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1 Introduction

Let R be a commutative ring with 1, and let G be an isotropic reductive algebraic group
over R. In [B] Victor Petrov and the second author introduced a notion of an elementary
subgroup E(R) of the group of points G(R).

More precisely, assume that G is isotropic in the following strong sense: it possesses a
parabolic subgroup that intersects properly any semisimple normal subgroup of G. Such
a parabolic subgroup P is called strictly proper. Denote by Ep(R) the subgroup of G(R)
generated by the R-points of the unipotent radicals of P and of an opposite parabolic
subgroup P~. The main theorem of [5] states that Ep(R) does not depend on the choice
of P, as soon as for any maximal ideal M of R all irreducible components of the relative
root system of Gg,, (see |2, Exp. XXVI, §7] for the definition) are of rank > 2. Under this
assumption, we call Ep(R) the elementary subgroup of G(R) and denote it simply by F(R).
In particular, F(R) is normal in G(R). This definition of E(R) generalizes the well-known
definition of an elementary subgroup of a Chevalley group (or, more generally, of a split
reductive group), as well as several other definitions of an elementary subgroup of isotropic
classical groups and simple groups over fields. The group E(R) is also perfect under natural
assumptions on R [3]. Here we continue this theme by proving that the centralizer of E(R)
in G(R) coincides with the group of R-points of the group scheme center Cent(G) (see [2
Exp. I 2.3| for the definition). Consequently, both these subgroups also coincide with the
abstract group center of G(R). Our result extends the respective theorem of E. Abe and J.
Hurly for Chevalley groups [I]; see also [7, Lemma 2] for a slighly more general statement.

Theorem 1. Let G be an isotropic reductive algebraic group over a commutative ring R
having a strictly proper parabolic subgroup P. Assume that for any maximal ideal M of
R all irreducible components of the relative root system of Gr,, are of rank > 2. Then
Ca(r)(E(R)) = Cent(G)(R) = C(G(R)).

Observe that the condition of the theorem ensures that the elementary subgroup E(R)
of G(R) is correctly defined. We refer to [3] for its definition and basic properties, as well
as for the preliminaries on relative root subschemes.

Remark. One may ask if the statement holds for Ep(R) instead of E(R), if we do not
assume that the local relative rank is at least 2. This seems to hold always except for several
natural exceptions, similar to the exception for PGLy described in [I]. We plan to address
this case in the near future.
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2 Preliminary lemmas

We refer to [3] and [5] for the preliminaries and notation.
We include the following obvious lemma for the sake of completeness.

Lemma 1. Let X = Spec A be an affine scheme over Y = Spec R, and let Z be a closed
subscheme of X. Take g € X(R). Then g € Z(R) if and only if g € Z(Rp) for any mazimal
ideal M of R.

Proof. For any R-module V, the natural map V' — [[V ® Rjs, where the product runs
over all maximal ideals M of R, is injective (e.g. [8, p. 104, Lemmal). Since g € Z(R)
is equivalent to an inclusion between the respective ideals of A which are R-modules, the
Lemma holds. O

Lemma 2. Let R be any commutative ring, G an isotropic reductive group over R, P a
strictly proper parabolic subgroup of G. Take any mazximal ideal M of R and any strictly
proper parabolic subgroup P’ of Gg,, contained in Pg,,. Then for any A € ®p: there is a
system of generators ea;, 1 <1 < ny, of the Ryr-module V4 such that for all g in the image
of Centg(g)(Ep(R)) in G(Rar), one has [g, Xa(ea;)] =1, 1 <i<na.

Proof. We assume from the very beginning that we have passed to a member of the disjoint
union

Spec(R) = H Spec(R;),
i=1

so that the parabolic subgroup P is also provided with a relative root system ®p and
corresponding relative root subschemes. Since for any B € ®p elements of Vi generate
Ve ®r Ry as an R,,-module, the claim of the lemma holds if P’ = Pg,,.

By [5l Lemma 12], for any two strictly proper parabolic subgroups @ < @’ of a reductive
group scheme, one can find such £ > 0 depending only on rank ®¢, that for any relative
root A € g and any v € V4 there exist relative roots B;,C;; € ®¢g/, elements v; € Vg,
uij € Vg,;, and integers ki, ng, l;; > 0 (1 <i <m, 1 <j < my), which satisfy the equality

mg
m H XCij (77l” uij)
Xa(&n™v) =[] X5, (" nmv;)=1 ;
i=1

where £, 7 are free variables. Taking Q = P’, Q' = Pg,,, £ = 1, for any element v; of a
generating system of the R,,-module V4 we get a decomposition

Xa(n*o) =[] X (™ 01),
=1

for some B; € ®p and v; € Vg, ® Ry, n; > 0. Clearly, for any v; there is an element
s; € R\ M such that s;v; belongs to Vg, (strictly speaking, to the image of Vg, in Vg, ® R/
under the localisation homomorphism; here and below we allow ourselves this freedom of
speech). Set 7 = s1...5,. Then Xa(n*v) € Ep(R), and hence [g, Xa(n*v)] = 1 for
any g € Centggry(Ep(R)). Thus, multiplying the elements of a generating system of Va
by certain invertible elements of Rj;, we obtain a new generating system of V4, which is
centralized by Centg(g)(Ep(R)). O

Lemma 3. Let R be a local ring (in particular, R can be a field) with the mazimal ideal
M, and let G be a split reductive group over R. Let P be a parabolic subroup of G such
that rank ®p > 2. Assume that g € G(R) is such that for any A € ®p there is a system
of generators ea;, 1 < i < na, of Va such that [g,Xa(ea;)] = 1 for all i. Then g €
Up(M)L(R)Up- (M), where Upx (M) = (Xa(MV4), A€ &%),



Proof. First let R be a field. We need to show that g € L(R). We can assume that R is
algebraically closed without loss of generality. Let B* be opposite Borel subgroups of G con-
tained in P, U* be their unipotent radicals, and T their common maximal torus. Bruhat
decomposition implies that g = uhwv, where v € UT(R), h € T(R), w is a representative
of the Weyl group, v € U (R) = {x € UT(R) | w(z) € U (R)}, and this decomposition is
unique. We have w € L(R) if and only if w is a product of elementary reflections w,, for
some simple roots «; belonging to the root system of L.

Assume first that w ¢ L. Then there is a simple root o not belonging to the root system
of L such that w(a) < 0. Consider A = 7(«). Let e4 € V4 be a vector from the generating
set existing by the hypothesis of the Lemma such that z,(§), & # 0, occurs in the canonic
decomposition of z = X 4(e4) into a product of elementary root unipotents from U™. Since
[, 2] = 1, we have z(uhwv) = (uhwv)z. The rightmost factor in the Bruhat decomposition
of z(uhwv) = (zu)hwv equals v. However, since « is a positive root of minimal height, it is
clear that the rightmost factor in the Bruhat decomposition of (uhv)z contains x,(n+¢) in
its canonic decomposition, if v contains z,(n). Therefore, this rightmost factor is distinct
from v, a contradiction.

Therefore, w € L(R). Then for any x € Up(R) we have wzw™! € Up(R), hence
by the definition of the Bruhat decomposition v € L(R) N U'(R). This means that g =
uhwv € UT(R)L(R) = Up(R)(Ut(R)NL(R))L(R) = Up(R)L(R) = P(R). Since symmetric
reasoning implies that g € P~(R), we have g € P(R)N P~ (R) = L(R).

Now let R be any local ring. Recall that Qp = UpLUp- =2 Up x L x Up- is a principal
open subscheme of G (e.g. [, p. 9]). Therefore, if the image of ¢ € G(R) under the
natural homomorphism G(R) — G(R/M) is in Qp(R/M), then g € Qp(R). Since by the
above the image of g is in L(R/M), and ker(Up+ (R) — Up+ (R/M)) = Up+ (M), we have
9 € Up(M)L(R)Up-(M). O

Lemma 4. Let G be an isotropic reductive group over a local ring R, M the mazximal ideal of
R, P a parabolic subgroup of G, P~ an opposite parabolic subgroup. For any u € Up- (M),
v € Up(R) there exist v’ € Up- (M), v' € Up(R), and b € L(R) such that uv = v'bu’.

Proof. The image of 2 = wv under p : G(R) — G(R/M) equals p(v),and thus belongs to
Qp(R/M), where Qp = UpLUp-. Since p is a principal open subscheme of G, this implies
that z € Qp(R), that is, x = v'bu’. Since p(u’) = 1, we have v’ € Up- (M). O

Lemma 5. Let G be a reductive group over a commutative ring R, P a parabolic subgroup
of G, A, B € ®p two non-proportional relative roots such that A+ B € ®p. Assume that
A— B & ®p, or A, B belong to the image of a simply laced irreducible component of the
absolute root system of G. Take 0 # u € Vp. Any generating system ei,...,e, of the
R-module V4 contains an element e; such that Napi1(e;,u) # 0.

Proof. Assume that Nypi1(e;,u) = 0 for all 1 < ¢ < n. Consider an affine fpqe-covering
[1SpecS; — Spec R that splits G. There is a member S; = S of this covering such that
the image of Xp(u) under G(R) — G(S) is non-trivial. Write

Xpw)= [] =s(as)- ] TI ws(cs)

n(8)=B i>27(B)=iB

where m : & — ®p is the canonical projection of the absolute root system of G onto the
relative one, xg are root subgroups of the split group Gg, and ag € S. Since Xp(u) # 0,
the definition of Xp implies that there exists ag # 0. Let By € 7~ 1(B) be the root of
minimal height with this property. By [5, Lemma 4| there exists a root o € 7~ 1(A) such

that « + By € ®. Let v € V4 ®g S be such that Xs(v) = zo(1) [T [I x,(dy), for
122 7 (y)=tA
some d, € S. Then the (usual) Chevalley commutator formula implies that [X4(v), X5 (u)]



contains in its decomposition a factor zo4s(Aag, ), where A € {1, +2, +£3}. However, since
either o, 8 belong to a simply laced irreducible component of ®, or A — B &€ ®p, we have
A= =+1. Then Napgi1(v,u) # 0, a contradiction. O

Recall [5] that any relative root A € ® ;1 can be represented as a (unique) linear combi-
nation of simple relative roots. The level lev(A) of a relative root A is the sum of coeflicients
in this decomposition.

Lemma 6. Let R be a local ring with the maximal ideal M, and let G be a reductive group
over R. Let P be a parabolic subgroup of G such that rank®p > 2, and the type of P
occurs as the type of a minimal parabolic subgroup of some reductive group over a local ring
(not necessarily over R). Assume that g € G(R) is such that for any A € ®p there is
a system of generators ea;, 1 < i < na, of Va such that [g,Xa(ea;)] = 1 for all i. If
g € Up(M)L(R)Up- (M), then g € L(R).

Proof. Write g = xhy, wherex € Up(M), h € L(R),y € Up- (M). We have HAeq); Xa(ua),
Y= HAe<1>; Xa(ua), where the product is taken in any fixed order.

Let A € ®p be such that ug # 0, and |lev(A)| is minimal among the levels of relative
roots with this property. We are going to deduce a contradiction, thus showing that A
cannot occur in the decomposition of g.

Assume that A € @;; the other case is treated symmetrically. Since the type of P
coincides with the type of a minimal parabolic subgroup, ® p is isomorphic to a root system
as a set with two partially defined operations—addition and multiplication by integers. Then
the standard properties of a root system imply that one can find a simple root or a minus
simple root B € ®p, non-proportional to A, such that A + B € ®p. Moreover, if the
irreducible component of ®p containing A is not of type Ga, we can, and we will, choose
B so that A— B &€ ®p. If it is of type G2, this may be impossible; then we stipulate that
we take B positive. The classification of Tits indices over local rings [6] also implies that
in this case the respective irreducible component of the absolute root system of G is either
simply laced or itself of type G3. Assume for now that the latter does not take place; we
will treat this exceptional case in the very end of this proof. Then by Lemma [l one can find
an element e of a generating system of Vp centralized by ¢ such that Napgi1(ua,e) # 0.

We have 1 = [Xg(e),g] = [XB(e),z](x[Xp(e), hy]z~!). This is equivalent to

1= (a7 [Xp(e), a]2)[Xp(e), hy] = [z7", Xp(e)][XB(e), hy]. (1)

By [5l Th. 2] we can write

a7 = Xa(—ua) H Xe(ve) = Xa(—ua) - 21,
Cedf, C#A,
lev(C)>lev(A)

and thus
[z, Xp(e)] = [Xa(—ua)z1, Xp(e)] @)
= [Xa(—ua), [z1, Xp(e)]] - [21, Xp(e)] - [Xa(—ua), Xp(e)].

Case 1: B is positive, that is, B is a simple root. We study the factor [Xg(e), hy]
of ). Write [Xp(e), hy] = Xp(e)h(yXp(e) ty~1)h~1, and

y= H Xc(ve) - HX—iB('U—iB) = Y1y2.
Ced,, CHB >0
Using Lemma[we obtain yXg(e) ™ = y1(y2- Xp(e) 1) = y1- [[ Xip(wip)-b- [ X—ip(win),
i>0 i>0
where b € L(R). Since relative roots proportional to B does not occur in the decompo-



sition of y1, and B is a simple root, the generalized Chevalley commutator formula im-
plies that y; - [[ Xip(wip) = (H X»L'B(’LUiB))yg, where y3 € Up-(R). Hence yXp(e)~! €
i>0 i>0

(zl;lo Xip (wiB)) P~ (R), and also

Xn(e), hyl € Xp()h (] Xin(wip) )b~ P~(R) = ([] Xinlz) ) P~ (R).

i>0 >0

Now we consider the first factor [x71, Xg(e)] of the right side of (). The generalized
Chevalley commutator formula, applied to ([2]), says that

27! Xp(e II Xp(wp).
Ded};

Moreover, D = A+ B is a root of minimal height in the decomposition (2] satisfying wp # 0;
in fact, wa+p = Napi1(—ua,e). Hence, the whole product

[0, Xp(e)] - [Xp(e), hy) € Xarn(Napn(-uae)) - ([] Xin(zin) ) - [] Xelte) - P~ (R)
>0 CE‘P;,

lev(C)>lev(A+B)

does not equal 1, a contradiction.

Case 2: B is negative, that is B’ = —B is a simple root. In this case the generalized
Chevalley commutator formula immediately implies [Xg(e), hy] € P~ (R). We study ().
Note that the decomposition of x; does not contain Xp/(vp/), and, if 2B’ € ®p, also does
not contain Xsp/(vap/). Indeed, in the first case we would have lev(A) = 1, hence A is a
simple relative root, hence A + B = A — B’ is not a relative root. In the second case we
would have lev(A4) = 2, and, since A+ B € &p, A = A’ + B’ for a simple relative root A’.
Since in this case we are in the irreducible component of ®p of type BC,, and B’ is an
extra-short simple root, we also have A’ + 2B’ = A — B € ®p. But then by our algorithm
we would have taken (—A’) instead of B, since A — (—A') =2A"+ B' ¢ $p.

The above, together with the fact that B’ = —B is a simple root, and the general-
ized Chevalley commutator formula, implies that [z1, Xp(e)] = ][] Xp(wp). Moreover, if
Ded}

wp # 0, then D # A+ B, since A— B is not a relative root by our assumptions, and obviously
D is not proportional to B. Further, we see that for any relative root D, occuring in the de-
composition of [X a(—u4), [z1, X5(€)]] or [Xa(—ua), X5(e)], the coefficient near any simple
root Ag # B’ in the decomposition of D is greater or equal to that in the decomposition of A.
Summing up, the only factor of the form X 4_p(u) in the decompositions of the expressions
[Xa(—ua),[z1, XB(e)]], [r1, XB(e)], [Xa(—ua), X5(e)] is the factor Xs_p(Nap11(—ua,e))
in the third one, and no commutator of the factors can give a new factor of the form X 4 p(u)
with u # 0. Hence, [z, X5(e)] contains Xa_p(Napi1(—ua,e)) # 1 in its decomposition,
and
[z, Xp(e)|[Xp(e), hy] € Xa_p(Napn(—ua,e))- [[ Xr(tr) P (R)

cannot equal 1, a contradiction.

Case G>. We are left with the case when ®p is of type G2, and moreover the relevant
component of the absolute root system of G is also of type Go. Then we can assume
without loss of generality that all components of the absolute root system are of type Ga,
and consequently G is quasi-split. There exists a canonical étale extension R’ of R such



that G is a Weil restriction of a split group G’ of type Ga over R’, see [2 Exp. XXIV
Prop. 5.9]. Then Gpg is a direct product of k split groups G; of type Ga. To show that
g € L(R), it is enough to show that the image ¢’ of g in G(R’') is in L(R'). We know
that Pgs is a Borel subgroup of Gr/, and, since ®p has no multiple roots, for any A € ®p
we can identify the root subscheme X 4(V4 ® R’) with the direct product of k elementary
root subgroups x,(R’) of the groups G;. Considering the relevant projections of g and the
generating systems of Vy, we are reduced to proving the following: if a point h € H(S) of
a split reductive group H of type G centralizes x,(uy) for some u, € S*, for any root
a € U, where U is the root system of H, then h belongs to the corresponding split maximal
torus. By Lemmas [Tl and [B] we can also assume that the ring S is local with the maximal
ideal N, and h = [[,cy+ Tal@a) - b - [ cw- Talaa), where all a, € N. Then the proof
goes exactly as in [I, Prop. 3], substituting the elements xzg(1) and wg(1) by xzg(ug) and
wp(ug) = zp(ug)r—p(—uz*)zs(up). O

Lemma 7. Let G be an isotropic reductive algebraic group over a commutative ring R, P a
parabolic subgroup of G, L a Levi subgroup of P. Assume that g € G(R) is such that for any
A € Op there is a system of generators ea;, 1 < i < na, of Vo such that [g,Xa(ea;)] =1
for alli. If g € L(R), then [g, Ep(R)] = 1.

Proof. We show that [g, X4(Va)] = 0 for any A € &} by descending induction on the hight
of A; the case A € ® is symmetric. By [5, Th. 2| for any g € L(S) and any A € ®p there
exists a set of homogeneous polynomial maps 30;1 4 Va = Via, i > 1, such that for any
v € V4 one has
gXa(v)g~" = HXiA(SD_Z,A(v))-
i>1
Since ¢! , are homogeneous, [g, X 4(v)] = 1 for v € Va implies [g, Xa(\v)] = 1 for any A € R.
Also by [5, Th. 2], there exist a set of homogeneous polynomial maps ¢’y : Va x V4 — V;4,
1 > 1, such that
Xa()Xa(w) = Xa(v+w) [[ Xia(gh(v,w))
i>1
for all v, w € V4. Assume that [g, X4(v)] = [g, Xa(w)] = 1. Then

9Xalv+w)g™ = 9Xa()Xa(w)g™ g ([] Xm<qz<v,w>>)_lg-1 —1,

since by inductive hypothesis g centralizes X;4(V;4) for all i > 0. O

3 The proof

Proof of Theorem[ll Let g € G(R) centralize E(R) = Eq(R), where @ a strictly proper
parabolic subgroup of G. We are going to show that g € Cent(G)(R). By Lemma [ it is
enough to show that g € Cent(G)(Rys) for any maximal ideal M of R. Fix an ideal M, and
set R’ = Rp;. Let P be a minimal parabolic subgroup of Gg/. By Lemmalfor any A € ®p
there is a system of generators ea;, 1 < ¢ < n4, of the R’-module V4 such that one has
[9,Xa(ea;)] =1,1<i<nu. Note that ®p is a root system by [2] Exp. XXVI, §7], and by
the assumption of the theorem all irreducible components of ®p are of rank > 2.

Let [ ] Spec S; — Spec R’ be an fpqce-covering such that G splits over each Spec S;. It is
enough to check that g € Cent(G)(S;) for every 7 (here we identify g with its image under
G(R') = G(S;)). Fix one 7, and set S = S, for short. Again by Lemma [Il it is enough to
show that g € Cent(G)(Sy) for any maximal ideal N of S.

Since a system of generators e4;, 1 < ¢ < nga, of the R'-module V4, also generates
(Va®pr S)®sSN as an Sy-module, g satisfies the conditions of Lemmas[Bland[6 (for the base



ring Sy ); hence g € L(Sn), where L is a Levi subgroup of P. By Lemma [7 this implies that
g centralizes E(Sy). Since Gg,, is split, it has a Borel subgroup B, and E(Sy) = Ep(Sn).
Applying Lemmas [B] and [6l to B instead of P, we get that g € T(Sy) for a split maximal
subtorus T of Gg,. Hence g € Hom (A/A,,Sy) C Hom (A, Sy) = T(Sn), where A is the
weight lattice of G, and A, is the root sublattice. Therefore, g € Cent(G)(Sy ). O
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