UNSTABLE CLASSIFICATION OF PROJECTIVE MODULES
OVER AFFINE ALGEBRAS

J. FASEL

ABsTrRACT. We present a self-contained proof of a conjecture of Suslin about
stably free modules.

FOREWORD

These notes contain the basic material I'm going to cover during the ICTP
meeting. They are PRELIMINARY. Some proofs are missing and some important
results around the subject are simply not stated. I intend to write down the missing
proofs and extend the material covered in the future. In particular, one of my goals
is to rewrite the classical results under a A'-homotopy category point of view. To
my opinion, it is certainly the right framework to understand the isomorphism
classes of projective modules over smooth algebras (over a field).

Conventions. All the rings considered in these lectures are supposed to be noe-
therian, and the projective modules of finite type. Similarly, all the schemes con-
sidered here are supposed to be of finite type and separated over some field k.

BASIC DEFINITIONS AND RESULTS

Theorem 0.1 (Eisenbud-Evans-Plumstead). Let R be a ring and P be a projective
R-module of rank r. Let (a,a) € PV & R. Then there exists 3 € PV such that
ht(I,) > d where I = (o + af)(P). In particular, if the ideal (a(P),a) has height
> d then ht(I) > d. Further, if (a(P),a) is of height > d and I is a proper ideal,
then hit(I) = d.

Theorem 0.2 (Swan-Bertini). Let R be a smooth affine algebra over an infinite
field k, and let P be a projective R-module of rank r. Let (a,a) € PV & R be a
unimodular element. Then there exists 3 € PV such that if I = (a+ af)(P) then
1. R/I is smooth of dimension dim(R) — r unless I = R.

2. R/I is integral if dim(R/I) # 0.

Proposition 0.3 (Suslin). For any n > 3 and any ring R, the subgroup E,(R) is

normal in GL,(R).

LECTURE 0

0.1. Stable versus unstable classification. Let R be a ring. If P is a (finitely
generated) projective R-module, we denote by { P} its isomorphism class. The set
of isomorphism classes M (R) of projective R-modules is endowed the structure of
an abelian monoid with operation defined by

{Pr+{Qr={req;}
1
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and neutral element the trivial module. The group Ky(R) is the group comple-
tion of M(R). More precisely, Ko(R) is the free abelian group generated by the
isomorphism classes { P} quotiented by the subgroup generated by

{P}+{Q} -{Pod}
for any {P} and {Q}. We denote by [P] the class of {P} in Ky(R).

Proposition 0.4. Let P and Q be projective R-modules be such that [P] = [Q)].
Then there exists n € N such that P& R" ~Q & R™.

Suppose that R is such that Spec(R) is connected (otherwise we can decompose
R as a product of such rings). Then we obtain a homomorphism

p:Ko(R)—Z
defined by p([P]) = rank(P). We denote by Ko(R) the kernel of p.

For any r € N, let P,.(R) be the set of isomorphism classes of rank r projective
R-modules, pointed by the class {R"}. We define a map

Sp P — Pryg
by s,({P}) = {P & R} and we observe that s, is a map of pointed sets. Let
P(R) :=limP,(R). For any r € R, we denote by
7 P (R) — P(R)
the "limit" homomorphism. It follows that P(R) is pointed by the class of m5{0}.

For any r € N we define a map f, : P.(R) — Ko(R) by f,({P}) = [P] — [R"]. It
is clear that the following diagram commutes for any r € N

Sr

P(R) Pry1(R)

Ko(R)
and we then obtain a map f : P(R) — Ko(R).
Proposition 0.5. The map f : P(R) — Ko(R) is bijective.

Proof. We first prove that f is surjective. Let o = [P] — [Q] € Ko(R). Then we
have rank(P) = rank(Q). Let @’ be such that Q & Q" = R™ for some n € N. We
have

a=[P|-[Q =[P+ [Q]-[Q - [Q=[P®Q]-[RrR"].
Now rank(P ® Q') = n and it follows that o = f,({P® Q'}). Hence f is surjective.
Let 8 and v in P(R) be such that f(8) = f(). There exists therefore r,s € N
and {P} € P.(R), {Q} € Ps(R) such that f.({P}) = f.({Q}) with =.({P}) =5

and 7, ({Q}) = 7.
Since f.({P}) = f:({Q}), we have [P] — [R"] = [Q] — [R®] and it follows from

Proposition 0.4 that P ® R*T™ ~ Q ® R™™ for some m € N. This yields

B=m{P}="mristm({P S Rs+m}) = Trpstm({Q © Rr+m}) =7ms({Q}) = .
O
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Thus we see that K-theory studies the isomorphism classes of projective R-
modules "at the limit". The goal of these lectures is to study the sets P.(R) and
the maps

sr: Pr(R) — Pry1(R)

In lecture 1, we prove the well-known result that s, is a bijection if > dim(R) +
1. In lecture 2, we give a proof of Suslin’s theorem saying that s4 is injective if R
is an affine algebra of dimension d over an algebraically closed field. We also prove
his subsequent result that s; is a bijection in the same situation. In the following
lectures, we introduce the necessary tools in order to prove that sy_; has a trivial
fiber (i.e. s;',({R?}) = {R?'}) if R is a normal algebra of dimension d over an
algebraically closed field & with (d — 1)! € k*.

1. LECTURE 1

Definition 1.1. Let R be a ring, X = Max(R) and P be a projective R-module.
We say that p € P is unimodular if one of the following equivalent conditions is
satisfied

1. P~Rpa& P

2. For any = € X, we have p(z) # 0 in P/zP.

3. There exists ¢ : P — R such that ¢(p) = 1.

Theorem 1.2 (Serre). Let R be a commutative noetherian ring and X = Max(R).
Suppose that X is connected of dimension d. Let P be a projective R-module of
rank r > d. Then P~ P' @ R.

Proof. For any p1,...,p, € P and any j € N, let
Fi(p1,...,pn) ={z € X | dim((pi(x),...,pn(x)) C P/zP) < j}.

Obviously, we have Fy(p1,...,pn) = 0, Fi(p1,-..,pn) C Fjqy1(p1,...,pn) for any
j € Nand Foqi(p1,...,pn) = X. Also, it is clear that the subsets Fj(p1,...,pn)
are closed in X (adding a complement to P, we may assume that P is free and the
condition F); expresses as the vanishing of some minors in a matrix).

Assertion 1. For any integer s < r, there exists p1,...,ps € P such that we have
codimy (Fj(p1,...,ps)) > s+1—j foranyj=1,...,s.

Suppose first that s = 1. Let X = X; U...U X,, be the (non redundant)
decomposition of X in irreducible components. Choose z; € X; \ (Us2;X;) for any
i=1,...,m. Since P(z;) = P/x;P is of dimension r > 1, there exists v; € P(x;)
such that v; # 0 for any ¢ = 1,...,m. By the Chinese remainder lemma, there
exists p; € P such that py = v; (mod z;P) for any i. Let Y C Fi(p1) C X be an
irreducible closed subset. By construction, we have Y N X; C X is of codimension
at least 1 (since z; € Y N X;). It follows that Fy(p1) C X is of codimension at least
one and we are done in this case.

Suppose now that the result is proved for s — 1 < r — 1. There exists therefore
P1s- - Ds—1 € P such that codimx (Fj(p1,...,ps—1)) > s—jforanyj=1,...,5— 1.
We can decompose F(p1,...,ps—1) as a union of closed subsets

Fj(p1,- .- ps—1) =Yj1U...UYj,, UY/
such that Yj; is irreducible with codimx (Y;;) = s — j for any ¢ = 1,...,u; and
codimy (Y}) > s — j. Choose y;; € Vi \ (Ui Y;) UY]) for any j=1,...,s -1
and any ¢ = 1,...,u;.
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Since y;; € F;(p1,...,ps—1), we have

dim({p1(yj,i)s - Ps—1(y5,0))) <j<s—1<

Yet dimP/y; ;P = r > s and it follows that there exists v;; linearly independent
of {p1(yji),..-,Ps—1(y;ji)}. The Chinese remainder lemma shows that there exists
ps such that p; = v;; (mod y;,;P) for any j, .

By definition, we have Fj(p1,...,ps) C F;(p1,...,ps—1). Since ps(y;;) is lin-
early independent of {p1(y;.),...,ps—1(y;.:)}, it follows that F;(ps,...,ps) doesn’t
contain any Y;;. Thus

codimx (Fj(p1,...,ps)) > Fj(p1,...,ps—1) +1>s+1—3.

Assertion 2. Let k € N be a fixed integer. For any p1,...,ps € P such that
codimx (Fj(p1,...,ps)) >k —j forany j=1,...,s, there exists a1,...,as_1 such
that

codimx (Fj(p1 + a1ps, ..., Ds—1 + as—1Ps)) > k — j
foranyj=1,...,s—1.

To prove the second assertion, write
Fj+1(p1, e ,ps) = Zj71 U...u Zj,uj U ZJI

with Z;; irreducible of codimension k¥ — j — 1 and Z} of codimension > k — j.
Choose z;; € Zji \ (Ui Z;1) U Z; U Fj(pa,...,ps)) for any j =1,...,5— 1. Then
dim((p1(2j,i),--.,Ps(25))) = j < s—1. There exists therefore ai(2;:), ..., as—1(2;,:)
in R/z;; such that

dim((p1(25,6) + a1(2,0)ps(25,1), - - s Ps—1(25,0) + as—1(25,0)ps(25,0))) = J.
The Chinese remainder lemma gives aq,...,as—1 € R such that a; = a;(z;,)
(mod z;;) for an j, 1.
Since Fjt1(p1 + aips, - .-, Ps—1 + as—1ps) C Fjp1(p1,...,ps), we get

codimx (Fj11(p1 + a1ps, - .., Ds—1 + as—1ps)) > k —j — L.

If T is an irreducible component of F;(p; + aips,...,ps—1 + as—1ps)), We see that
zji € T. Thus

codimy (F(p1 + a1ps, - - -, Ps—1 + as—1ps)) > k — J.

We can now finish the proof of Serre’s theorem. Because P is of rank r > d,
Assertion 1 shows that there exists pi,...,p4+1 such that F;(py,...,ps) is of codi-
mension > d+ 2 — j for any j = 1,...,d+ 1. We can apply Assertion 2 d times
to get p € P such that F;(p) is of codimension > d + 2 — j for j = 1. Therefore
Fi(p) =0 and p(z) # 0 for any « € X. It follows that p is unimodular. O

Theorem 1.3 (Bass-Schanuel). Let R be a commutative noetherian ring and let
X = Max(R). Suppose that X is connected of dimension d. Let P and P’ be
projective R-modules of rank r > d. Suppose that there exists a projective R-module
Q such that P® Q ~ P' & Q. Then P ~ P’.

Proof. Since Q is a projective R-module, there exists a projective module Q' such
that Q ® Q' = R" for some n € N. Since P® Q ~ P’ @ Q, it follows that
P& R"™~ P'® R™. By induction, we are reduced to prove the result for n = 1, i.e.
when PO R~ P ®R. Let ¢ : P’ ® R — P ® R be such an isomorphism. To prove
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the result, it suffices to show that there exists an automorphism 7 of P & R such
that 7¢(0,1) = (0,1). Set (p,a) = ¢(0,1).

Since P is of rank r > d, there exists p; € P such that P = Rp; @ P; by Serre’s
theorem. Since (p,a) is unimodular, there exists py € P such that p3 := p + aps is
unimodular in P by Bertini’s theorem.

Define g; : P® R — P @ R by g1(q,b) = (bp2,0). Since g? = 0, it follows that
71 := Id + g1 is an automorphism of P ® R (with inverse Id — g;) and we have

Tl(pa a) = (pv a) + ((Zp27 0) = (p3a a)'

Since ps is unimodular, there exists & : P — R such that a(ps) = 1. Define
g2 : P®R — P® R by ga(q,b) = (0, (1 —a)p(q)). Once again, we have g3 = 0 and
thus 75 := Id + go is an automorphism of P & R. Moreover, we have

7'27'1(177 (1) = 7—2(p3a a’) = (p37a) + (07 1- (1) = (p37 1)
Define finally g3 : P® R — P ® R by g3(q,b) = (—bg,0). Since g3 = 0, we see that
73 := Id + g3 is an automorphism of P ® R and

37271(p, a) = 73(p3, 1) = (ps, 1) + (—p3,0) = (0, 1).
Setting 7 := 137271, we see that 7(p,a) = (0,1) and the result is proved. O

2. LECTURE 2

Let Rbearing and let ay,...,an,b1,...,b, € Rwithn € N. Leta = (ay,...,ay)
and b = (b1,...,b,). Following [14, §5], we define a matrix a,(a,b) € Man-1(R)
inductively starting with a4 (ai,b1) = a; and

_ arldon—2 ap—1(a’, V)
an(a,b) = (—an_l(b',a')t by Idyn—

where a’ = (ag,...,a,) and ' = (ba,...,b,).
Lemma 2.1. We have:
1. an(a,b) - an(b,a)t = (3 aib;) - Idgn-1.

2. detoy (a,b) = (X aiby)? forn > 2.
3. In particular, ap(a,b) € SLon-1(R) if > a;b; = 1.

Lemma 2.2. Let R be a ring and let (ay,...,a,) € Umy,(R). Let m € N. Then
(a71n7a27 B an) ~E,(R) (alvagna as, ..., an)-

Lemma 2.3. Let R be a ring and a1,...,0n,b1,...,b, € R with n > 2 and
> ab; = 1. There exists an elementary matriz E(a,b) such that

an(a,b)E(a,b) = (ﬁn(g,b) (1))

where By, (a,b) € SL,(R) and e16,(a,b) = (ai ah™2,... a2 5, an_1,0an).

Corollary 2.4. Let R be a ring and let (a1, ...,a,) € Umy(R). Then the unimod-

—1)! , , ; , )
ular row (agn ) ,G2,...,ay) 18 completable in an invertible matriz.

Proof. If n < 2, there is nothing to prove. We can thus suppose that n > 3. By

the above lemma, we know that ((a?il, aZﬁQ, ey @2 o, an_1,0a,) is completable in
an invertible matrix. The result follows then from Lemma 2.2. U

We now have all the tools in hand to prove Suslin’s theorem.
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Theorem 2.5. Let A be an affine algebra of dimension d over an algebraically
closed field k. Then Umgy1(A) = SLatr1(A). In particular any stably free module
of rank d is free.

Proof. Let P be a stably free module of rank d. There exists thus n € N such that
P@ A" ~ A4, Bass’ cancellation theorem 1.3, shows that the above isomorphism
yields an isomorphism P @ A ~ A%t1 Tt follows that P is the projective module
associated to a unimodular row (aj,...,aq41). Let B = A,.q be the reduced
algebra associated to A. The equivalent conditions of Definition 1.1 shows that
P is free if and only if P ® 4 A,cq is free and therefore we can suppose that A
is reduced. Let J C A the singular locus of A. Because A is reduced, we see
that ht(J) > 1. There exists thus a non zerodivisor s € J. Since A/sA is of
dimension < d — 1, we can use Theorem 0.1 to perform elementary operations on
(a1,...,a441) in order to find a3 = 1 (mod sA) and a; € sA for i = 2,...,d + 1.
Using now Swan’s Bertini theorem 0.2, we see that there exists by, ..., by such that
A/(ar +brags,--.,aq+bgage1) is smooth of dimension 0 outside J. Since a1 =1
(mod J) and ag41 € J, it follows that A/(a; + brag41, ..., aq + bgags1) is actually
smooth. Since k is algebraically closed, we get

A/(a1+blad+1,...,ad+bdad+1):k;>< o x k.

There exists thus b € A such that % = ag,; (mod (ay +biagiy,...,aq+bgags1))-
Altogether, we proved that we can perform elementary operations on the row
(a1,...,a44+1) to obtain a row (aj,...,al,b%). Tt follows from Corollary 2.4 that
this row is completable and therefore P is free. (Il

Theorem 2.6. Let A be an affine algebra of dimension d over an algebraically
closed field k. Suppose that P, P’ are projective A-module of rank d such that
PpA~P ®A. Then P~ P'.

3. LECTURE 3

Let R be a ring. We consider triples (P, f1, f2) where P is a finitely gener-
ated projective R-module and f1, fo : P — PV are skew-symmetric isomorphisms.
Two triples (P, f1, f2) and (P’, f1, f4) are isometric if there exists an isomorphism
a: P — P'such that f; = " fla for i = 1,2. We denote by [P, f1, f] the isom-
etry class of a triple (P, f1, f2). We denote by GW3(R) the free abelian group on
isometry classes of triples [P, f1, f2] subject to the relations

1. [P7f17f2]+[P7f27f3]7[P7f17f3}'
2. [P,f17f2]+[Q791792]7[P@Q,f1 G9917.](‘2 @92]

Recall from M. Schlichting notes that there is an exact sequence
(1) KiSp(R) > K\(R) > GW3(R) > KoSP(R) > Ko(R)

For any n € N, let S, (R) be the set of skew-symmetric invertible matrices of

size 2n. We define v, € S5, (R) inductively by ), = (_01 (1)> and

Yon =2 L ... L o

We define a map S5, (R) — S3,,,2(R) by M — M L 4 for any n € N, and we set
S’(R) =1im S5, (R). We say that A € S5, (R) and B € S5,,(R) are equivalent and
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we write A ~ B if there exists t € N and a matrix E € Eg,yom+2:(R) such that
E'(A L thomiot)E = B L oo

Lemma 3.1. The relation ~ is an equivalence relation. Further, S'(R)/ ~ endowed
with the operation L is an abelian group.

Proof. The first assertion is a straightforward exercise. It is clear that L induces
a well-defined operation on S’(R)/ ~, and the only non trivial thing to check is
that every matrix A € S}, (R) has an inverse in S'(R)/ ~. We follow the proof of
Suslin-Vaserstein in [15, §3].

Let 09, € GL2,(R) be the matrix defined inductively by o9 = <(1) (1)) and

O2n = O2p—2 L 09.

Observe that of, = o9, and 03, = Id. Let G € S}, (R) be a skew-symmetric
invertible matrix. We can write G = H — H' for some matrix H € Ma,(R). We

have
G 0 N 1 0 G 0 1 G log,
0 09,G loa, —0,G71 1J\0 09,G tog,/) \O 1

G O92n 1 0

—o9, 0 oonH! 1

~ 0 O92n
—092n, 0 ’

Replacing now G by )5, and observing that 02n¢5n10'2n = 9,,, We see that
G 0
(0 U%G1J2n> ~ Yam ~ Pa.
It follows that 9, G~ log, is an inverse of G. O
We denote by Wi (R) the group S’(R)/ ~. We now define an analogue of the
long exact sequence (1) for Wi (R) before proving that this group coincides with

GW3(R). We follow the steps of [7, §2].
We first define a homomorphism

¢ : Wp(R) — KoSp(R)

as follows. Let G € S, (R). Then G can be seen as a skew-symmetric form
G : R?" — (R?™)Y and we can consider its class [R?",G] in K¢Sp(R). Similarly,
the matrix g, also defines a class [R?",1,] and we set

¢(G) = [R*",G] — [R*", an].

Suppose that G ~ H for some H € S5 (R). There exists therefore ¢ € N and
FE e E2n+27n+2t(R) such that Et(G 1 w2m+2t)E =H 1 ¢2n+2t- Since

[R2F2mH2E G | hoynior] =[R2 BN G L Yomyar)E)

in KoSp(R), we see that ¢(G) = ¢(H) and therefore ¢ induces a well-defined map
Wg(R) — KogSp(R). It is clear that ¢ is a homomorphism.
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We now define a homomorphism
0: Ki(R) — Wg(R).

If G € GLan(R), then we define 6(G) to be the class of G'42, G in W (R). If now
G € GLyy,11(R), then we set 0(G) = (G L 1)")9,42(G L 1). We see that these
maps induce a map 0 : GL(R) — Wi(R).

Lemma 3.2. The map 0 : GL(R) — W (R) induces a homomorphism
0: Ki(R) — Wg(R).

Proof. First observe that (E(R)) is trivial by definition of W (R). If G € GL,(R),
then Whitehead lemma reads as

Gt 0y (1 0\/1 1-G7! 1 0\/1 1-G
0 G \G 1/\0 1 -1 1)\0 1

and shows that the matrix on the left is elementary. If G and H are invertible
matrices, we can stabilize and thus we can suppose that G, H € G Ly, (R) for some
Gt o0
n € N. Let £ = < 0«

in Wg(R)
(HG)'49, HG = (HG 1 1)"%4,(HG 1. 1) = E'(HG L 1)1y, (HG L 1)E

Now (HG L 1)E = H L G and we therefore see that 0(HG) = 0(H) L 6(G). This
proves the lemma. O

> € E4,(R). We find the following sequence of equalities

Theorem 3.3. The sequence

K1Sp(R) 1> K\ (R) % WL(R) > KoSp(R) > Ko(R)
15 exact.

Proof. We first prove that the sequence is a complex. If G € Spy,(R), then
G')9,G = 1o, by definition and it follows that 0f = 0. If G € GLg,, then
[R*™, G0, G] = [R*",1)2,] in KogSp(R). Therefore pf = 0. Finally, the underly-
ing modules of [R?", G] and [R?",1)s,] are the same for any G € S5, (R) and thus
fe=0.

We now prove the exactness of the sequence. Suppose that §(G) = 0. We can
suppose that G € G Lo, (R) for some n € N. Since §(G) = 0, there exists ¢t € N and
E € E5p,49:(R) such that

EYG L Ida)"ont2t(G L Ido)E = E' (G2, G L 19 E = thoyq04.

It follows that H := (G L Idy)E € Spaptoi(R). By definition, we have G =
f/(H) € K1(R) and the sequence is exact at K;(R).

Suppose next that ¢(G) = 0 for some skew-symmetric G € S5, (R). Therefore
we have [R?" G] = [R®",12,] in KoSp(R). Therefore, there exists m € N and
H € GLay12m(R) such that

G L Yo = M Yoy iam M.

It follows that G' ~ M%), 2, M and then G = 6(M).
Let o € KoSp(R). By definition of this group, we can write a = [P, f] — [@, g]
for some projective modules P, Q and skew-symmetric forms f,g. Let M be such



UNSTABLE CLASSIFICATION OF PROJECTIVE MODULES OVER AFFINE ALGEBRAS 9

that Q @ M = R?" for some n € N. Let hy; : M & MY — MY & M be given by

the matrix
0 1
-1 0/)°

Then [Q, 9] + [QY, evgg™ ] + [M & MY, hy] = [R*™, 1)4,], where evg : Q — QVV is
the canonical isomorphism (exercise). Therefore
o= [P, f] + [viergil] + [M D Mv7hM] - [R4n7w4n}

in KoSp(R). Setting P’ =PaQV e Mo MY and f' = f L evgg™" L hy we find
a =[P, f'] — [R* 1)4,]. Suppose that f(a) = 0. It follows that P’ is stably free.
Adding if necessary [R*™ s,,] for m big enough and using Bass’ theorem 1.3 we

can suppose that P’ is free. It follows that f’ is given by a skew-symmetric matrix
G and therefore a = ¢(G). O

Our next aim is to construct a homomorphism 7 : W(R) — GW3(R). Let
G € S9,(R). As seen before, G can be considered as a skew-symmetric isomor-
phism G : R*™ — (R?")V, and so does 1a,. We set 7(G) = [R?",G,1q,]. Since
[R*™ 4hoy,, tham] = 0, it follows that 7 induces a map S'(R) — GW3(R).

Lemma 3.4. The map 7 induces a homomorphism 7 : W(R) — GW3(R).
Proof. Let G € Sb,(R) and H € S}, (R). By definition of GW3(R), we find that
[R2n+2m7 G_L H7 w2n+2m] = [RQna Ga wQTL] + [R2’m’7 H7 ¢2m] -

Suppose that G ~ H. There exists therefore t € N and E € FEsyp,19m42:(R) such
that
EYG L thamyor) E = H L onior

By the above remark, we have 7(H L top49:) = 7(H) and 7(G L Yapmtat) = 7(G).
We can therefore suppose that G and H are elements of Ss,(R) and that there
exists E € Fa,(R) such that F'GE = H. Now we have
7(G) = [R*", G, 2] = [R*", E'GE, E"2, E] = [R*", H, b2, ]+[R*", by, E' o, E).
We are then reduced to show that [R*" g, E'g,E] = 0 for any elementary
matrix F € Fa,(R). As

[RQn, "/}2717 Et¢2nE] = [R2n7 (E_l)t'@[]QnE_la 1/}271]

we are going to prove instead that [R?", E't)o, E,19,] = 0 for any E € Ey,(R). In
order to show this, recall that the homomorphism 4 : K1 (R) — GW?(R) is defined
by h(G) = [R2", G*1o, Gy on] if G € GLan(R). 1t follows that h(E) = 0 and the
result is proved. (Il

Theorem 3.5. The homomorphism 7 : Wi(R) — GW3(R) is an isomorphism.

Proof. Tt suffices to observe that the following diagram
6

Klsp Kl(R) W’E(R) 4>K05p HK@(R)

h

commutes by definition of the maps, and to use the five lemma. O



10 J. FASEL

3.0.1. Pfaffians. We first recall the definition of the Pfaffian homomorphism. Let
By, = Z[;L“WH < i,j < 2n]/<x,-j +Zji,l‘i,;|1 <1< j < 2n>

The determinant D of the matrix (z;;) is a square in Ba,, i.e. there exists Pf € Bo,
such that (Pf)? = D. The polynomial Pf is uniquely determined up to a factor
+1. We can determine this sign by forcing P f(1)2,) = 1. We call Pf the Pfaffian
polynomial.

If R is a ring, then we see that S5, (R) = Homyings(Ban, R). If M € S5, (R)
corresponds to a ring homomorphism ¢ : Bg,, — R, then we set Pf(M) = o(Pf).
Since M is invertible, it follows that Pf(M) € R* and we obtain a homomorphism

Pf:S, (R)— R*.
Lemma 3.6. Let R be a ring. Then
1. Pf(H'GH) = Pf(G) -det(H) for any G € S5,(R) and any H € GLy,(R).
2. Pf(Gy L Gg) = Pf(Gy)- Pf(Gs) for any G1,Gs € S}, (R).
Proof. O

For any n € N, we define Ss,(R) as the kernel of Pf : S5 (R) — R*. Since
Pf(yq) =1, it follows that we have a commutative diagram

San(R) —— 55,(R)

o |’

San(R) ——= S5, (R).

Setting S(R) = USa,(R), we thus get a map S(R) — S’(R). Using Lemma 3.6, we
see that ~ induces an equivalence relation on S(R) and that S(R)/ ~ is an abelian
group that we denote by Wg(R). We obtain a short exact sequence

0——Wg(R) —=Wg(R) —= R* ——=0

which is split by associating to any a € R* the skew-symmetric matrix (—a g)

(exercise).

4., LECTURE 4: THE VASERSTEIN SYMBOL

Let R be a ring and (ay,az,a3) € Ums(R). Choose (b1, ba,b3) € R3 such that
>~ a;b; = 1. Following [15, §5], we define V' (a1, az, a3) € Wg(R) to be the class of
the matrix

0 —ay —a9 —as
ajq 0 71)3 b2
as bg 0 —bl
as —b2 b1 0

It seems a priori that the definition of V(aq,as,a3) depends on the choice of
(b1,ba,b3) such that > a;b; = 1. However, the next lemma proves that this is
not the case.
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Lemma 4.1. Let R be a ring and (a1, az,a3) € Umz(R). Let (by,b2,b3) € R® and
(c1,co,c3) € R be such that " a;b; = > a;c; = 1. Then the matrices

0 —a; —az —as 0 —a1 —az —as
aq 0 —b3 bg aq 0 —C3 C2
a9 b3 0 —bl and a9 C3 0 —C1
as —b2 b1 0 as —C2 C1 0

are equivalent in Wg(R).

Proof. We follow the proof of [15, Lemma 5.1]. Let dy = ¢3ba —c2bs, da = ¢1b3—c3by
and d3 = 02b1 — Clbg. Let

1 di da ds
o 01 0 0
10 0 1 0
0 0 0 1
Then « is elementary and we have
0 —a1 —a2 —as 0 —a; —a2 —das
t | a1 0 —b3 bg o al 0 —C3 Co
@ a9 b3 0 —bl o= as C3 0 —C1
as —b2 bl 0 as —C2 C1 0

O

Lemma 4.2. Let a := (a1,a2,a3) € Ums(R) and G € SGL3(R). If oG =
(z1,22,23) then

1 0 1 0
<O G) V(al,ag,ag) <O Gt> = V($1>x2am3)
in Wi(R).

Proof. In view of the above lemma, it suffices to check that the first row and column

of
1 0 1 0
(0 G) V(ala a2, a3) (0 Gt)

are respectively (0, —z1, —z2, —x3) and (0, x1, x2, x3). This is a direct computation.
O

As a corollary of the two previous lemmas, we see that we obtain a well-defined
map
V :Ums(R)/Es(R) — Wg(R).

Theorem 4.3. Suppose that R is noetherian of dimension 2. Then V is a bijection.
We now pass to a special case of a result of R. Rao and W. van der Kallen [11].

Theorem 4.4. Suppose that R is a smooth affine algebra of dimension 3 over an
algebraically closed field. Then V is a bijection.

In order to prove the theorem, we will need a few auxiliary results.

Lemma 4.5. Let R be a smooth affine algebra of dimension d over an algebraically
closed field, and let s € R. Suppose that v € Umgy1(R) is congruent to ey :=
(1,0...,0) modulo sR. Then v can be completed in a matriz G € SLyy1(R) such
that G = Idgy1 (mod sR).
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Proof. If Spec(R) is not connected, we write R = Ry X ... X R, and we work
component by component. We can thus suppose that R is integral. Let A =
R[X]/(X? — sX). Since p = X2 — sX is not a zerodivisor in R[X], and is not
invertible, it follows that A is affine of dimension d. As v is congruent to e; modulo
sR, we can write v = e; + sw for some w € R?. We claim that u(X) := e; + Tw
is unimodular. Indeed, let v/ € R™ be such that v(v')? = 1. Since v = e; + sw, we
can write v’ = (1 + say,as,...,aq+1). The equality v(v')! = 1 yields

s(ay +w1) + s2ajwy + sagwy + ... + sagy1war1 = 0.
Since R is integral and s # 0 (otherwise there is nothing to do), it follows that
(a1 + w1) + saywy + agws + ... + agr1war1 = 0.
Consider v/(X) = (14 Xay,ag,...,a4+1). Then
w(X) (W' (X)) =14 X(ay +wy) + X2a1w; + Xaowy + ... + Xagi1wai1-

But X? = sX in A and thus X (a1 +w;)+ X2a1w; + Xaswa +. ..+ Xag1wgy = 0.
Therefore w(X) is unimodular. By Suslin’s theorem 2.5, there exists H(X) in
SLgy1(A) such that e H(X) = w(X). In particular, we have e; H(0) = u(0) = €3
and e; H(s) = u(s) = v. The matrix G = H(0)"'H(s) is such that e;G = v and
G =1dg41 (mod sR). O

Proposition 4.6. Let R be a smooth affine algebra over an algebraically closed
field k. Let G € SLgy1(R) N E(R). Then there exists H € SLqt1(R[X]) such that
H(0)=1dgy1 and H(1) =G.

Proof. By Vaserstein stability theorem, we see that (1 L G) € Eg42(R). There
exists thus M € E4i2(R[X]) such that M(0) = Idgye and M(1) =1 L G. Set
R' = R[X] and s = X?—X. Then R’ is smooth of dimension d+1 and we can apply
the above lemma with v = ey M € Umgy2(R’). There exists thus N € SLgi2(R')
such that ey N = v =e; M and N = Idg,o (mod sR'). The matrix M N ~! satisfies
etM N~ = e; and therefore there exists H € SLqy1(R') and b € (R')4*! such that

(1 0
v (3 0)

Since N(0) = N(1) = M(0) = Idgq2 and M(1) =1 L G, we see that H(0) = Idg11
and H(1) = G. O

Corollary 4.7. Let R be a smooth affine algebra over an algebraically closed field
k. Then SLy11(R)NE(R) = Eq11(R).

Proof. In view of the above proposition, we know that for any G € SLq11(R)NE(R)
there exists H € SLg41(R[X]) such that H(0) = Id and H(1) = G. By Vorst’s
result [17], we get that H € E4y1(R[X]). It follows that G € E411(R) and the
result is proved. [l

proof of Theorem 4.4. We first show that V is surjective. Let G € Sy, (R) with
n > 3. Since G is skew-symmetric, its first row is of the form (0,w) for some
w € Umap—1(R). Since 2n —1 > 3+ 1, it follows from Swan’s Bertini theorem that
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there exists an elementary matrix E € Ea,_1(R) such that vE = (1,0,...,0) := e;.
Set F' = (1 0> € E3,(R). Then

0 F
t o O €1
E'GE = (—e’i M

for some skew-symmetric matrix M (not necessarily invertible). There exists then
an elementary matrix Eo € Eo,(R) such that

EE'GEEy =1y L H

for some H € Sy, _o(R). It follows that any G € Sa,(R) for n > 3 has a represen-
tative in Sy4(R).
If G € S4(R), then we can write

0 —a1 —az —as
aq 0 —bg b2
ag b3 0 —bl
as 71)2 b1 0

G:

for some aq, as, as, by, by, bs € R. Since G is of Pfaffian 1, it follows that (a1, as,a3) €
Ums(R) and that 3 a;b; = 1. Therefore V' is surjective.

Following the arguments of [15, Theorem 5.2(c)|, we now show that it is enough
to prove that SL4y(R) N E(R) = E4(R) in order to prove that V is injective. In
view of Corollary 4.7, this would conclude the proof. O

Corollary 4.8. Let R be a smooth affine threefold over an algebraically closed field.
Then Ums(R)/E5(R) is endowed with the structure of an abelian group.

We now prove some results in order to understand the group law in Ums(R)/E3(R)
a bit better. We begin with Vaserstein rule.

Lemma 4.9 (Vaserstein rule). Let R be a ring and let (a,b,¢) and (a,d,e) be
unimodular rows. Let d',e’ € R be such that dd' + ee’ =1 (mod aR). Then

V(a,b,c) L V(a,d,e) =V(a, (b c) . <_de, ;,))

Lemma 4.10 (Rao’s antipodal Lemma). Let R be a ring and (a,b,c) € Ums(R).
Suppose that (a,b,c) and (—a,b,c) are in the same elementary orbit. Then for any
n € N, we have

nV(a,b,c) =V(a",b,c)

Corollary 4.11. Let R be a ring such that there exists u € R with u> = 1. Then
for any n € N, we have

nV(a,b,c) =V(a",b,c)

Proof. O
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5. LECTURE 5: AROUND THE COHOMOLOGY OF SOME SHEAVES

5.1. Milnor K-theory. Let F be a field, and F* = F'\ {0} the (abelian) group
of invertible elements in F. Recall that the Milnor K-theory groups KM (F) of F
are defined as follows (see [9]).

Consider the tensor algebra

TF)=ZoF*®(F*QF)®...

with its obvious graduation and the ideal I = (¢ ® (1 —a) | a # 0,1). It is clear
that I is generated by homogeneous elements, and therefore the quotient algebra
KM(F) := T(F*)/I has a natural gradation. We set K} (F) to be the n-th graded
piece of this algebra.

Alternatively, we can define KM (F) to be the free associative graded Z-algebra
generated by the elements {a} with a € F* in degree one subject to the relation

fa} {1 —a}=0
for any a # 0,1. Given ay,...,a, € F*, we usually write {a1,...,a,} instead of
{a1}-...-{an} in KM(F).

Lemma 5.1. We have
1. {a,a} ={a,—1} for any a € F*.

2. {a1,...,an}=014f> a;=0o0r> a; =1.
3. {a,b} = —{b,a} for any a,b e F*.

Proof. O

If F C L is a field extension, there is an obvious homomorphism KM (F) —
KM(L) induced by {a} — {a}. If i : F — L is the inclusion, we often denote by i*
the induced map on Milnor K-theory.

5.1.1. Residue homomorphisms. Suppose that F' is endowed with a discrete valua-
tion v : F' — Z U oo with valuation ring O,, maximal ideal m, and quotient field
k(v) = O,/m,. Choose a uniformizing parameter =, € m, and set U = O,, \ m,. If
u € U, we denote by @ its class in k(v)*.

Lemma 5.2. There exists a unique homomorphism 0 : KM(F) — KM | (k(v))
such that

1. O({my,ug,. .. un}) = {Us,...,Gn} for any us,...,u, € U.

2. O({uy,uz,...,un}) =0 for any uy,...,u, € U.

Proof. We follow Serre’s idea. Consider the free associative graded Z-algebra gen-
erated by the symbols {a} with @ € k(v)* and ¢ in degree one subject to the
relations

1. {@,1—a} =0 for any a # 0, 1.

2. ¢-{a} =—{a} & for any a € k(v)*.

3. €2 =¢ {-1}.

It is clear that this algebra is of the form KM (k(v))[¢] and that 1,¢ form a basis of
this algebra as a KM (k(v))-module.

If a € F*, we can write uniquely a = wiu with i € Z and u € U. Let A be the
free graded associative algebra A generated by the elements {a} with a € F*. We
can then define a map

0: A — KM (k(o))[€]
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by 6({a}) = i€ + {u}. Let a € F* be such that a # 1. We now check that
6({a,1 — a}) = 0. Suppose that a = wlu for u € U. We distinguish three cases.
Suppose first that ¢ > 0. In that case, 1 —a = 1 — 7l u is invertible and T — a = 1.
It follows immediately that ({1 —a}) = 0 and thus 8({a,1—a}) = 0. If i = 0, then
1—a = mjw for some w € U. If j > 0, then we are reduced to the previous case and
we can suppose that j = 0 as well. Since {a,1 —a} = 0, we get 6({a,1 —a}) = 0.
Suppose finally that @ = u/7? for i > 0. In this case, 1 —a = (7! —u)/7’. We have

0({a,1—a}) = 0({a})0({1 — a}) = (—i€ + {u}) (=il + {-u}).

Using relations 2. and 3. above, we get
(=& + {@}) (=i + {—u}) = *{~1}¢ — ig{~u} + i¢{u} + {w}{-u}.

By Lemma 5.1, we have {u}{—u} = 0. Moreover, since {—u} = {—1} + {u}, the
right-hand term becomes i2{—1}¢ +i{—1}¢. Now {—1} is 2-torsion, the assertion
follows from the fact that i> +i =0 (mod 2) for any i € Z.

Therefore, the homomorphism 6 induces a homomorphism of graded algebras

0 : KM (F) — K (k(v))[€]-

It follows that 8(a) = ¥ (a) + £0(a) for any o € KM (F). The homomorphism 9
does the job.

It remains to prove that 9 is unique. This is clear, since Lemma 5.1 shows that
any a € KM(F) can be written as a sum of symbols of the form {m,,ua,...,u,}
and {ug,ug,...,u,}. O

Remark 5.3. Observe that 0 doesn’t depend on the choice of the uniformizing
parameter 7,. This follows from the simple fact that if 7] is another uniformizing
parameter, then 7/ = m,u for some unit u. It follows that {n]} = {m,} + {u} and
the homomorphism obtain through 7} and m, are the same. On the other hand,
the homomorphism 1 obtained using Serre’s trick is dependent on the choice of 7.

Let F be a field, and let F(X) the field in one indeterminate over F. Let
V be the set of irreducible monic polynomials in F[X]. Any P € V induces a
valuation that we call P-adic valuation with residue field F(P) and associated
residue homomorphism dp : KM (F (X)) — KM (F(P)).

There is yet another interesting valuation on F'(X). Associating to a polynomial
Q € F[X] minus its degree yields a valuation vy : F(X) — Z U oo that we call
valuation at infinity. We denote by 0, : KM (F(X)) — KM (F) the associated
residue map. It is clear that any o € KM(F(X)) vanishes under the associated
residue maps for all valuations P € V except a finite number of them.

Theorem 5.4. Leti: F — F(X) be the inclusion. Then the following sequence is
split exact for any n € N

0 —= KM(F) — KM (F(X) 22 Koy (F(P)) —= 0.
Pey

Proof. We first show that ¢* is injective by exhibiting a retraction r. Consider the
homomorphism

(X} K (F(X) — Kol (F(X))
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defined by o +— {X} - . We define r as the following composite

KM(P(x)) 2 g

2 M (F(X) 2> KM(F) .

Since X is a uniformizing parameter of the X-adic valuation, it follows essentially
from Lemma 5.2 that ri* = Id.

We now follow Milnor to prove at the same time that the sequence is exact in
the middle and on the right. Let Ly C KM (F(X)) be the subgroup generated
by elements of the form {fi,..., f,} with f; of degree < d for any i = 1,...,n.
Observe that Ly is precisely i* (KM (F)) (and is therefore a direct factor) and that
we have a filtration

LoCLiCLsyC...
with UL; = K%(F(X))
Let P be an irreducible monic polynomial of degree d. Consider the map
hp: F(P)* X ...x F(P)* — Lq/Lq_1

defined by hp(gy,---,9,_1) = {P, 91, -, 9n—1} Where g; is the unique polynomial
of degree < d representing g, for any ¢ = 1,...,n — 1. We first prove that hp
induces a homomorphism

hp: F(P)* ®...® F(P)* — Lg/La

Suppose that g, = g,g7. Let ¢} and g be the unique polynomials of degree < d
representing these polynomials. Then g1 = ¢{ g + f P for some polynomial f, which
is easily seen to be of degree < d. If f = 0 there is nothing to do, and we may
suppose that f # 0. It follows that 1 = g} gY /g1 + fP/g1 and thus Lemma 5.1 gives

{f+{Pr —{aHg} +{gi} —{g:}) =0
in KM(F(X)). Multiplying on the right by {g2,...,9,_1} and reducing modulo
Lg_1, we obtain
{Pag/17927' <. 7gn—1} + {Pvglllngv' <. 7gn—1} - {P7917927' s 7gn—1} =0.
Therefore we get the desired homomorphism
hp: F(P)X R...Q® F’(P)>< — Ld/Ld—l-
Suppose that g; +g,,, =1 for some j =1,...,n—2. It follows that g; + g;+1 =1
and we therefore see that hp induces a homomorphism
hp: KM (F(P)) — Lg/Lq_1.
We thus obtain a homomorphism

hq : b KNV (F(P)— La/La.
PeV of degree d

On the other hand, it is clear that Y pc), 0p : KM(F(X)) — €D K} (F(P))

Pey
induces a homomorphism

O04:Lg/Lg—1 — @ KM (F(P))
PeV of degree d

and it is easy to check that d;hy = Id. Therefore hy is an isomorphism if and only
if it is surjective.
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Any generator of Ly can be expressed as {f1,..., fs, gs+1,- -, gnt with deg(f;) =
d and deg(g;) < d. We can further suppose that f; is monic for any ¢ = 1,...,s.
Suppose that s > 2. In that case, we can write fo = f; + g for some g of degree
< d. If g =0, we can use Lemma 5.1 to get rid of fo. We suppose therefore that
g # 0. Since f1/f2+ g/f2 = 1, we can use Lemma 5.1 to get

0=({A}—{rHUgt = {f2D) ={f1,9} —{f1, f2} = {f2, 9} +{fo, -1}

It follows that L, is generated by elements of the form {f, g2, ..., gn} with deg(f) =
d and deg(g;) < d. If f is reducible, then {f, g2, ..., gn} splits as a sum of elements
of Ly—1 and then vanishes in Ly/L4—1. It follows that L4/Lg4—1 is generated by
elements of the form {f,go,...,gn} with f irreducible and monic. Therefore hgy is
an isomorphism.

We conclude by induction that )y, 9, induces an isomorphism

KM (F(X))/EY(F) = @ Ku-1(F(P)).
Pecy

The theorem follows. (]

5.1.2. The transfer maps. Let P be an irreducible monic polynomial in F[X]. Let
i: F — F(P) be the inclusion. For any n € N, we define a homomorphism

i KM(F(P)) — KM(F)

as the composite

KM(F(P)) — EB Kno1(F(P)) ——= KM | (F(X)) —> KM(F)
Pey

where s is any section of )5y, 0,. Since di* = 0, it follows from Theorem 5.4
that i, doesn’t depend on the choice of s.

Suppose now that F' C K is a finitely generated algebraic field extension. Denote
by i : FF — K the inclusion. We have a filtration

F=KyCKiC...CKy=K

where K; = K,;_1[X]/P; for some irreducible monic polynomial P; for any j =
1,...,d. Composing the successive residue maps, we obtain a homomorphism

iy KM(K) — KM(F).

Theorem 5.5. Let i : F — K be a field homomorphism such that K is finitely
generated and algebraic over F. Then i, : KM(K) — KM(F) doesn’t depend on
the choice of a filtration

F=K¢CKiyC..CKy=K
such that K; = K;_1(0;) for any j =1,...,d.

5.1.3. The Gersten complex. Let X be a smooth scheme over a field k. For any
i € N, we denote by X () the set of points z € X of codimension i (i.e. dim(Ox ,) =
i). Let € X for some i € N and let y € X+ be in the closure of . Then
Ox y/2Ox,y is a one dimensional local k-algebra with quotient field k(z). Let B(y)
be the integral closure of Ox ,/xOx , in k(z). Then B(y) is a finite Ox ,/xOx 4-
module and the finitely many closed points z1, ..., 2, of Spec(B(y)) yields finitely
generated field extensions k(y) C k(z;) for any j =1,...,n.
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Since B(y) is of dimension 1 and normal, it follows that it is regular. Therefore,
we see that B(y)., is a valuation ring for any z; with residue field k(z;). We get a

residue map
0: K (k(x)) = @ KoL (k(2)))

and a transfer map

D KLy (k(z)) — KN (k(y)).

We define the residue homomorphism
0y K (k(x)) — KRl (k(y))

as the composite of the two previous maps. If y is not in the closure of x, we then
set 0¥ = 0.

It is clear that given an element a € KM (k(z)), there are only a finite number
of y € X+ such that 9%(a) # 0 and we see that we finally get a homomorphism

B KNG~ @ K k)
reX (@) xEX(1+1)

For any smooth scheme X of dimension d and any n € N, we denote by C(X, KM)
the sequence of abelian groups

1 d—1
D EMk@) > P K ) 2> s KM (k(z))
e X (0) reXx @) reX(d)

We see thus sequence as a cochain complex with the gradation given by the codi-
mension.

Theorem 5.6. For any smooth scheme X and any n € N, the sequence C(X, KM)
is a complez.

In view of the theorem, we can consider the cohomology groups H*(X, KM) of
the complex C(X, KM).

5.2. Galois cohomology.

5.2.1. The Galois symbol. Let p be a prime number, F' be a field of characteristic
different from p and let Fi., be a separable closure of F. We denote by G the
Galois group of Fj, over F'. Suppose that m € N is prime to the characteristic of
F. The Kummer exact sequence of (continuous) Gp-modules

0 L FX —s FX 0

sep sep

yields an exact sequence
F* s px 2o HYGp, pn) — HY(Gp, F¥).

By Hilbert Theorem 90, we have H'(Gp, F*) = 0 and therefore § induces an
isomorphism F* /(F*)" — HY(Gp, p2). If a € F*, we denote by (a) € HY(GF, pin)
its image under §. We obtain an isomorphism

x(n)1: K{1(F)/n — H'(GF, un)

given by {a} — (a).
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Lemma 5.7. The map x(n)1 extends to a homomorphism of graded rings
X(n). s KX (F)/n — H (G, ).
Proof. Tt suffices to prove that (a) U (1 —a) =0 in H?(Gp, u®?). Let

k
X" —a=]]p(x)"
=1

by the decomposition of X™ — a in irreducible (monic) polynomials over F[X].
Let a; € Fyep be such that F(a;) = 0 and let F; = F(a;) = F[X]/p;(X). Then
Np,/p(1 — a;) = pi(1) (exercise) and we find

k k
L—a=[]p0)" =[] Neyrt —a)™.
=1 1=1

It follows that (1 —a) = Zle ni(Np,/p(1 — ) = Zle niNp, p(1 — a;) where
NFi/F : Hl(GFm/“Ln) - Hl(GFalu'rl)
is the corestriction map. It follows from the projection formula that
k k
(@U(l—a)=(a)Ud niNp r(l—a;) =Y nNpp((a) U1 —a)).
i=1 i=1

Now a = a? in F; and thus (a) = («;)" = 0 in KM (F;)/n. The result is therefore
proved. ([

It follows directly from the definition that x(n) induces an isomorphism in degree
< 1. The question to know if x(n); is also an isomorphism for ¢ > 2 is known as the
Block-Kato conjecture. The case i = 2 was proved by Merkurjev and Suslin, and
recently the general case was proved by Voevodsky-Suslin, together with Weibel’s
patch. We will only need the result for i = 2 and we state it for further reference.

Theorem 5.8 (Merkurjev-Suslin). Let F' be a field and n € N be an integer prime
to char(k). Then the Galois symbol

X(n)z : K3 (F)/n — H*(Gp, 1%
is an tsomorphism.

5.2.2. Cohomological dimension. Let F be a field and let G be its absolute Galois
group and let p be a prime number. We say that F' is of p-cohomological dimension
< n and we write cd,(F) < n if HY(GFr,A) = 0 for any ¢ > n and any discrete
Gp-module A whose torsion is p-primary. We say that F' is of p-cohomological
dimension n and we write cd,(F) = n if ed,(F) < n and cd,(F) € n— 1. We write
cd(F) = sup(cd,(F)).
We recall the following results due to Serre:
Proposition 5.9. Suppose that F' is of characteristic p > 0. Then cd,(F) < 1.

Proposition 5.10. Let F' C F’ be a field extension of transcendence degree n, and
let p be a prime number. Then
cdy(F') < edy(F) + n.

The inequality is an equality if F' is finitely generated over F, cd,(F') < oo and
p # char(k).
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Corollary 5.11. Let F be an algebraically closed field and let F C F' be a finitely
generated field extension. Then cd(F') = trdeg(F'/F).

Proof. Since F' is algebraically closed, if follows that c¢d(F) = 0. If F’ is algebraic
over F, then there is nothing to prove since F' = F’. Suppose then that F' C F’ is
of transcendence degree n > 1. If p # char(F), then Proposition 5.10 shows that
cdp(F') = n. If p = char(F), then cd,(F’) = 1 by Proposition 5.9 and it follows
that cd(F') = n = trdeg(F'/F). O

5.2.3. Etale cohomology. Let X be a smooth scheme over a field k, and let Y be
a scheme. Recall that a morphism f : Y — X is said to be étale if the following
conditions are satisfied:

1. f is flat.

2. f is of constant relative dimension 0.

In particular, Y is smooth if f is étale. We can form the category Et(X) whose
objects are the schemes Y over X such that the structural morphism p : ¥ — X
is étale and whose morphisms are morphisms of X-schemes. It follows from 77
that morphisms in Ft(X) are indeed étale morphisms. If Y € F¢(X) is a scheme,
then a covering of Y is a family of étale morphisms (g; : U; — Y);er such that
Ug;(U;) =Y. This defines a topology on Et(X), the étale topology.

An étale presheaf of abelian groups on Ft(X) is a contravariant functor

F:FEt(X)— Ab

such that F(f) = 0. As usual, if f: U — V is a morphism in Et(X) we denote by
s)y the element F'(f)(s) for any s € V.

A morphism of presheaves is a natural transformation F — G. We can define
in an obvious way the notions of kernel and cokernel and we obtain an abelian
category Psh(X) of presheaves on Et(X). A sheaf on Et(X) is a presheaf F' such
that the following sequence of abelian groups

FU) ——Lie; FU) =—=11, je; F(U; x Uj)

is exact (i.e. F(U) is the equalizer of the diagram on the right) for any covering
(9; : Ui — U)cr of U. We denote by Sh(X) the category of étale sheaves on Et(X).

Remark 5.12. Let X = Spec(k), where k is a field. Then Y € Ft(X) if and only
it Y = [[I-, L; for separable algebraic extensions L;/k. Let k be the separable
closure of k, and G}, = Gal(k/k) be its Galois group.

Suppose that F' is a sheaf on Et(X) and that L/k is a a finite separable field
extension. Then G acts on L (say on the left) and therefore also on F(L). If L'/L
is also a finite separable extension, then the map

F(L)— F(L")
is a homomorphism of G-modules. We can thus define a G-module Mg by setting
Mp :=1lim F(L)

where L runs through the finite separable extensions of k in k. Let © € Mp. There
exists then L/k finite and separable such that x is in the image of the canonical
morphism F(L) — Mp. It follows that H := Gal(k/L) acts trivially on = and
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by consequence the stabilizer of x is open in G since it contains H. Therefore the
action of G on Mp is continuous.

Conversely, let M be a discrete abelian group endowed with a continuous action
of G. We can define a presheaf Fj; as follows. If L/k is a finite separable extension
and H := Gal(k/L) then we set F/(L) = M*. We extend this definition to schemes
Y =[], L; with L; finite and separable over k by putting M(Y) = [['_, F(L;).
It is easy to check that F' is indeed a presheaf. It is even a sheaf by [8, Chapter II,
Lemma 1.8].

We can easily check that the correspondences F' — Mp and M — F); are inverse
to each other.

Theorem 5.13. Let F be a presheaf on Et(X). Then there exists a sheaf aF and
a morphism of presheaves ¢ : F' — aF such that for any morphism of presheaves
F — G with G a sheaf there exists a unique morphism of sheaves ¢ : aF — G such
that the diagram

F—2saF

AN

G

commutes.

Recall that a sheaf I on Et(X) is injective if the functor F' — homgy,(x)(F, ) is
exact.

Proposition 5.14. The category Sh(X) has enough injectives.

Proof. For any x € X, choose a separable closure k(x) of k(x). Let T := Spec(k(x))
and u; : T — X be the associated morphism.

Let F be a sheaf on Et(X). The stalk u*F of I' at T is the limit lim F'(U) on
étale morphisms f : U — X such that the map u, : T — X factors through U
(or more precisely the sheaf associated to this limit). Since the category Ft(Z) is
equivalent to the category of abelian groups, it follows that there exists an injective
abelian group I, and a monomorphism j, : u}F' — I,.

For any sheaf G € Et(T), denote by (u).G the sheaf whose sections on U in
Et(X) is the abelian group G(U xx 7). It is a straightforward exercise to check
that (ug). is left exact, and it follows that j, : u*F — I, induces a monomorphism
izt (Ug)sutF — (ug)«I;. The functors vk and (u,). are adjoint to each other, and
the unit of the adjunction reads as a morphism 7, : F' — (uy).usF. We obtain a
sequence of morphisms

[172 * [T
F - HxEX(um)*umF — Ha:EX(uI)*II

We claim that the composite is a monomorphism and that [ [, o y (uz)+ I, is injective.
The first assertion follows from the fact that a morphism of sheaves f: FF — G is a
monomorphism if and only if v}, f : u3 F' — u}G is a monomorphism for any geomet-
ric point T — X. Indeed, if y € X is a point and 7 is the geometric point associated
to y, then uy [], ¢ x (ua)sur B = uj (uy ) wuy F and uyn, : up F' — uy (uy, )«u; F is split
injective. The second assertion follows from the fact that (ug)«l, is injective for

any x € X by adjunction and that a product of injectives is still injective. O
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We can this define the cohomology groups of a sheaf F' € Et(X) using the usual
procedure. Namely, choose an injective resolution

0 F I I

of F' and define the cohomology groups H¢ (X, F) as the cohomology groups of the
complex

If X = Spec(k) for some field k with Galois group Gy, then the equivalence of
categories between sheaves on Ft(X) and discrete Galois modules yields a canonical
isomorphism H{ (X, F) = H'(Gy, MF) for any i € N.

Let Z C X be a closed subset, and U = X \ Z. We define the functor

Iz(X, ):Sh(X)— Ab
by T'z(X, F) :=ker(F(X) — F(U)). A simple diagram chase shows that 'z (X, )
is left exact and we define Hét,Z(X, F) as the derived functors of 'z (X, ).

Proposition 5.15. For any F' € Sh(X), we have a long exact sequence

0— Hgt,Z(X, F) F(X) FU) - Hng(X, F)—>...>H\(X,F) —

——= HL(U,F) — H (X, F) — ...

Proof. |

Corollary 5.16 (Excision). Let Z C X be a closed subset and X' be a scheme and
f: X' — X be an étale morphism. Let Z' = f~1(Z) and suppose that f induces
an isomorphism f : Z' — Z. Then [ induces isomorphisms

f* : Hét,Z(X7F) - Hét,Z’(lef*F)
for any i € N and any sheaf F' on Et(X).

Proof. For any sheaf F' € Sh(X), the morphism of sheaves F — f,f*F yields a
commutative diagram

(2) FX) ——F(U)

| |

ffF(X") —— f*F(U).
where U’ = X’ x xU, and therefore a homomorphism ¢ : I'z (X, F) — T'z (X', f*F).
Using the adjunction between f, and f*, it is easy to see that f* preserves injective
sheaves and it suffices therefore to prove that ¢ is an isomorphism to conclude. In
order to do this, it suffices to prove that diagram (2) is Cartesian.
Since f is étale, we have f*F(X’) = f(X’) and f*F(U’) = f(U’). Thus diagram
(2) becomes
F(X)——=F(U)

L

F(X') —= F(U")

which is clearly Cartesian since (X', U) is a covering of X. O
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We now deal with dévissage questions. Let n > 2 be an integer prime to the
characteristic of the base field. We consider the sheaves F(i) for i € Z on Et(X)
defined by

e ifi>1.
F(i)=qZ/n ifi=0.
Homgy,(x)(p&~%,Z/n) ifi < 1.

F = ;%" where n is prime to the characteristic of the base field and i > 1 is an
integer. If k contains a primitive n-th root of unity &, then p, ~ Z/n and thus
F(i) ~ Z/n for any i € Z.

It is straightforward to check that we have isomorphisms F'(i) ® F'(j) ~ F(i+j)
for any 4,5 € Z.

Theorem 5.17 (Dévissage). Suppose that Z C X is a closed subset of pure codi-
mension c. Suppose moreover that Z is smooth. Then we have isomorphisms

He (2, F(j — ¢)) — Hey 7(X, F(j)).
for any i € N and any j € Z.

5.2.4. The weak Lefschetz theorem. Let X be a scheme and p be a prime number.
A sheaf F' € Sh(X) is said to be p-torsion if F/(U) is a p-primary torsion abelian
group for any quasi-compact U € FEt(X). The scheme X is of p-cohomological
dimension n € N if H} (X, F) = 0 for any i > n and any p-torsion sheaf F. We
write cd,(X) = n in that case, and ed,(X) = oo if such an integer n doesn’t exist.
We define the cohomological dimension of X as cd(X) := sup,cd,(X). The purpose
of this section is to prove the following theorem:

Theorem 5.18. Let X be a smooth affine scheme of dimension d over a separably
closed field k. Then cd(X) = dim(X) = d.

5.2.5. The Bloch-Ogus spectral sequence. In this section, we recall the construc-
tion of the Bloch-Ogus spectral sequence following [5, §1]. To avoid overloading
the notations, we simply write H*(X, F) and H%(X, F) instead of H’ (X, F) and
H (X, F). We also assume that X is equidimensional.

Let X be a scheme and let

Z:0CZyCZy1C...CZ1CZ=X

be a filtration of X by closed subsets Z; C X. For convenience, we set Z; = () if
i>dand Z; = X if i < 0. We also assume that codimyx (Z,) > p for any p € Z.

For any p € Z, any F € Sh(X) and any pair (Z,+1, Z,), Proposition 5.15 yields
a long exact sequence of localization

. _ iP,q
iptla—1 Fi

HY (X, F) ——

HY (X, F)

-+ +q+1
WHQP\‘]ZP+1(X\ZP+1,F)W’ngfl (X,F)ﬁ
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Setting D7 = H, (X, F) and EP9 := HY'0, (X \ Z,41,F), we obtain an

exact couple in the sense of [18, §5.9]

sptla-1

ppt+la-1 DP:4q

EPa

with kP9 of degree (0,1). We thus get a spectral sequence
EPd — Hp-&-q(X, F).
By definition EV? = HYT,  (X\Z,41, F) and the differential @%9 : EP9 — pPtha

. . Zp\Zp+1
is the composite
+ kP9 prpta+l T ptatl
ng\quﬂ (X\ Zp1a, F) HZp+1 (X, F) ngfl\zpw (X\ Zpy2, )

If
Zr0czycZc...cZh=X
is another filtration of X, then we say that Z<7Zif Zy C Zz/> for any p € Z. It is

clear that the exact couple above is functorial in Z with respect to this ordering. We
can pass to the limit and obtain a new exact couple with DP9 := lim 4 Hg':q(X, F)

and BP9 = limy HY', (X \ Zp41, F).

If v € X®) we set HEH(X, F) := lim ey H%‘%U(M F) where {x} is the closure

of x.

Lemma 5.19. We have

i H3 X\ 2y, F) = @) HEXE)
rxeX®)

Proof. Let Y1,...,Y, be the irreducible components of codimension p in Z,. Then
Y; NYj is of codimension > p 4 1 for any 7,5 and we can refine Z,;; by adding
these intersections and the higher codimensional components of Z,. We can thus
suppose that Y; NY; C Z,1; for any 4,j. We then have Z, \ Zp11 =[[Y: \ Zp+1.
The lemma follows then from the following assertion.

Assertion 3. Let.Tl,Tg c X 4be closed subsets such that Ty NTy, = (0. Then
Hp yp, (X, F) = Hy (X, F) @ Hy, (X, F).

Indeed, the localization sequences for T} C Ty U Ty and 1o C Ty U T5 yield a
diagram
H%l (X, F)

| T

Hyp, (X, F) —— Hp, oq, (X, F) —— Hi, (X \ T3, F)

|

H%Q(X\Tl,F)

The diagonal arrows are isomorphism by excision. [
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It follows from the lemma that the spectral sequence above has a first page whose
line ¢ is equal to

P vHUX.F)— P HMNXF)—...—= P HIMX,F).
zeX () zeX® zeX(d)

We now assume that the base field k is perfect, X is smooth and that F' = u®™

for some integer n prime to char(k) and some m € N . If z € X (P) then there

exists U C X such that {#} N U is smooth. In view of Theorem 5.17, we have an
isomorphism

HESL (U, ™) = HP = (k(), 7))

and it follows that the g-th line at the first page of the spectral sequence looks like
3 P HUk@),p™) —...— @ H k(@) u ).

ze X (0) e X (d)
If moreover k contains a primitive n-th root of unity &, then we can replace ,ug(m_i)
by Z/n everywhere in the sequence.
Theorem 5.20. Let n be an integer prime to char(k). The Galois symbols

X(n)g—p : KoL, (K(x)) /0 — HOP(k(@), pp@'77P)

induce a morphism of complex

P K} (k)/n D KLak())/n

ze X (0) zeX ()

lx(n)q lx(n)qd

@ Hq(k(l"),/ﬁf?q) —_— . — @ Hq_d(k:(.r), M%;(q_d))
e X (0) e X (@

Proof. ([l

Suppose that V' € Et(X). Then we can consider the group HY(V,u$™). If
f: V' — V is a morphism in Et(X) then f is in particular étale and induces a
homomorphism

o HYV,pSr) — HOV, fulr) = HI(V!, jSr).

m

We therefore obtain a presheaf
Hi(n,m): Et(X) — Ab

defined by V — HY(V,u®™). We also denote by H(n, m) the Zariski sheaf asso-
ciated to the presheaf H9(n, m).

Theorem 5.21 (Gersten conjecture). For any q > 0 the complex (3) is a flabby
resolution of the sheaf H(n,m). In particular, its cohomology groups compute the
cohomology of the sheaf H(n,m) and H'(H%(n,m)) =0 ifi > q+ 1.

Proof. O
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Corollary 5.22. Let k be a field and n € N be prime to char(k). Let X be a
smooth scheme over k. Then the morphism of complezes x of Theorem 5.20 induces
isomorphisms

H (X, K;/n) ~ H(X,H(n,j))
for any i,j € N such thati > j — 1.
Proof. This is a straightforward consequence of Theorems 5.20 and 5.8. O

Remark 5.23. Of course, the positive answer to the Bloch-Kato conjecture implies
that y induces isomorphisms for any 7,7 € N.

Corollary 5.24. Let X be a smooth affine scheme of dimension d > 2 over an
algebraically closed field k. Let n € N be such that (n,char(k)) = 1. Then

H"YX, K} /n) = HY(X, K} /n) = 0.
Proof. Since k is algebraically closed, we have p,, = Z/n and therefore we have
Hi(k(z), u®™) = H'(k(z), Z/n) for any m € N. In view of this the sheaves H*(n,m)
are all isomorphic to H*(n,0), that we write H*(n) to lighten the notations.
By Corollary 5.11, we know that cd(k(z)) = d — p for any z € X®). Tt follows

that H'(k(z),Z/n) = 0 for any i > d — p. We can therefore write the non trivial
group appearing at page 2 of the Bloch-Ogus spectral sequence as

HO(X, H%(n)) HYX,Hin)) ... HT7YX,HIUn))  HYX,Hn))

HY(X,H* ' (n))  HYX,H*n)) ... H"HX,H"'(n))

H(X,H%(n))

Therefore H4~1(X, H%(n)) and H¥~1(X,H%(n)) cannot be neither the target nor
the source of any non trivial differential. Thus E4 14 = HI~Y(X, H%(n)) and
E4d = HY(X,H%(n)). Now the Bloch-Ogus spectral sequence converges to the
groups H?9(X,7/n). Looking at the diagonal p4¢ = d—1 and p+q = d, we thus
see that H2"Y(X,Z/n) = H* (X, H%(n)) and H2X(X,Z/n) = H* X, Hn)).
Since d > 2, we have 2d — 1 > d and we can apply Theorem 5.18 to conclude. O

We can now state the following result, which is one of the main ingredients of
Theorem 7.1.

Theorem 5.25. Let X be a smooth affine scheme of dimension d over an alge-
braically closed field k. Then HY=Y(X, K)) is divisible prime to the characteristic
of k.

Proof. In order to prove the theorem, it suffices to show that if n € N is prime to
char(k), the multiplication by n

HYX, KMy s ga-1(X, KM)
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is surjective. Consider the multiplication by n morphism
C(X,K¥) "= C(X,KM).

The cokernel of this multiplication is the complex C(X, K} /n) and we denote by
B(n) the kernel. We have therefore a commutative diagram

B(n)q—2 B(n)a—1 B(n)a

reX(d—2) reX(d=1) reX(d)
P KNG — B KNE@)— @ K k@)
zeX(d—2) reX(d=1) reX(d)

| | l

D KVk@)n— P KM k@)/n— D K (k@)/n

xEX(d*2) xeX(dfl) xeX(d)

with exact columns. Since Ko(F) = Z for any field F', we see that B(n)q = 0. By
Corollary 5.24, we know that the bottom sequence is exact in the middle. A simple
diagram chase shows that the multiplication by n

n: @ KMk@)—- P K(kx)
zeX (-1 zeX (d=1)
induces the required surjection after taking cohomology. O

6. LECTURE 6: THE GERSTEN-GROTHENDIECK-WITT SPECTRAL SEQUENCE

We refer here to M. Schlichting lectures for the general framework of higher
Grothendieck-Witt groups of schemes.

Let k be a field of characteristic different from 2 and let X be a quasi-projective
smooth scheme over k. Let Vect(X) be the category of coherent locally free Ox-
modules. We denote by Ch?(X) the category of bounded complexes of objects in
Vect(X). This category is endowed with a tensor product ~®  and an internal

hom object [ , | defined as follows. Let E and F be objects of Ch®(X). Then
E ® F' is the complex such that

(E®F)1?: @ (Em®Fn)

m-+n=1

and differential d(z @ y) =dz @y + (-1)"zQyifzQy € E,, ® F,, and [E, F] is
the complex

[E, F|; = Hom(E[i], F)
where E[i] is the complex such that E[i]; := E;_; and the differential is given by
dgp) = (—1)'dp. The differential

d: [Fj,F‘]z — [E, F]i—l
is defined by d(p) = dr o + (=1)'¢ 0 dpy) =dr o+ ¢odp.
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We say that a morphism of complexes f : F — F is a quasi-isomorphism if
it induces an isomorphism in homology. We denote by quis the class of quasi-
isomorphisms in Ch®(X).

Suppose that L is a line bundle over X. We consider L as a complex concentrated
in degree 0. To avoid complicated notation, we denote by (_)*Z the contravariant
functor

[, L[n]] : OR*(X) — OR*(X),
which defines a duality on Ch?(X). A direct computation shows that this duality
preserves the quasi-isomorphisms. We have a natural isomorphism

wr i1 — (kL

given by the evaluation isomorphisms ev : E; — Hom(Hom(E;,L),L). We set
@y = (1) @y,

Altogether, (Ch?(X), quis, 17, wh) is a dg-category with weak-equivalences and
duality in the sense of [12]. We can thus consider its n-th shifted Grothendieck-Witt
spectrum with coefficients in L denoted by GW™ (X, L).

We denote by GW?(X, L) the homotopy groups m;(GW ™ (X, L)) (beware that
i might be negative). When L = Ox, we omit it from the notation.

We now collect some results in order to define the spectral sequence we will need.
For simplicity, we suppose that X is integral.

For any i € N, let Ch®(X) be the full subcategory of Ch?(X) of objects E whose
homology is supported in degree > i. It is clear that we have a filtration

0C CrY (X)) c CR(X) 1 ... c Chb(X)! c ChP(X)

where d = dim(X). Let ¢ € N and let j € N be such that j > i. We denote by
quis’ the class of morphisms in Ch?(X)* whose cone lies in Ch?(X)7. Observe that
a quasi-isomorphism in Ch®(X) belongs to quis’ for any j € N and we obtain a
filtration

quis = quisdJr1 C quisd Cc...C quisi+1 C quisi

for any ¢ € N.

Lemma 6.1. Let L be a line bundle over X and n € N. For any i,j € N such
that j > i, the duality §(n);, preserves the category Ch®(X)* and the class quis’.
In particular, the quadruple (Chb(X)i,quisj,ﬂrL‘,wz) is a dg-category with weak-
equivalences and duality.

Proof. Let E be an object of Ch®(X)*. Let Supp(E) = {x € X|H.(E,) # 0}. We
first prove that Supp(E*Z) C Supp(F). Indeed, suppose that 2 € X is such that
E, is exact. Then (E*.), = ([E, L[n]], ~ [E,, L.[n]] is also exact. Dualizing once
again, we see that Supp(E*2*) C Supp(FE*'r). Since Ef%L ~ E it follows that
Supp(E*%) = Supp(E).

Let now f : E — F in quis’. Let C(f) be the cone of f. By definition, there is
an exact sequence of chain complexes

0——>=F——=C(f) E[1] 0.

Accordingly, the cone of f= fits into the exact sequence

0—— B — = C(f%) ——= FIZ[1]] ——=0
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The functor 7 is exact on ChP(X)? and we can dualize the first sequence to obtain
a sequence

0 —— FiL [_1} —_— C(f)’iz SR s
Comparing the two last exact sequences, we see that C(f)!2[1] ~ C(f*Z). Thus
Supp(C(f*%)) = Supp(C(f)* [1]) = Supp(C(f)*:) = Supp(C(f)).
Therefore {7 preserves quis’. O

For any j > i, we therefore get a sequence of dg categories with weak-equivalences
and duality

(CR*(X)’, quis, 7, w}) — (CA®(X)", quis, {7, w}) — (Ch°(X)', quis’, 8}, @)

For any i, j € N such that j > i, let D’(X)? be the triangulated category obtained
by formally inverting the weak-equivalences, and D®(X )’/ 7 be the triangulated cat-
egory obtained from Ch®(X)? by inverting the class quis’.

Lemma 6.2. The sequence
D*(X) — D(X)" — D*(Xx)"
is an exact sequence of triangulated categories.

Proof. We observe first that D*(X)’ ¢ D?(X)? is a full thick subcategory by very
definition. The quotient D?(X)?/D?(X)/ is the triangulated category obtained from
DP(X)? by inverting the class of morphisms whose cone is in D?(X)?. The functor
D*(X)? — DP(X)"J therefore induces a functor D*(X)?/Db(X)’ — Db(X)"/J.
On the other hand, the functor Ch(X)? — Db(X)!/Db(X)’ induces a functor
Db(X)"/7 — DP(X)'/D’(X)? and we check that the two functors are mutually
inverse to each other. O

It follows from [12, Theorem 6.6] that we obtain a homotopy fibration of Grothendieck-
Witt spaces

Gwnl (Ch®(X)7, quis, fip,wr) — Gwinl (Ch®(X)?, quis, i1, wr)
GWI(ChY (X)), quis’, 1, )

We state this result in a slightly different form in the next result. We denote by
GW™ (Chb(X)?, L) the homotopy groups 7, (GW M (Ch?(X)?, quis, fr,wr)) and by
GW? (Ch?(X)¥/7, L) the homotopy groups 7, (GW (Ch(X)?, quis’, f1,, wy)).

Proposition 6.3. Let L be a line bundle and let n € N. Let i,5 € N be such that
j > 1. Then we have a long exact sequence

.. —= GW" (Ch*(X), L) —= GW™(Ch*(X)*, L) —= GW (Ch*(X)/I, L) —

— > GW2_(ChY(X),L) — GW"_,(ChY(X)I, L) —— ..

We now have everything in hand to construct the spectral sequence we need.
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Theorem 6.4. Let X be a smooth scheme of dimension d over a field k such that
char(k) # 2 . For any n € Z and any line bundle L over X, there is a spectral
sequence of Grothendieck-Witt groups converging to E(n)™ = GW2»__ (X, L) with
terms on the first page

B(n)?? — {Gwﬁpqwhbmmﬂ, L) ifo<p<d.

' 7o otherwise.

Proof. Consider the filtration of the category Ch®(X):
0=ChrY (X)) cort(X) c...c ChY(X)' c ChY(X)® = ChP(X).

We know that for any 4,7 € N such that j > ¢ we have a sequence of dg-categories
with weak-equivalences and duality

(CRY(X),qis, £7, w}) — (Ch*(X)', qis, £7, wi) — (Ch*(X)', qis’, §7, w7).

By Proposition 6.3, we have a long exact sequence of Grothendieck-Witt groups
associated to this sequence.
If A(n)P? := GW»__ (Ch*(X)P,L)and E(n)P9 := GW"__ (Ch*(X)P/P+1 L),

) n—p—q n—p—q
this long exact sequence reads as

. —= A(n)Ptha=l — A(n)P? — E(n)P1 — A(n)Pt1a —

Let A(n) :== P, , A(n)"? and E(n) := P, , E(n)P?. We obtain an exact couple
([18, §5.9])

A(n) A(n)

S

which gives a spectral sequence starting with E(n)}"? = GW_,_ (D*(X)P/P+1 L).
This exact couple is bounded below because A(n)P? = 0if p < 0 or p > d. Therefore
the spectral sequence converges to E(n)™ := lim A(n)~P™*P = GW__ (X, L) by
[18, Theorem 5.9.7]. O

Under this form, the spectral sequence is quite abstract, since it is hard to grasp

the groups GWJ}_p_q(C’hb(X)p/p“,L) involved. Our next aim is to provide a

computation of these groups.
If # € X we denote by wir the k(z)-vector space Extg, (k(x), L& Ox ) and

we can consider the Grothendieck-Witt groups GW (k(z),wir) for any m,n € Z.
Proposition 6.5 (Dévissage). We have isomorphisms
GWR(CRI (XM L) = @ QWi P(k(x),wir)
zeX(®)
for any p € N and any m,n € Z.
Proof. Let x € X® be a point of codimension p. Denote by Chl}l((’)x’m) the

category of bounded complexes of free (coherent) Ox ,-modules whose homology is
of finite length. The duality Homo , (_,L®0Ox,) on free Ox ,-modules induces

a duality on Chl]’cl((’) x..) that we still denote by f. It is straightforward to check
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that (C hl}l (Ox.z),quis, {7, w}) is a dg-category with weak-equivalences and duality.
Moreover, the localization functor (at x)

(Chb(X)pv quisp'H, H27 ’WZ) - (Ch?‘l (OX,z)v quis, ﬁ27 WZ)

is a functor of dg-categories with weak-equivalences and duality. Summing these
functors for any x € X we get a functor

(CR (X, quis”*! 17, w7) — ] (Ch51(Ox.), quis, £, =7F)
zeX(®)
which induces an equivalence of triangulated categories with duality (|2, Proposition
7.1])
Db(X)P/PHl ~ H D?Z(Spec((’)x’w)).
zeX(®)
Such an equivalence induces an isomorphism

(4) GWL(CR(X)PP L)~ B GW(Chyy(Spee(Ox.2)). L ® Ox )
zeX ()
by [12, Theorem 6.5].

Consider next the exact category Ox , — fl of finite length Ox ;-modules and
the exact category Ch®(Ox . — fl) of bounded complexes of finite length modules.
The duality b(_) := Extg, . (_, L ®Ox ;) and the natural isomorphism (see [2, §6
(18).86 (19)])

Wegt © 1 — Ext’(’ox (EXtI()oX,m(_’ L®0Ox:), L®0Ox,.)

T

induces a duality on C’hb((’)x,gﬂ — f1) and a natural isomorphism. It turns out that
(Chb(Ox . — f1), quis, b, @eqy) is a dg-category with weak-equivalences and duality.

Let C be the dg-category whose objects P, o — M, are bounded bicomplexes of
the form

d d
— > M1 M; M;_y
5 s 5
b
L — i+1)OHP104>P71’04>
5 5 5
b
—=P1——PFP1——P_1;—

where the M; are finite length Ox . -modules, the P;; are free Ox ,,-modules such
that each column is a (bounded) free resolution of M; and the mapping complex
C(Pso — Mo, Qee — N,) is given in degree n € N by

C(Pay — My, Qe — No)n := P Hom(Pi_,, 5, Qi ;) © @) Hom(M; ., N;)
i i
with obvious differentials. The projection of such a bicomplex to the complex M,
yields a dg-functor p: C — C’hb(OX’mp — f1). We say that a morphism f in Cis a
weak-equivalence if p(f) is a weak equivalence in Ch®(O Xz, — f1)-
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Moreover, C is endowed with a duality, obtained by sewing the dualities on
Ch*(Ox,z, — f1) and ChP(Ox 4,) s (see [2, proof of Lemma 6.4]). So finally we see
that C is a dg-catgeory with weak-equivalences and duality. The functor p : C —
C’hb(C’)X’mp — fl) preserves these structures. Moreover, taking the total complex
associated to P, o (without M,, see [2, loc. cit.]), we also get a dg functor ¢ : C —
Chb(O X,z,)f1 Preserving the weak-equivalences and dualities. Both ¢ and p yield
equivalences at the level of the associated triangulated categories and therefore we
get isomorphisms for any m,n by [12, Theorem 6.5] (after twisting n — p times):

(5)  GW.(D%(Spec(Ox.z,)), La,) ~ GW P (D" (Ox o, — f1),0, @eat)-

Let V(p) be the category of finite dimensional k(z,)-vector spaces. There is
a duality (_)* := Homk(zp)(_,wﬁi) on V(p) where w,, is the one dimensional
vector space m,, / mip and wgi is Homy(,,) (W, , Lz, ® k(z;)). The usual canonical
isomorphism 1 — (_)** is denoted by can. Now V(p) C Ox s, — fl and the functor

(Chb(V(p)),qis, ()" ecan) — (Chb(OXJP — fl),dis,b, @ezt)
is a functor of dg-categories with weak-equivalences and duality (use the canonical
isomorphism wﬁ; o~ EXtZ()Ox,Ip (k(xp), Lg,)). It induces an isomorphism in K-theory
and an isomorphism of Witt groups. By Karoubi induction ([12, Lemma 6.4]), this
functor induces an isomorphism

(6) GW!=P(D(k(zp)), (_)*, can) =~ GWZ}[”(Db((’)X% — f1),b, Wext)-

According to our conventions, the group GW2~P(Db(k(z,)),(_)*,can) is denoted
by GWﬁ_p(k(xp),wgfj). Putting (4), (5) and (6), we get the result. O

6.0.6. Some computations. The goal of this section is to compute some low dimen-
sional Grothendieck-Witt groups of fields whose characteristic is different from 2.
We first recall from M. Schlichting’s lectures that for any ring R such that % €R
we have GW?(R) = K;O(R) and GW?(R) = K;Sp(R).

Lemma 6.6. Let F be a field with char(F) # 2. Then the hyperbolic map Ko(F) —
GW?2(F) is an isomorphism. Moreover, GW2(F) = K1Sp(F) = 0.

Proof. ItV is an even-dimensional vector space and ¢ : V' — V* is a skew-symmetric
isomorphism, then there exists n € N and a : F?* — V such that af¢a = 1)a,. It
follows that the hyperbolic map is surjective. The map is also injective since two
modules of different ranks cannot be conjugate under an invertible matrix.

It follows from Vaserstein stability thm that Spy(F) — K;Sp(F') is surjective.
Moreover, we have Ey(F) = SLy(F) = Spa(F). Since Ea(F) C ESpy(F), this
shows that K1 Sp(F) = 0. O

Lemma 6.7. The hyperbolic map K1(F) — GW3(F) is an isomorphism.
Proof. The Bott sequence reads as

The above lemma shows that GWZ(F) = 0 and that the hyperbolic map Ko (F) =
Z — GW?(F) is an isomorphism. Moreover, it is easy to see that the composite

Ko(F) > aw2(F) —L> Ko(F)



UNSTABLE CLASSIFICATION OF PROJECTIVE MODULES OVER AFFINE ALGEBRAS 33
is equal to the multiplication by 2. Thus the hyperbolic map H is injective. The
Bott sequence yields the result. ([

Remark 6.8. Alternatively, one can show by hand that Wg(F') = 0 and that the
Pfaffian homomorphism W, (F) — F* is an isomorphism.

Consider now the Witt ring W (F') and the fundamental ideal I(F) C W(F). If
n € N, we denote by I"(F') the n-th power of this ideal.

Lemma 6.9. The forgetful homomorphism GW(F) — K, (F) induces an ezact
sequence

0 —— I""Y(F) —= GW(F) —= K,(F) —=0
for 0 <n <2.

Proof. For n = 0, this is obvious. For n = 1, we refer to [3, Corollaire 4.5.1.5] and
the case n = 2 follows from [13, Corollary 6.4]. O

Corollary 6.10. We have GW1(F) =0 for 0 <n < 2.
Proof. Using the Bott sequence, we obtain
GW(F) —= Kn(F) —= GWIH(F) == GWILy (F) —= Ky 1 (F) — GWH ()
If we specialize the above sequence at n = 1, we obtain a sequence
GWL(F) — K{(F) — GW2(F) -~ GW}(F) — Ky(F) — GW?2(F)
and Lemma 6.6 shows that GW}(F) = 0. Specializing now at n = 2, we get
GWE(F) — Ks(F) — GW3(F) == GWE(F) — K\ (F) — GW}(F)

Lemma 6.6 shows that GWZ(F) = 0, and Lemma 6.9 proves that GWZ(F) —
K5 (F) is surjective. Therefore GW3(F) = 0. O

For an abelian group A, we denote by ,, A the elements of n-torsion in A.

Lemma 6.11. The forgetful functor induces surjections f : GW!™H(F) — oK;(F)
for i =1,2. Moreover, if F is algebraically closed then f: GWP(F) — {&1} is an
isomorphism.

Proof. For any field F', the Bott sequence sequence

GWiTM(F) —L> Ky(F) > GWi(F)

and Lemma 6.9 yield surjective homomorphisms
GW]™H(F) — o Ki(F)
for i = 1,2. Suppose now that F' is algebraically closed. The Bott exact sequence
GW3(F) 2= K\(F) 2 GWO(F) — GW3(F) > Ko(F) 22 W (F)

and Lemma 6.7 (together with the easy fact that H : Ko(F) — GW(F) is injective)
give an exact sequence

0 ——Ki(F)/2 —— GW)(F) —= GW3(F) ——=0.

Since F is algebraically closed, the left term is trivial. Now GW?3(F) = Z/2 by
Lemma 6.6 and the Bott sequence once again. [
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We now have all the tools in hand to prove the main theorem of the section.

Theorem 6.12. Let X be a smooth affine threefold over an algebraically closed
field k. Then the Gersten-Grothendieck-Witt spectral sequence E(3)P? yields an
isomorphism

Wg(X) ~ H*(X, K3).

Proof. First observe that the line ¢ = 1 is trivial by Corollary 6.10. The line ¢ = 2
reads as follows:

GWP(k(X),wx) —= @ GW?(k(z),w,) —=0
reXxX @)

Lemmas 6.6 and 6.7 show that this is isomorphic, via the hyperbolic homomorphism
H, to

whose homology at degree 0 is just Ox(X)*. Now the Pfaffian homomorphism
GW3(X) — Ox(X)* is clearly split, and we see that the kernel of the edge homo-
morphism GW3(X) — E(3)%2 is precisely Wg(X).

We now show that E(3)%° ~ H?(X, K3). By definition, E(3)%0 is the homology
of the complex

P Wik — P owik — D GW(k()wa).
reX (1) reX (2) reX ()

We use the forgetful functor to compare this sequence with the corresponding se-
quence

P Kalk(x) = P Ki(k(z)) = P Ko(k(x))
zEXM) zEX (@) rEX®

in K-theory. Now the choice of a generator of w, induces isomorphisms GW". (k(z)) —
GW (k(x),w,) such that the following diagram commutes for any m,n € N

W (k(x)) ——

!

GWT)’r}L(k( )s W) T>Km
Lemma 6.9 now yields exact sequences
0 ——= 1" (k(x)) ——= GW (k(x)) —= Ko (k(x)) —0

for any 0 < n < 2 and any z € X™. If z € X™, then cd(k(z)) < 3 —n
by Corollary 5.11. Hence H* "(k(z),u2) = 0 and the latter is isomorphic to
I*="(k(z))/I°~"(k(x)) by [10, Theorem 4.1] and [16, Theorem 7.4]. The Arason-
Pfister Hauptsatz [1] then shows that I4~"(k(x)) = 0. The forgetful homomorphism
therefore induces an isomorphism of complexes between

P w3k — P owlk — P Gwk(x),w.)

zeX @) zeX () reX(3)
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and

D Kak@) = P Kikx)) — P Ko(k(@)).

rzeX (1) reX(2) zeX(3)

To conclude, we prove that E(3)3,~! = 0. It suffices to show that the cokernel
of the homomorphism

@ ngl(k(lﬁ)ywxz)% @ GWP(/{J(.I?,),CL)13)

To€X (2) r3€X(3)

is trivial. Lemma 6.11 yields a commutative diagram

D Wika),w) — B CWP(k(x3),wsy)

€ X (2) r3€X(3)

| |
P Ko(k(an) ——— P 2Ki(k(s))

22€X(2) IgGX(3)

in which the left vertical map is surjective and the right vertical map is an isomor-
phism. Hence both sequences have the same cokernel.

For any field F' and any integer n € N, define a homomorphism g, : K, (F)/2 —
oK, 11(F) by a — {—1}-a. It is clear that gg is an isomorphism, and g; is surjective
by [13].

Using the definition of the residue homomorphisms, it is straightforward to check
that the diagram

P Kik(@)/2— P Kolk(as))/2

r2€X(2) r3€X(3)

Zml izgo

@ 2 Ko (k(22)) —— @ 2 K1 (k(z3))

z2€X () z3€X ()

commutes and therefore the cokernels of the rows are isomorphic. The cokernel of
the top homomorphism is C H3(X)/2 which is trivial by [6, Lemma 1.2]. The result
follows. O

7. LECTURE 7: PROOF OF THE MAIN THEOREM

Theorem 7.1. Let R be a d-dimensional normal affine algebra over an algebraically
closed field k such that ged((d — 1)!, char(k)) = 1. If d = 3, suppose moreover that
R is smooth. Then every stably free R-module P of rank d — 1 is free.

Proof. Let P be a stably free module of rank d — 1. Since the result is clear when
d < 2, we assume that d > 3. Using Suslin’s cancellation theorem 2.5, we can
suppose that there is an isomorphism P @ R ~ R%, and therefore that P is given
by a unimodular row (ai,...,aq). In view of Corollary 2.4, to prove that P is
free it suffices to show that there exists a unimodular row (by,...,bs) such that

(ay, ... aq) = (V' bg) in Uma(R)/Eq(R).
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Suppose that d > 4. Let J be the ideal of the singular locus of R. Since R is
normal, J has height at least 2 and dim(R/J) < d — 2. It follows from [4, Theo-
rem 3.5] that Umgy(R/J) = e1Eq(R/J) and we can therefore assume, performing
elementary operations if necessary, that ag = 1 (mod J) and ay,...,aq-1 € J.
Using now Swan’s Bertini theorem 0.2, we can perform elementary operations on
(a1,...,aq) such that B := R/(a4,...,aq) is either empty, either a non-singular
threefold outside the singular locus of R. In the first case, the row (a4, ...,aq)
is unimodular, and therefore the row (as,...,aq) is completable in an elementary
matrix. Thus we can restrict to the second case. In this situation, we see that B is
actually smooth since ag =1 (mod J).

Given a unimodular row (@, b, ¢) on B, we can choose lifts a, b, ¢ € R and consider
the unimodular row (a, b, ¢, a4, ...,aq) on R. It is straightforward to check that this
gives a well-defined map

Ums(B)/E3(B) — Uma(R)/Ea(R),

showing that (ai,...,aq) comes from the unimodular row (@,as,as) on B. We
are thus reduced to the case where R is the affine algebra of a smooth threefold.
By Theorem 4.4, the set Ums(R)/E3(R) is in bijection with Wg(R) and is thus
endowed with the structure of an abelian group. Since —1 is a square in k, Lemma
4.11 shows that n- (a1, as,a3) = (a},as, a3) in Umgz(R)/E3(R) for any n € N. Now
Theorems 6.12 and 5.25 show that Umg(R)/E3(R) is a divisible group prime to the
characteristic of k. Since ged((d — 1)!, char(k)) = 1, there exists a unimodular row
(b1, b2,b3) € Ums(R) such that

(a1,az,a3) = (d— 1)1 - (b1, b2, b3) = (0", b, b3)
in Ums(R)/Es(R). The result follows. O
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