8.4. In fact the first relation is a special case of the second one.

Definition 8.5. An exact category with duality is a triple (E , ∗, can) where E is an exact category,
∗ : E op → E an exact functor and can : 1

∼=→ ∗∗ a natural isomorphism such that for all A ∈ ObE we
have can∗A ◦ canA∗ = 1A∗

A∗

}}{{
{{

{{
{{ canA∗

""EE
EE

EE
EE

A∗ A∗∗∗
can∗A

oo

(29)

Example 8.6. The triple (V ect(X), HomOX (−, L), can) is an exact category with duality. Here L is a
line bundle and canV : V → V ∗∗ maps x 7→ (f 7→ f(x))

Definition 8.7. Let (E , ∗, can) be an exact cat with duality. An inner product space (IPS) in E is a
pair (V, φ), V ∈ ObE and φ : V

∼=−→ V ∗ such that φ∗ ◦ canV = φ.

Definition 8.8 (Knebusch, I§5 in [Kne77]). Let (E , ∗, can) be an exact category with duality. Its
Grothendieck-Witt group is the abelian group GW0(E , ∗, can) generated by symbols [V, φ], one for each
IPS (V, φ), subject to the relations

• [V, φ] = [W,ψ] if (V, φ) ∼= (W,ψ) are isometric.

• [(V, φ)⊥(W,ψ)] = [V, φ] + [W,ψ]

• [V, φ] = [U ⊕W,
(

0 φW
φU 0

)
] for any IPS in the the exact category (with duality) of admissible

exact sequences in E . Here a non-degenerate symmetric bilinear form in the category of exact
sequences is a triple of isomorphisms φ = (φA, φB , φC) making the diagram commute

A // //

φA∼=
��

B // //

φB∼=
��

C

φC∼=
��

C∗ // // B∗ // // A∗

(30)

such that φ∗ ◦ can = φ, that is, φ∗A ◦ canC = φC , φ∗B ◦ canB = φB and φ∗C ◦ canA = φA.

Definition 8.9. As usual we define the Witt group as the cokernel of the hyperbolic map

W0(X) = coker(H : K0(X)→ GW0(X)) (31)

Lemma 8.10.
GW0(P(R), Hom(−, R), ε · can) ∼= εGW0(R) (32)

Recall 8.11. The construction of Ki(E ) for an exact category E is done in several steps:

• To the exact category E we associate another category QE ,

• to the category QE we associate a topological space BQE , the classifying space of QE ,

• the K-theory space K(E ) is defined as the loop space K(E ) = ΩBQE , and

• the K-groups are defined as the homotopy groups Ki(E ) = πiK(E )
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8.1 From categories to topological spaces
To any small category C we associate a topological space, called the classifying space BC of C . It has
the following properties

• BC is a CW complex

• The 0-cells are the objects of C .

• The 1-cells are the non-identity arrows A0
f−→ A1 in C glued in by attaching source and target of

f to the corresponding 0-cells.

• The 2-cells are the pairs of composable arrows A0
f0−→ A1

f1−→ A2 in C with f1, f2 6= id. For
each 2-cell A0

f0−→ A1
f1−→ A2 we glue in a triangle with edges f0, f1 and f1f0 attached to the

corresponding arrows in the 1-skeleton.

• For arbitrary n the n-cells are given by the sequences A0
f0−→ · · · fn−1−−−→ An of n-composable arrows

in C such that none of the fi’s is an identity map. They are glued in appropriately as above.

For the precise definition, see Definition 12.3 and [Qui73, §1].

Example 8.12. Let G be a (discrete) group. If we understand G as the category with one object and G
as the set of morphisms, then BG is the usual classifying space of G.

8.2 From exact categories E to QE

Definition 8.13 (§2 in [Qui73]). Given an exact category E we define a category QE with the same
objects as E where a morphism A→ B is an equivalence class of triples (U, p, i)

A
p
� U

i
� B (33)

where (U, p, i) ∼ (U ′, p′, i′) if there exists an isomorphism g : U
∼=−→ U ′ such that p = p′g and i = i′g.

The composition of A
(U,p,i)−−−−→ B

(W,q,j)−−−−−→ C is defined as (U ×B W,pq′, ji′), where U ×B W , q′ and i′ are
defined as a pull-back:

C

B W

OO
j

OO

q
oooo

A Up
oooo

OO
i

OO

U ×B W
OO

i′

OO

p′
oooo

(34)

8.3 The hermitian Q-construction
Definition 8.14 (Karoubi, Giffen, Uridia [Uri90], Charney-Lee [CL86]). Let (E , ∗, can) be an exact
category with duality. Define QhE to be the category with inner product spaces (A, φ) (in E ) as objects.
A morphisms (A, φ)→ (Bψ) is given by an equivalence class of triples (U, p, i)

A
p
� U

i
� B (35)

as in Quillen’s Q-construction such that φ|U = ψ|U , i.e. p∗φp = i∗ψi and Ker i∗ ◦ ψ =: U⊥ = Ker p.
The composition is defined as in Quillen’s Q-construction QE .

Lemma 8.15 ([Uri90], Proposition 4.8 in [Sch10a]). There exists an isomorphism

π0BQ
hE

∼=−→W0(E ) (36)
(V, φ) 7→ [V, φ] (37)
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Definition 8.16. Let (E , ∗, can) be an exact category with duality. The Grothendieck-Witt theory
space is defined as the fibre

GW (E ) = Fibre(BQhE → BQE ) (38)
(V, φ) 7→ V (39)

Then the Grothendieck-Witt groups are given by

GWi(E ) = πiGW (E ). (40)

We writeGW (X,L) for the Grothendieck-Witt theory space of the exact category with duality (V ect(X), Hom(−, L), εcan).

Lemma 8.17 (Proposition 4.11 in [Sch10a]).

π0GW (E ) = GW0(E ) (41)

Remark 8.18. Compare the above result to the classical [Qui73, §2 Theorem 1]

π0ΩBQE = K0(E ) (42)

for K(E ) := ΩBQE .

9 The Grothendieck-Witt group of formations
Definition 9.1. A formation in an exact category with duality E = (E , ∗, can) is a tuple (X,φ,L1, L2),
where (X,φ) is an inner product space in E and Li�X, j = 1, 2 are two Lagrangians. A Lagrangian in
X is an object L together with an admissible monomorphism L�X such that L = L⊥ = Ker i∗φ.
Two formations (X,φ,L1, L2) and (X ′, φ′, L′1, L

′
2) are isomorphic, if there exists an isometry f : (X,φ)→

(X ′, φ′) such that f(Li) = L′i for i = 1, 2.

Definition 9.2. The GW group of formations is the abelian group GWform(E ) generated by isomor-
phism classes [X,φ,L1, L2] of formations, subject to the relations

• [X,φ,L1, L2] + [X ′, φ′, L′1, L
′
2] = [X ⊕X ′, φ⊕ φ′, L1 ⊕ L′1, L2 ⊕ L′2]

• [X,φ,L1, L2] + [X,φ,L2, L3] = [X,φ,L1, L3]

• If (X,φ,L1, L2) is a formation and U � X with U ⊂ L1, L2 (hence U ⊂ U⊥) then [X,φ,L1, L2] =
[U⊥/U, φ̄, L1/U,L2/U ].

Remark 9.3. If L ⊂ (X,φ) is a Lagrangian, then it defines an arrow 0→ X in QhE via

0
p
� L

i
� X,φ (43)

and therefore a path [L] from 0 to (X,φ) in BQhE . If (X,φ,L1, L2) is a formation then [L2]−1[L1] is a
loop in BQhE based at 0.

Lemma 9.4. [Sch10a, Proposition 4.9]

GWfrom(E )
∼=−→ π1(BQhE ) (44)

[X,φ,L1, L2] 7→ [L2]−1[L1] (45)

10 The proof of Lemma 8.17
The sequence of functors iIPS(E )→ QhE → QE induces a map on the classifying spaces BiIPS(E ) ↪→
BQhE → BQE . Observe that the composition is homotopic to the trivial map and thus we obtain a
map into the fibre

BiIPS(E )→ GW (E ) (46)
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and in particular a map
π0BiIPS(E )→ π0GW (E ) (47)

where the left hand side is the abelian monoid of isometry classes of inner product spaces in E . This
induces the map

GW0(E )→ π0GW (E ) (48)

Now recall the formulation of Lemma 8.17:

Lemma 10.1. [Sch10a, Proposition 4.11] The map (48) is an isomorphism.

Proof. The rows in the following commutative diagram are exact

GWform(E ) //

∼=
��

K0(E ) H //

∼=
��

GW0(E ) //

��

W0(E ) //

∼=
��

0

=

��
π1BQ

hE // π1BQE // π0GWE // π0BQ
hE // π0BQ

(49)

where the upper left horizontal arrow is [X,ϕ,L1, L2] 7→ [L1] − [L2]. We already know that all but the
middle vertical arrow are isomorphisms. by the five-lemma we are done.

Proposition 10.2. [Sch12, Appenxix A] For i ≥ 1 and 2 ∈ R∗ we have an isomorphism

GWi(P(R), Hom(−, R), ε · can) ∼= πiBεO∞(R)+ (50)

Remark 10.3. The statement of Proposition 10.2 was claimed in [CL86] but the proof in that paper is
wrong as explained in [Sch04] which also gives an alternative proof.

11 Grothendieck-Witt groups of exact categories with weak equiv-
alences

Quillen proves in [Qui73] a collection of powerful theorems for the K-theory of exact categories (Reso-
lution, Localisation, Additivity, Dévissage). They imply most of what was known about the K-theory
K(X) of a regular noetherian separated scheme X before the introduction of motivic cohomology. The
GW -analogs of Resolution, Localisation, Additivity and Dévissage hold ([Sch10b, Lemma 9], [Sch10a,
Introduction], [Sch10a, Theorems 7.1 and 7.2] and [Sch10a, Theorem 6.1]) but they don’t imply any-
thing interesting about GW(X), not even when X is regular noetherian separated. One of the reasons is
explained in the following example and remark.

Example 11.1. Let Z ↪→p X be a closed embedding of smooth schemes over some field k. Denote by U
the open complement U = X − Z. Quillen shows [Qui73] that there exists a long exact sequence of the
form

· · · → Ki(Z)→ Ki(X)→ Ki(U)→ Ki−1(Z)→ · · · (51)

where as usual K(X) = K(V ect(X)).

A summary of the proof is as follows.

Proof. • By the Resolution Theorem we have KiV ect(X)→ KiCoh(X) for regular X where Coh(X)
is the category of coherent sheaves,

• by the Localisation Theorem the short exact sequence CohZ(X) ↪→ Coh(X)→ Coh(U) induces a
long exact sequence of K groups, and

• by Dévissage we have KiCoh(Z)
∼=−→ KiCohZ(X).

Remark 11.2. The above does not work for GW groups because the duality on V ect(X) does not extend
to a duality on Coh(X) (unless X has dimension 0). Hence we need a new framework, namely categories
of chain complexes. The motivation hereby comes from the work of Thomason-Trobaugh [TT90] and
Balmer’s triangulated Witt groups [Bal05].
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Example 11.3. In the following, the example to keep in mind is the tuple

(ChbV ect(X), quis,Hom(−, L[n]), ε · can), (52)

where ChbV ect(X) is the exact category of bounded complexes in V ect(X), quis is the set of quasi-
isomorphisms and L[n] is a line bundle l shifted by n, i.e. the chain complex L[n] with L concentrated
in degree −n.

Definition 11.4. A small exact category with weak equivalences and duality (ExCatWD) is a tuple
(E , ω, ∗, can), where E is a (small) exact category, ω ⊂ Mor(E ) a set of morphisms called weak equiv-
alences, which is closed under composition, isomorphism and retracts, which contains all identites, and
which satisfies the “two out of three” property, i.e. if two out of f, g, fg are weak equivalences then so
is the third. ∗ : (E op, ω) → (E , ω) is an exact functor which respects weak equivalences ∗(ω) ⊂ ω and
can : 1 → ∗∗ natural transformation such that canV : V → V ∗∗ is a weak equivanlence for all V ∈ E
and can∗V ◦ canV ∗ = 1V ∗ .

Definition 11.5. [Sch10b, Definition 1] The Grothendieck-Witt group of (E , ω, ∗, can) ∈ ExtCatWD is
the abelian group GW0(E ) = GW0(E , ω, ∗, can) generated by inner product spaces [X,φ] in (E , ω, ∗, can),
i.e. objects X ∈ E together with weak equivalences φ : X → X∗ such that φ∗canX = φ, subject to the
relations

• [X,φ] = [W,ψ] if there is a weal equivalence f : V ∼−→W such that φ = f∗ψf

• [X ⊕W,φ⊕ ψ] = [X,φ] + [W,ψ]

• [B,φB ] = [A⊕C,
(

0 φC
φA 0

)
] for any given inner product space in the category of exact sequences

in E , that is, a commutative diagram of the form

A // //

φA∼
��

B // //

φB∼
��

C

φC∼
��

C∗ // // B∗ // // A∗

(53)

where φ∗can = φ is a (tuple of) weak equivalences φ = (φA, φB , φC).

The following remark is clear from the definition.

Remark 11.6. If (E , ∗, can) is an exact category with duality then (E , iso, ∗, can) ∈ ExCatWD and

GW0(E , ∗, can)
∼=−→ GW0(E , iso, ∗, can) (54)

is an isomorphism.

The following lemma is a special case of Theorem 14.7.

Lemma 11.7. Let (E , ∗, can) be an exact category with duality. Then (Chb, quis,E , ∗, can) ∈ ExCatWD
and the functor which sends any inner product space to the chain complex concentrated in degree 0 induces
an isomorphism

GW0(E , ∗, can)
∼=−→ GW0(ChbE , quis, ∗, can) (55)

.

12 Simplicial objects
Standard references for simplicial homotopy theory are [GJ09], [FP90], [May67].
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Definition 12.1. Let ∆ be the category with the ordered sets [n] = {0 < · · · < n} for n ∈ N as objects
and order preserving maps (of sets) as morphisms. A different way to understand ∆ is the following:
Let [n] be the category with objects 0, . . . , n and for 0 ≤ i, j ≤ n there is a unique morphism i → j if
i ≤ j (necessarily the identity when i = j) and no morphism from i to j otherwise.
A simplicial set (space, category,. . .) is a functor

X : ∆op → Sets (Top, Cat, . . .) (56)

Similarly a cosimplicial set (space, category,. . .) is a functor

Y : ∆→ Sets (Top, Cat, . . .). (57)

Example 12.2. • The functor

∆→ Cat (58)
n 7→ [n] (59)

is a cosimplicial category.

• Let C be a small category, then

∆op → Sets (60)
n 7→ Fun([n],C ) =: Nn(C ) (61)

is a simplicial set, called the nerve of C . We may understand a functor A : [n] → C as a string

of maps A0
f0−→ · · · fn−1−−−→ An. As an example to illustrate what happens to morphisms consider the

map

∂i : [n]→ [n+ 1] (62)

j 7→

{
j j < i

j + 1 j ≥ i
(63)

Then for A as above we have

∂∗i (A) = A ◦ ∂i = A0
f0−→→ · · · → Ai−1

fi◦fi−1−−−−−→ Ai+1 → · · ·
fn−1−−−→ An (64)

• The topological n-simplex is given as

∆n
top := {(x0, . . . , xn) ∈ Rn+1|

∑
i

xi = 1, xi ≥ 0} (65)

endowed with the topology as a subspace of Rn+1. The functor

∆→ Top (66)
n 7→ ∆n

top (67)

is a cosimplicial topological space. Here a map θ : [n] → [m] induces a map ∆n
top → ∆m

top : x 7→ y
via yi =

∑
θ(j)=i xj.

• Let X be a topological space. Then the functor

∆op → Sets (68)
n 7→ SingnX = Top(∆n

top, X) (69)

defines a simplicial set.
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Definition 12.3. Let X : ∆op → Top (Sets) be a simplicial topological space (or a simplicial set). Then
its topological realisation is the topological space

|X| =
∐
n≥0

Xn ×∆n
top/∼ = X• ⊗∆ ∆• (70)

where (θ∗x, t) ∼ (x, θ∗t) for all x ∈ Xm, t ∈ ∆n
top and θ : [n]→ [m].

Remark 12.4. If X ∈ ∆opSet is a simplicial set, then the geometric realisation |X| is a CW complex.

Definition 12.5. Let C be a small category. Define BC = |C | = |N∗C|. For a simplicial category
C• ∈ ∆opCat define |C•| = |q 7→ |p 7→ NpCq|| = |p 7→ |q 7→ NpCq|| = |n 7→ NnCn|.

13 Waldhausen’s S•-construction
The reference here is [Wal85].

Definition 13.1. Let n ∈ N be a positive integer. Define the arrow category by A r[n] := Fun([1], [n]).
Explicitly an object is of the form a ≤ b for 0 ≤ a, b ≤ n and there is exactly one morphism (a ≤ b) →
(a′ ≤ b′) if and only if a ≤ a′ and b ≤ b′, i.e. if we have a diagram in [n] of the form

a //

��

b

��
a′ // b′

(71)

The functor

∆→ Cat (72)
n 7→ A r[n] (73)

is a cosimplicial category. If A : A r[n]→ C is a functor for some category C we write Ap,q := A(p ≤ q).
Definition 13.2. Let (E , ω) be an exact category with weak equivalences. We have a simplicial exact
category with weak equivalences

∆op → Cat (74)
n 7→ Fun(A r[n],E ) (75)

Here a sequence A→ B → C is exact if for all p ≤ q the sequence Ap,q → Bp,q → Cp,q is exact in E and a
morphism A→ B is a weak equivalence if for all p ≤ q the morphism Ap,q → Bpq is a weak equivalence.

Definition 13.3. Let SnE ⊂ Fun(Ar[n],E ) be the full subcategory of those functors A : Ar[n] → E
such that for all 0 ≤ p ≤ q ≤ r ≤ n the sequence

Ap,q � Ap,r � Aq,r (76)

is an admissible short exact sequence in E and Ap,p = 0. Explicitly a functor A ∈ SnE can be depicted
as a diagram of the form

A01
// // A02

// //

����

A03
// //

����

· · · // // A0n

����
A12

// // A13
// //

����

· · · // // A1n

����
...

...

����
An−2,n−1

(77)
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Definition 13.4. Let (C , ω) be an exact category with weak equivalences. Write ωC for the category
with the same objects as C and weak equivalences as morphisms.

Definition 13.5. Let (E , ω) be an exact category with weak equivalences. Then

ωS•E : ∆op → Cat (78)
n 7→ ωSnE (79)

is a simplicial excact category. Define K(E , ω) = Ω|ωS•E |.

Remark 13.6. We can think of S•E as a bar construction of the K-theory of E .

Proposition 13.7. [Wal85, 1.9 Appendix] Let E be an exact category considered as an exact category
with weak equivalences (E , i), where i is the class of isomorphisms in E . Then

|QE | ∼ |iS•E |. (80)

14 The hermitian S•-construction
Let (E , ω, ∗, can) ∈ ExCatWD then we also have (SnE , ω, ∗, can) ∈ ExCatWD. Here we set (A∗)p,q =
A∗n−q,n−p for a functor A : Ar[n] → E ∈ SnE . Unfortunately n 7→ (SnE , ω, ∗, can) does not respect the
simplicial identities:

Example 14.1. Consider the functor ∂2 : [1]→ [2] then the diagram

(S2E )op
∂∗2 //

∗
��

(S1E )op

∗
��

(S2E )
∂∗2 // (S1E )

(81)

doesn’t commute, since

(∂∗2(A01 � A0,2 � A1,2))∗ = A∗0,1 6= (82)

A∗1,2 = ∂∗2 (A∗1,2 � A∗0,2 � A∗0,1) = ∂∗2(A01 � A0,2 � A1,2)∗) (83)

Definition 14.2. Let A,B be ordered sets. Then we write AB for the concatenation, i.e. the ordered
set A t B with a < b for all a ∈ A and b ∈ B. In particular write [n]op[n] = [2n+ 1] = {n′ < ... < 1′ <
0′ < 0 < 1 < ... < n}. If we interpret [n]op[n] as a category then it has the duality p 7→ p′ and p′ 7→ p.

Definition 14.3. Let (E , ω, ∗, can) ∈ ExCatWD. Define the simplicial category with duality

∆op → Cat (84)
n 7→ RnE (85)

where RnE = SenE = S[n]op[n]E and (A∗)p,q = A∗p′,q′ for functors A : Ar([n]op[n])→ E . We refer to this
process as edge-wise subdivision.

Definition 14.4. Let (C , ∗, can) be a category with duality. Write Ch for category with objects (X,φ),
with X ∈ E and φ : X → X∗ such that φ∗canX = φ. A morphism (X,φ)→ (Y, ψ) is an f : X → Y such
that φ = f∗ψf .

Proposition 14.5. [Sch10b, Proposition 2] Let (E , ∗, can) be an exact category with duality, then

|(iR•E )h| ∼ |QhE |. (86)

Definition 14.6. [Sch10b, Definition 3] Let (E , ω, ∗, can) ∈ ExCatWD. Then we define the Grothendieck-
Witt space of E as

GW (E ) = GW (E , ω, ∗, can) = Fibre(|(ωR•E )h| → |ωS•E |) (87)
(A, φ) 7→ A ◦ i (88)

where i : [n]→ [n]op[n] is the map with p 7→ p.
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Theorem 14.7. [Sch10b, Proposition 6] . Let (E , ∗, can) be an exact category with duality. Then
the functor (E , iso, ∗, can) → (Chb, quis,E , ∗, can) ∈ ExCatWD which sends an object E to the chain
complex E concentrated in degree 0 induces an isomorphisms for all i ≥ 0

GWi(E , iso, ∗, can)
∼=−→ GWi(ChbE , quis, ∗, can) (89)

.

Definition 14.8. Let X be a scheme, L a line bundle over X. Then we write

εGW
n(X,L) = GW (ChbV ectX, quis,Hom(−, L[n]), εcan) (90)

for the Grothendieck-Witt space and set εGWn
i (X,L) = πiεGW

n(X,L).

Lemma 14.9.
εGW

n
i (X,L) ∼= −εGWn+2

i (X,L) (91)

In particular
GWn

i (X,L) ∼= GWn+4
i (X,L) (92)

Proof. By the Koszul sign rule, the multiplication map µ : OX [1] ⊗ OX [1] → OX [2] is −1-symmetric
(and non-degenerate bilinear). Therefore, tensor product with the −1-symmetric inner product space
(OX [1], µ) defines a functor

(ChbV ect(X), Hom(−, L[n], ε · can)) −→ (ChbV ect(X), Hom(−, L[n+ 2],−ε · can)) (93)

which is an equivalence of categories.

Definition 14.10. Let ChbZV ect(X) ⊂ ChbV ect(X) be the full dg subcategory of chain complexes with
(cohomological) support in Z, i.e. the category of those complexes which are acyclic outside of Z. We
define the Grothendieck-Witt groups with support in Z as

GWn(X on Z) = GW (ChbZV ect(X), quis,Hom(−, L[n]), can) (94)

Theorem 14.11. [Sch10b, Theorems 10 and 14] Let Z ↪→p X be a closed subscheme of X and U = X−Z
the open complement. Assume further that X has an ample family of linebundles and that X and Uare
quasi-compact. Then the sequence

ChbZV ect(X)→ ChbV ect(X)→ ChbV ect(U) (95)

induces a homotopy fibration of the form

GWn(X on Z,L)→ GWn(X,L)→ GWn(U,L). (96)

In particular there is a long exact sequence

· · · → GWn
i (X on Z,L)→ GWn

i (X,L)→ GWn
i (U,L)→ GWn

i−1(X on Z,L)→ · · · (97)

Theorem 14.12. [Sch10b, Theorems 11 and 15] Let Z ↪→p X be a closed subscheme of X and V ↪→◦ X
an open subscheme such that Z ⊂ V . Moreover assume that X has an ample family of linebundles and
that X, X − Z and V are quasi-compact. Then the morphism of categories

CHb
ZV ect(X)→ CHb

ZV ect(V ) (98)

induces isomorphisms
GWn

i (X on Z,L)
∼=−→ GWn

i (V on Z,L) (99)

Corollary 14.13. [Sch10b, Theorem 16] Let X = U ∪ V be an open cover of a scheme X, such that X
has an ample family of line bundles and such that X, U and V are quasi-compact. Then there exists a
long exact sequence

· · · → GWn
i (X,L)→ GWn

i (U,L)⊕GWn
i (V,L)→ GWn

i (U ∩ V,L)→ GWn
i−1(X,L)→ · · · (100)
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As explainced in [CTHK97], Corollary 14.13 implies the following.

Corollary 14.14. Let X be a noetherian scheme, such that X has an ample family of line bundles.
Then there exists a spectral sequence, called the Brown-Gersten-Quillen spectral sequence, of the form

Ep,q1 =
⊕
x∈X

dimOX,x=p

GWn
−p−q(OX,x on x)⇒ GWn

−q(X) (101)

If 1
2 ∈ OX,x andOX,x is regular local with residue field k(x), then there are isomorphismsGWn

i (OX,x on x) ∼=
GWn−d

i (k(x)) where d is the dimension of OX,x. See Proposition 16.8 below.

15 Higher Grothendieck-Witt groups of DG categories
Throughout this section let k be a commutative ring.

Definition 15.1. A differentially graded k-module (dg-module) is a chain complex of k-modules (M•, d)
together with a (k-linear) differential d : M i →M i+1 (d is a differential if d◦d = 0). The tensor product
of two dg-modules M• and N• is defined degree-wise by

(M• ⊗N•)n =
⊕
p+q=n

Mp ⊗Nq (102)

with differential d(x⊗y) = dx⊗y+(−1)|x|x⊗dy where |x| denotes the degree of a homogeneous element
x. The internal homomorphism complex is defined as

[M•, N•]n =
∏

−p+q=n
Homk(Mp, Nq) (103)

with differential df = d ◦ f − (−1)|f |f ◦ d. There are three distinct maps of dg-modules,

• Evaluation

e : [M•, N•]⊗M• → N• (104)
f ⊗ x 7→ f(x) (105)

• Covaluation

∇ : M• → [(N•,M• ⊗N•] (106)
x 7→ (y 7→ x⊗ y) (107)

• Symmetry

c : M• ⊗N• → N• ⊗M• (108)

x⊗ y 7→ (−1)|x||y|y ⊗ x (109)

They are all chain maps, that is, they commute with the differentials. The tuple (DGModk, c, e,∇, 1k)
is a closed symmetric monoidal category. Here 1k is the chain complex with k considered as a module
over itself, concentrated in degree 0.

Remark 15.2. The functor [M•,−] : DGModk → DGModk is the left adjoint of M•⊗− : DGModk →
DGModk. The sign convention for the differential on [M•, N•] is uniquely determined if we require the
differentials to commute with the evaluation map.

Definition 15.3. A DG-category A is given by

• A set ObA of objects,

• for all A,B ∈ ObA a dg k-module A•(A,B) with a distinct element 1A ∈ A (A,A) for all A, and
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• for all A,B,C ∈ ObA a composition map A•(A,B)⊗A•(B,C)→ A•(A,C) of dg k-modules (and
thus commuting with differentials) which is associative and unital.

Example 15.4. The category ChbV ect(X) has the structure of a DG category, where the objects are
bounded chain complexes of vector bundles over X and for any two objects E•, F • the homomorphism
chain complex is given by the dg-module [E,F ]n =

∏
p−q=nHomOX (Eq, F p) with differential df = d ◦

f − (−1)|f |f ◦ d.

Definition 15.5. Let M ∈ DGModk be a differentially graded module. We associate the k-modules
Z0M = Ker(M0 → M1), B0M = Ker(M−1 → M0) and H0M = Z0M/B0M . Similarly, for a
DG-category A , we define the categories Z0A , B0A and H0A , which all have the same objects as
A and morphisms (Z0A )(A,B) = Z0(A (A,B)), (B0A )(A,B) = B0(A (A,B)) and (H0A )(A,B) =
H0(A (A,B)), respectively.

Example 15.6. For the DG-category A = ChbV ect(X), the category Z0A is the category of bounded
chain complexes with chain maps as morphisms. H0A =: K hV ect(X) is the category of bounded chain
complexes with chain homotopy classes of chain maps as morphisms.

Definition 15.7. Let A be a DG-category. A sequence A f−→ B
g−→ C ∈ Z0(A) is called exact if and only

if there exist r ∈ A0(B,A) and s ∈ A0(C,B) such that rf = 1, gs = 1, fr+ sg = 1. The DG-category A
is called exact if these sequences make Z0A into an exact category.

Example 15.8. The category ChbV ect(X) is an exact DG-category, where the exact sequences are
precisely the degree-wise split exact sequences.

Definition 15.9. Let A and B be DG-categories. We define the DG-category A ⊗B via

Ob(A ⊗B) := Ob(A )×Ob(B) (110)
Hom•A⊗B(A0 ⊗B0, A1 ⊗B1) := Hom•A (A0, A1)⊗Hom•B(B0, B1) (111)

The composition is given as (f0 ⊗ g0)⊗ (f1 ⊗ g1) = (−1)|g0||f1|f0 ◦ f1 ⊗ g0 ◦ g1

Definition 15.10. A DG-category A is called (strongly) pretriangulated if A is exact and the functor

A → Chb(k)⊗A (112)
A 7→ 1⊗A (113)

is an equivalence of categories. Here Chb(k) is the category of bounded chain complexes of finitely
generated free k-modules.

Lemma 15.11. The DG-category ChbV ect(X) is pretriangulated.

Proof. Write A = ChbV ect(X). Then the functors

A → Chb(k)⊗A
⊗−→ A (114)

are inverse to each other.

Proposition 15.12. If A is a pretriangulated DG-category, then H0A is triangulated.

Definition 15.13. Let A be a pretriangulated DG-category and ω ⊂ MorZ0A a set of morphisms.
Denote by Aω the full subcategory of A of all objects A ∈ A such that 0 → A lies in ω. Then the
pair (A , ω) is called a pretriangulated category with weak equivalences (ptrDGCatW) if Aω is also
pretriangulated and if a map f ∈ MorZ0A lies in ω if and only if it induces an isomorphism in the
Verdier quotient of triangulated categories T (A , ω) := H0A /H0A ω. The category

T (A , ω)

is called the triangulated category associated with (A , ω).

17



Example 15.14. The category (ChbV ect(X), quis) is a pretriangulated DG category with weak equiva-
lences. In particular ChbV ect(X)quis is the category of acyclic chain complexes and T (ChbV ect(X), quis) =
DbV ect(X) is the usual (bounded) derived category of V ect(X).

Definition 15.15. Let (A , ω) be a pretriangulated DG-category with weak equivalences. Then (Z0A , ω)
is an exact category with weak equivalences, and we define the K-theory space of (A , ω) by

K(A , ω) = K(Z0A , ω) = Ω|ωS•Z0A | (115)

Theorem 15.16. [TT90, Theorem 1.9.8] Let F : (A , ω) → (B, ω) be a map of pretriangulated DG-
categories with weak equivalences which induces an equivalence F : T (A , ω) ∼= T (B, ω) of associated
triangulated categories. Then the induced map

Ki(A,ω)
∼=−→ Ki(B,ω) (116)

is an isomorphism for all i.

Definition 15.17. Let A be a pretriangulated DG-category. Then the dual pretriangulated DG-
category A op has the same objects as A and morphism complexes

A op(A,B)) := A (B,A), (117)

where composition is defined by f ◦ g = −1|f ||g|g ◦ f .

Definition 15.18. A pretriangulated DG-category with weak equivalences and duality is a tuple (A , ω, ∗, can)
where (A , ω) is a pretriangulated DG-category with weak equivalences, ∗ : A op → A is a dg functor and
can : 1 → ∗∗ ∈ ω is a natural weak equivalence with can∗A ◦ canA∗ = 1. Define the Grothendieck-Witt
space of (A , ω, ∗, can) by

GW (A , ω, ∗, can) = GW (Z0A , ω, ∗, can). (118)

Example 15.19. The tuple (ChbV ectX, quis,Hom(−, L[n]), can) is a pretriangulated DG-category with
weak equivalences and duality.

Remark 15.20. [Sch12, Proposition 6.3] The above definition gives Grothendieck-Witt groups GWi(A )
for i ≥ 0. One can extend this definition to all i ∈ Z by setting for i < 0

GWi(A ) = W−i(T A ), (119)

where the latter are Balmer-Witt groups. In particular we have

GWn
i (X,L) = Wn−i(X,L) = W0(ChbV ectX, quis,Hom(−, L[n− i]), can), (120)

for i < 0.

Theorem 15.21. [Sch12, Theorem 6.5] Let (A , ω, ∗, can)→ (B, ω, ∗, can) be a map of pretriangulated
DG-categories with weak equivalences and duality, such that T (A , ω)

∼=−→ T (B, ω) and 1
2 ∈ A ,B. Then

GW (A , ω)
∼=−→ GW (B, ω) (121)

Remark 15.22. If 1
2 /∈ A ,B then there exist counterexamples to the above theorem; see [Sch12, Propo-

sition 2.1].

Theorem 15.23. [Sch12, Theorem 6.6] Let (A , ω)→ (B, ω)→ (C , ω) be a sequence of pretriangulated
DG-categories with weak equivalences and duality such that T (A , ω)→ T (B, ω)→ T (C , ω) is an exact
sequence of triangulated categories, i.e. a sequence of functors such that T (A , ω) ⊂ T (B, ω) is the full
subcategory of those objects in T (B, ω) which are zero in T (C , ω) and such that T (B, ω)→ T (C , ω)
induces an equivalence T (B, ω)/T (A , ω)→ T (C , ω). Then there exists a homotopy fibration

GWA → GWB → GWC (122)
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16 Higher Grothendieck-Witt groups of schemes
Lemma 16.1. Write (E , ε#n

L) = (ChbV ect(X), quis,Hom(−, L[n]), εcan). Then the sequence of func-
tors

(E , ε#n
L)→ (MorE , ε#n

L) cone−−−→ (E , ε#n+1
L ) (123)

E• 7→ 1E• (124)

induces an exact sequence of associated triangulated categories and therefore a homotopy fibration

εGW
n(X,L) //

F

))TTTTTTTTTTTTTTT εGW
n(MorE )

∼=
��

//
εGW

n+1(X,L)

εGW
n(E × E op) = K(X)

−H
44jjjjjjjjjjjjjjj

(125)

Corollary 16.2. [Sch12, Theorem 6.1 and Remark 6.7] The sequence

εGW
n(X,L) F−→ K(X) H−→ εGW

n+1(X,L) (126)

is a homotopy fibration. Therefore we have the identifications εU = εGW
−1 = −εGW

1, εV = ΩεGW 1

and combined we obtain Karoubi’s fundamental theorem −εV = ΩεU .

Remark 16.3. [Sch12, Proposition 8.7] The so called Karoubi-Grothendieck-Witt groups take on the
form

GWi(X,L) =

{
GWi(X,L) i ≥ 0
something i < 0

(127)

They are the analog of the non-connective K-theory groups Ki(X). If Ki(X) = 0 for all i < 0, e.g if X
is regular noetherian separated, we have [Sch12, Proposition 9.3]

GWi(X,L)
∼=−→ GWi(X,L) (128)

for all i ∈ Z.

Theorem 16.4. [Sch10b, Theorem 16] Let X = U ∪V be an open cover of a scheme X, such that 1
2 ∈ X

and X has an ample family of line bundles. Then there exists a long exact sequence of the form

· · · → GWn
i (X)→ GWn

i (U)⊕GWn
i (V )→ GWn

i (U ∩ V )→ GWn
i−1(X)→ · · · (129)

Theorem 16.5. [Sch12, Theorem 9.9] Consider the pull-back square of schemes

Y ′
� � p //

��

X ′

��
Y

� � p // X

(130)

where the map Y → X is a regular embedding and X ′ is the blow-up of X along Y . Assume that 1
2 ∈ X

and that X has an ample family of line bundles. Then there exists a long exact sequence of the form

· · · → GWn
i (X)→ GWn

i (Y )⊕GWn
i (X ′)→ GWn

i (Y ′)→ GWn
i−1(X)→ · · · (131)

Theorem 16.6 (Walter, Schlichting Remark 9.11 in [Sch12]). Assume that 1
2 ∈ X. Then we have

GWn
i (PrX) =

{
GWn

i (X)⊕Ki(X)
r−1
2 ⊕GWn− r+1

2
i (X) r odd

GWn
i (X)⊕Ki(X)

r
2 r even

(132)
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Theorem 16.7 (Bass’ fundamental theorem for GW , Theorem 9.13 in [Sch12]). Let X be a scheme
such that 1

2 ∈ X and such that X has an ample family of line bundles. Then there exists a split exact
sequence

0→ GWn
i (X)→ GWn

i (X[T ])⊕GWn
i (X[T−1])→ GWn

i (X[T, T−1])→ GWn−1
i−1 (X)→ 0 (133)

This defines GWn
i for i < 0 inductively.

Recall the Brown-Gersten-Quillen spectral sequence

Ep,q1 =
⊕
x∈X

dimOX,x=p

GWn
−p−q(OX,x on x)⇒ GWn

−q(X) (134)

The next proposition identifies the E1-term with the Grothendieck-Witt groups of the residue fields.

Proposition 16.8. Let X be a regular local scheme of dimension d such that 1
2 ∈ X and let x ∈ X be

the closed point. Then there exists a homotopy equivalence

GWn−d(k(x)) ∼−→ GWn(X on x). (135)

This equivalence depends on a choice of a system of parameters of R.

Proof. LetX = Spec R for a regular local ring (R,m, k) choose a regular system of parameters (f1, . . . , fd) =

m. Further let R fi−→ R be the differentially graded algebra concentrated in degrees 0 and −1. Then the
Koczul complex gives a quasi-isomorphism of differentially graded algebras

K(f1, . . . , fd) :=
d⊗
i=1

(R
fi−→ R)→ k (136)

Hence we have isomorphisms

GWn
i (k)

∼=←− GWn
i (K(f1, . . . , fn))→ GWn

i (R on m, Hom(−, R[d])) = GWn+d(R on m) (137)

where the first one holds by invariance under derived equivalences (Theorem ??). The second map is
defined by (E,ϕ) 7→ (E, πϕ) where π : K(f1, . . . , fd) → R[d] is the projection onto the component of
degree −d. This map induces isomorphism of Grothendieck-Witt groups, by devissage.

We finish this section with a proof of the surjectivity of the map H : K3(Z′) → GW3(Z′) used in the
proof of Lemma 6.1.

Lemma 16.9. Let Z′ = Z[ 1
2 ]. Then the group GW 3

2 (Z′) = 0, in particular, the map H : K3(Z′) →
GW 0

3 (Z′) is surjective.

Proof. By Corollary 16.2, we have an exact sequence

K3(Z′) H−→ GW 0
3 (Z′)→ GW 3

2 (Z′).

Hence, the vanishing of GW 3
2 (Z′) = 0 implies the surjectivity of H : K3(Z′) → GW 0

3 (Z′). By the same
corollary, we have an exact sequence

GW 2
2 (Z′) F−→ K2(Z′) H−→ GW 3

2 (Z′)→ GW 2
1 (Z′).

We have GW 2
1 (Z′) = Sp(Z′)ab = 0 because [Sp(Z′), Sp(Z′)] = Sp(Z′) as Z′ is Euclidean. Moreover,

the map GW 2
2 (Z′) F−→ K2(Z′) is surjective because K2(Z′) ∼= K2(Z) = Z/2 is generated by the symbol

{−1,−1} [Mil71, §10] which lifts to an element in GW 2
2 (Z′) (as the cup product of [−1] ∈ GW 1

1 (Z′) with
itself).
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17 Coherent GW-groups
In this section we explain the GW-analog of Example 11.1.

Definition 17.1. Let X be a noetherian scheme. Denote by QCohbc(X) the category of bounded chain
complexes of quasi-coherend OX -modules with coherent cohomology; it has the structure of a DG-
category with the same definitions as in Example 15.4. A dualising complex on X is a bounded chain
complex I• of injective quasi-coherent OX -moduls such that

can : E → [[E, I], I] (138)

is a quasi-isomorphism for all E ∈ QCohbc(X) (this only needs to be checked for E = OX). The map
canE is defined as the composition

E
∇−→ [[E, I], E ⊗ [E, I]]

[1,c]−→ [[E, I], [E, I]⊗ E]
[1,e]−→ [[E, I], I].

Define the Grothendieck-Witt space

GW (X, I) = GW (QCohbc(X), quis,#I , can) (139)

where #I = [−, I].

Lemma 17.2. Let Z ↪→p X be a closed subscheme of a noetherian scheme X, and U = X − Z the open
complement. Moreover let I be a dualising complex on X. Then ibI = H om•OX (i∗OZ , I) is a dualising
complex on Z.

Theorem 17.3. [Sch12, Theorem 9.19] Let Z ↪→p X be a closed subscheme of a noetherian scheme X,
and U = X − Z the open complement. Moreover let I be a dualising complex on X. Then there exists a
homotopy fibration

GW (Z, ibI)→ GW (X, I)→ GW (U, I) (140)

Theorem 17.4. [Sch12, Theorem 9.18] Let X be a noetherian regular separated scheme. Then an
injective resolution OX → I• is a dualising complex for X and induces a homotopy equivalence

GW (X)
∼=−→ GW (X, I•) (141)

where the lefthand side is defined in terms of vector bundles, and the right hand side in terms of complexes
with coherent cohomology.
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