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1 Disclaimer

These are preliminary notes of the talks given by Marco at the ICTP workshop on classical non-stable
K-theory. I take full responsibility for all errors and typos.

2 Preliminaries

Throughout this talk we assume for simplicity that R is a commutative ring and e € {£1}.

Definition 2.1. An inner product space (P, (—,—)) (IPS) is a pair of a finitely generated projective
R-module P and a non degenerate e-symmetric bilinear form (—,—) on P. Here, a bilinear form is

non-degenerate if the adjoint map P = pr = Homp(P,R) : © — (x,—) is an isomorphism, and the
form is e-symmetric if (x,y) = € (y, z). Further let [ JPS(R) be the set of isometry classes inner product
spaces.

For two IPS V and W we denote by V LW the orthogonal sum. Then the triple (.IPS(R),L,0) is an
abelian monoid.

Remark 2.2. If e =1 we usually omit the index corresponding to € in the notation.

Recall 2.3. Let (M, +,0) be an abelian monoid. Then
Ko(M,+,0) = {(a,b)[a,b € M}/ ~

where (a,b) ~ (a’,0') if e e M, s.ta+b +c=a +b+c. Ky is the left adjoint of the forgetful functor
abeliangroups — abelianmonoids. We often write a — b or [a] — [b] instead of (a,b) for an element of
KO (M7 =+, O) .

Definition 2.4. The Grothendieck-Witt group of R is defined as
GWy(R) = Ko(IPS(R),L,0) (1)
Example 2.5. o rk: GWy(F) =N/ for an algebraically closed field F

o GWy(Z) =N GWy(R) =, Z® Z, where the second isomorphism is given by P (i+(P),i—(P)).
Here, iy (P) := #{i| £ (b;, b;) > 0} for an orthogonal basis {b1,...,by} of P.

o (rk,det) : GWo(F) = Z ® F*/F?* for a finite field F.

o GWo(Q) = GW(R) & @D pex Wo(F,), where Wy is the Witt group of R as defined below.

prime

Definition 2.6. Let Z(R) be the category of f.g. projective modules. Moreover let i Z(R) denote the
set of isomorphism classes. Define the Grothendieck group of R as

Ky(R) := Ko(1Z(R), ®,0) (2)

Definition 2.7. The hyperbolic map

Ko(R) <% .GWy(R) (3)
is defined by
P HP (4)

where (H P is the inner product space P @ P* with e-symmetric bilinear form (z, fly, g) = g(z) + €f(y).
Moreover define the (e-symmetric) Witt group of R as the cokernel

Wo(R) := coker(.H : Ko(R) — .GWy(R)) (5)



3 The aim of the talks

We want to define groups GW;(R) for all i € Z and rings R and more generally groups GW;(X) for all
i € Z and schemes X. Moreover we show that these define cohomology theories.
For now we define GW;(R), i > 1.

4 Definition of the groups GW;(R) for i > 1

4.1 The classifying space of a group

Reference here is [Hus94) Definition 10.5 and Summary 12.5]. Let G be a topological group (which has
the homotopy type of a CW complex and for which 1 € G is retract of some neighbourhood), then the
classifying space BG is a topological space (of the homotopy type of a CW complex) defined by the
property that for all CW-complexes X we have

[X, BG] = isomorphism classes of principal G-bundles (6)

Example 4.1. Let G be a discrete group, then BG is a pointed CW space determined by the property

rBC = { i#1 ")
G i=1
4.2 Plus construction

References here are [Lod76|, [Ber82].

Proposition 4.2. Let X be a connected CW-complex such that m1 X is quasi-perfect, i.e. the commutator
subgroup G = [m1 X, 71 X] is perfect, i.e. [G,G] = G. Then there exists a continuous map of CW spaces
X — X7, unique up to homotopy, such that

H.(X,A) = H.(X*, A) ®)
for all local coefficient systems A on X T and
7T1X — 7T1X+ = 7T1X/[7T1X, 7T1X] = (7T1X>ab (9)

X obtained form X by attaching 2- and 3-cells.

4.3 The infinite orthogonal group

Definition 4.3. [Kar73| p. 8] Let V € IPS then O(V) := group of isometries of V.
Further we define

n>0
where O(.H™) C O(H™) via g (g ) )
H

Lemma 4.4. Oy (R) is quasi-perfect.

Proof. Set E := [Ox,Ooo], the commutator subgroup of O. Recall that this subgroup is normal in
Os. We need to show [E, E] D E. Thus let g,h € O = g,h € O(H™) for some n.
Clearly we have
ghg~'h™! g h
1 = g ! , 1 (11)



g
Hence it suffices to show that ( gt ) € E.
1

The permutation matrices are clearly isometries: Y3 C O((H™)?) and an easy computation shows:

(123) = [(23),(12))] e E (12)

Finally observe
(lege)s)(gelel)=(123) (13)

Therefore
g
( gt ) =1mod E (14)
1

O

Remark 4.5. Similarly GI(R) := | Gl,.(R) is quasi-perfect.
Definition 4.6. We define

o GW;(R) =mBOx(R)" for i > 1 and 2 € R* (Karoubi [Kar73|)

e K;(R)=mBGI(R)" for i > 1 (and R arbitrary) (Quillen *70 [GraT6]).
Corollary 4.7. By construction we have

e Ki(R) =GI(R)®

e .GWi(R) = Oy (R)™

5 Karoubi’s fundamental theorem and Bott periodicity

We will define spaces (GW(R), K(R) such that

GW;(R) = m;GW(R) (15)
and
Ki(R) = m K(R) (16)
Warning 5.1. As functors in R
K(R) 2 Ko(R) x BGL(R)™" (17)
and
GW(R) 22 GWy(R) x BOs(R)™ (18)

For an explanation, see [Schill, 2.2.9].

Proposition 5.2. There exists a map

H:K(R)— .GW(R) (19)
such that the induced map
Ko(R) — GWo(R) (20)
s given by P— .HP and
BGL* — BOZL (21)
s given level-wise by the maps
Aut(R™) = Gl,, - O(H™) (22)
which sends g — (g (g*)l)'
Moreover there is the forgetful map
F: GW(R) — K(R) (23)

defined by (P, {,)) — P.



Definition 5.3. Let f: X — Y be a map of topological spaces and y € Y. Then we define the fibre of

f as
Fibre,(f) ={(o,z)lo: I =Y, x € X, 0(0) =y,0(1) = f(z)} (24)

Proposition 5.4 ([Whi78|). There exists a long exact sequence in homotopy
<= (Fibrey(f)) — mp(X) = mp(Y) — mp_1 (Fibrey(f)) — -+ (25)
Definition 5.5. [Kar73| Set
e U(R)= Fibre(.H : K(R) — .GW(R))
e V(R)= Fibre(F : .GW(R) — K(R))

Remark 5.6. To remember which one is which it is convenient to know that “V=vergessen” is German
for “to forget” though this is probably not the reason for why it is called V -theory...

Theorem 5.7 (Fundamental Theorem, Karoubi *73, '80 [Kar73|, [Kar80]). If 2 € R* then
_V(R) ~ QU(R) (26)
Theorem 5.8 (Bott Periodicity). Z x BO™P ~ Q¥(Z x BO'™P)
The topological version of the Fundamental Theorem implies Bott periodicity:
Definition 5.9. Let A be a Banach algebra with involution. Then define
o GWy™(A) = GW(IPS(A))

o .GW/P(A) = m; BOP(A)

If we apply the topological version of the Fundamental Theorem to A = R, C, H, where he first two come
with the trivial involution, and H with the usual involution ¢, j, k — —i, —j, —k we obtain the list where
V and U denote V%P and UtP

V(R)~Zx BO V(C)~U/O  V(H)~Zx BSp
U(R) ~ O ((C) o/U U(H) ~ Sp
_V(R)~O0/U _V(C)~U/Sp _V(H)~Zx Sp/U
_UR)~U/O _U(C)~Sp/U  _UH) ~U/Sp

Hence, the homotopy equivalence _ .V (R) ~ Q.U (R) together with the canonical homotopy equivalences
O ~ Q(BO) and Sp ~ Q(BSp) imply

7 x BO ~ QU/O) ~ Q*(Sp/U) ~ Q3(Sp) ~ QXZ x Sp) ~ Q*(U/Sp)

~ Q(0/U) ~ Q"(0) ~ Q¥(Z x BO)

6 Addendum: On the order of K3(Z)

One of the first applications of hermitian K-theory was to disprove a conjecture of Lichtenbaum predicting
K3(Z) to be Z/24. To explain the context, consider the string of maps

Z =150 L m30° 8% = 758° — K3(Z)

in which the isomorphism 730 = 7, BO = Z is by Bott periodicity, the map J is Adams’ J-homomorphism
[Ada66], and the last map is the unit map S° — K(Z) of the ring spectrum K(Z). Adams showed in
[Ada66l, Theorem 1.5] that the image of Z in 755 is Z/24, and Quillen showed in [Qui76} p. 183] that
the map 755° — Kj3(Z) is injective on the image of J, that is, we have an injection Z/24 C K3(Z).
Lichtenbaum predicted that this inclusion is in fact an isomorphism (compare [Lic73| 2.6]



Proposition 6.1 (Karoubi ’74 |[Kar74]|). The order of K3(Z) is divisible by 48.

Proof. For a finite abelian group A, write A(y) for the 2-primary torsion subgroup. Also, write Z’ for
Z[1/2]. Quillen showed that the map K3(Z’') — K3(Z) is an isomorphism on 2-primary subgroups (since
kernel and cokernel are quotient and subgroup of K3(IF3) and Ks(Fs) both of which are finite groups
without 2-primary torsion). The map 755 — K3(Z) factors through GW3(Z') LR K5(7Z') — Ks5(Z)
(simply because the maps GW (Z') SN K(Z') — K(Z) are maps or ring spectra).

By Quillen’s result that 755% — Kj3(Z) is injective on the image of .J, the same has to be true for the map
155 — GW5(Z'). In particular, Z/8 C GW5(Z')2). Now, the map H : K3(Z') — GW3(Z') is surjective
(we will learn later how to prove this, see Lemma ?? below). In particular, |K3(Z)2)| = |K3(Z') 2| >
|GW3(Z')(2). Therefore, if 7Z/24 = K3(Z), then Z/8 = K3(Z)(2), and 8 < GW3(Z')(2) < |K3(Z')(2)| = 8.
Hence H : K3(Z')@) — GW3(Z')2) and F : GW3(Z')(3y — K3(Z')(2) have to be isomorphisms. The
composition

K3(Z')2) = GW3(Z')2) = K3(Z')2)

is of the form 1 4 % with * : P — P* a map inducing an isomorphism on K-groups. But a map of the
form 1 + * can never be an isomorphism between finite 2-primary torsion groups. O

Later Lee and Szczarba proved in [LST6] that K3(Z) = Z/48. Nowadays, we know all groups Ko, 11(Z),
we know the orders of the groups Ky, +2(Z) which are predicted to be cyclic, and the groups Ky, (Z) are
conjectured to be 0 except for n = 0 (where Ko(Z) = Z) and n = 1 (where it is known that K4(Z) =0
due to Soulé and Rognes). The last conjecture is equivalent to Vandiver’s conjecture and implies the

previous conjecture on the structure of the groups Ky, +2(Z). For a survey about these statements, see
[Wei05].

7 Grothendieck-Witt groups of exact categories

7.1 DMotivation

Even if we are only interested in the K-groups of rings (and possibly schemes) it is necessary to work in
a more general framework: at least in the framework of exact categories. Here are two reasons why.

e Consider the localization map R — S~!R, where S C R is a multiplicative set of non-zero-divisors.
Then there exist induced maps K, (R) — K, (S7'R). These maps fit into a long exact sequence
[Gra76l, Theorem, p. 229]

- = K, (&) = Ku(R) — K, (ST'R) = K, _1(&) — - (27)

where the additional terms are not defined as the K-theory of a ring but rather of some exact
category &.

e Let X be ascheme and let Vect(X) denote the category of vector bundles over X. Then Vect(X) is
an exact category and the K-theory K (X) is defined using this structure. This will be the example
to keep in mind in what follows.

8 Exact categories

Definition 8.1 (Quillen [Qui73]). An exact category is an additive category & together with a choice
of a class of sequences
A B—C (28)

called admissible exact sequences or conflations. Maps that occur as the first map in a conflation are
called admissible monomorphisms or inflations and are depicted as ~—, maps that occur as the second
map in a conflation are called admissible epimorphisms or deflations and are depicted as —. The class
of conflations is subject to some axioms. We omit listing these axioms in favour of the characterisation
below.



Lemma 8.2 (Appendix A in [TT90], Appendix in [Kel90]). A small additive category & together with a
set of sequences A — B — C' is an exact category if and only if there exists a full and faithful embedding
& C o into an abelian category &/ such that a sequence in & is admissible exact if and only if its image
in & is exact (in the sense of abelian categories) and & is closed under extensions in <.

Definition 8.3. Let & be an exact category. Then Ky(&') is the abelian group generated by symbols
[E], one for each F € Ob&subject to the relations

o [E|=[F|ift EXF
e [B] = [A] + [C] for each admissible exact sequence A — B — C.
Remark 8.4. In fact the first relation is a special case of the second one.

Definition 8.5. An exact category with duality is a triple (&, %, can) where & is an exact category,

x 1 &P — & an exact functor and can : 1 — ** a natural isomorphism such that for all A € Ob& we

A*

A* < - Arrr
can’y

have can® o cana~ =14~

(29)

Example 8.6. The triple (Vect(X), Homo, (—, L), can) is an exact category with duality. Here L is a
line bundle and cany : V — V** maps x — (f — f(z))

Definition 8.7. Let (&, *,can) be an exact cat with duality. An inner product space (IPS) in & is a
pair (V,¢), V € Ob& and ¢ : V =, V* such that ¢* o cany = ¢.

Definition 8.8 (Knebusch, 185 in [Kne77]). Let (&,#,can) be an exact category with duality. Its
Grothendieck-Witt group is the abelian group GWy (&, *, can) generated by symbols [V, ¢], one for each
IPS (V, ¢), subject to the relations

o [V,9] = [W, ] if (V,¢) = (W, ) are isometric.
o [(V,o)L(W, )] = [V, 9] + W, ¢]

U

exact sequences in &. Here a non-degenerate symmetric bilinear form in the category of exact
sequences is a triple of isomorphisms ¢ = (¢4, ¢, dc) making the diagram commute

o [V,g] =[UW, < 0 ¢5V )] for any IPS in the the exact category (with duality) of admissible

A—B——>C (30)
slon mlen xlec
C>—— B* —> A*
such that ¢* o can = ¢, that is, ¢% o canc = ¢¢, ¢ o canp = ¢pp and ¢f ocang = ¢ 4.
Definition 8.9. As usual we define the Witt group as the cokernel of the hyperbolic map
Wo(X) = coker(H : Ko(X) — GWy(X)) (31)

Lemma 8.10.
GWo(L(R), Hom(—, R), € - can) = .GWy(R) (32)

Recall 8.11. The construction of K;(&) for an exact category & is done in several steps:
e To the exact category & we associate another category Q&
e to the category Q& we associate a topological space BQE&, the classifying space of Q&
o the K-theory space K (&) is defined as the loop space K(&) = QBQ&, and

o the K-groups are defined as the homotopy groups K;(&) = m K (&)



8.1 From categories to topological spaces

To any small category € we associate a topological space, called the classifying space B% of €. It has
the following properties

e B% is a CW complex
e The 0-cells are the objects of %.

e The 1-cells are the non-identity arrows Ag ER A;p in € glued in by attaching source and target of
f to the corresponding 0-cells.

e The 2-cells are the pairs of composable arrows Ay ELR Aq EiR Ay in € with f1, fo # id. For

each 2-cell Ay Jo, Ay EiR As we glue in a triangle with edges fo, fi and fifo attached to the
corresponding arrows in the 1-skeleton.
e For arbitrary n the n-cells are given by the sequences Ag ELN L N A,, of n-composable arrows
in ¥ such that none of the f;’s is an identity map. They are glued in appropriately as above.

For the precise definition, see Definition and [Qui73, §1].

Example 8.12. Let G be a (discrete) group. If we understand G as the category with one object and G
as the set of morphisms, then BG is the usual classifying space of G.

8.2 From exact categories & to Q&

Definition 8.13 (§2 in [Qui73]). Given an exact category & we define a category Q& with the same
objects as & where a morphism A — B is an equivalence class of triples (U, p, 1)

Afvu.lB (33)

where (U, p,i) ~ (U’,p',i') if there exists an isomorphism ¢ : U =, U’ such that p=7pgandi=7dg.

The composition of A Opd), g Wad), & s defined as (U xp W,pq',ji'), where U xp W, ¢’ and ¢’ are
defined as a pull-back:

c (34)

J

A-«T U ~— UxgW
p
8.3 The hermitian ()-construction

Definition 8.14 (Karoubi, Giffen, Uridia [Uri90], Charney-Lee [CL86]). Let (&, *,can) be an exact
category with duality. Define Q"& to be the category with inner product spaces (A4, ¢) (in &) as objects.
A morphisms (A, ¢) — (Bv) is given by an equivalence class of triples (U, p, )

AalulB (35)

as in Quillen’s Q-construction such that ¢|y = Y|y, i.e. p*¢p = i*pi and Ker i* otp =: U+ = Ker p.
The composition is defined as in Quillen’s Q-construction Q&

Lemma 8.15 (|Uri90], Proposition 4.8 in [Schi0al). There exists an isomorphism

T0BQ"E = Wy (&) (36)
(V,¢) — [V, ¢] (37)



Definition 8.16. Let (&,*,can) be an exact category with duality. The Grothendieck-Witt theory
space is defined as the fibre

GW (&) = Fibre(BQ"& — BQ&) (38)
V,¢) =V (39)

Then the Grothendieck-Witt groups are given by
GW;(&) = mGW (&). (40)
We write GW (X, L) for the Grothendieck-Witt theory space of the exact category with duality (Vect(X), Hom(—, L), .can
Lemma 8.17 (Proposition 4.11 in [Schi0a]).
ToGW (&) = GWy(&) (41)
Remark 8.18. Compare the above result to the classical [Qui73, §2 Theorem 1]
mo!BQE = Ko(&) (42)

for K(&) := QBQ&.

9 The Grothendieck-Witt group of formations

Definition 9.1. A formation in an exact category with duality & = (&, , can) is a tuple (X, ¢, L1, Lo),
where (X, ¢) is an inner product space in & and L;— X, j = 1,2 are two Lagrangians. A Lagrangian in
X is an object L together with an admissible monomorphism L— X such that L = L+ = Ker i*¢.
Two formations (X, ¢, L1, La) and (X', ¢', L, L}) are isomorphic, if there exists an isometry f : (X, ¢) —
(X', ¢') such that f(L;) = L) for i =1,2.

Definition 9.2. The GW group of formations is the abelian group GWyorm (&) generated by isomor-
phism classes [X, ¢, L1, Ls] of formations, subject to the relations

o [X,p, L1, Lo+ [ X', ¢, L, Ly =[XDX ', 0D ¢, L1 &L}, Ly @ L)
L4 [Xa d)aLl)LQ] + [Xa ¢a L27L3] = [X7¢7L1aL3]

e If (X, ¢, L1, Ly) is a formation and U — X with U C Ly, Ly (hence U C U™) then [X, ¢, Ly, Ly] =
[UJ_/U’ ¢7 Ll/Ua LQ/U}

Remark 9.3. If L C (X, ¢) is a Lagrangian, then it defines an arrow 0 — X in Q"& wvia

0L L X, ¢ (43)

and therefore a path [L] from 0 to (X, ¢) in BQ"&. If (X, ¢, L1, Ls) is a formation then [Ly)~*[L;] is a
loop in BQ"& based at 0.

Lemma 9.4. [SchiOd, Proposition 4.9]

CWirom (&) = m (BQ"&) (44)
[X, ¢, L1, Ly] — [Lo]~'[L1] (45)

10 The proof of Lemma 8.1

The sequence of functors il PS(&) — Q"& — Q& induces a map on the classifying spaces Bil PS(&) —
BQ"& — BQE&. Observe that the composition is homotopic to the trivial map and thus we obtain a

map into the fibre
BiIPS(&) — GW (&) (46)



and in particular a map
moBiIPS(&) — moGW (&) (47)

where the left hand side is the abelian monoid of isometry classes of inner product spaces in &. This
induces the map

Now recall the formulation of Lemma
Lemma 10.1. [SchiOd, Proposition 4.11] The map @ is an isomorphism.

Proof. The rows in the following commutative diagram are exact

GW form (&) Ko(&) —L GWo(6) ——= Wy (&) ——= 0 (49)

T

mBQ"& mBQE — 1yGWE —— 7y BQ"& — moBQ

where the upper left horizontal arrow is [X, ¢, L1, Lo] +— [L1] — [L2]. We already know that all but the
middle vertical arrow are isomorphisms. by the five-lemma we are done. O

Proposition 10.2. [Schi2, Appenziz A] For i > 1 and 2 € R* we have an isomorphism
GWi(Z(R), Hom(—, R), e can) = 1;B.Os(R)" (50)

Remark 10.3. The statement of Propositz'on was claimed in [CL86] but the proof in that paper is
wrong as explained in [Sch04)] which also gives an alternative proof.

11 Grothendieck-Witt groups of exact categories with weak equiv-
alences

Quillen proves in [Qui73] a collection of powerful theorems for the K-theory of exact categories (Reso-
lution, Localisation, Additivity, Dévissage). They imply most of what was known about the K-theory
K(X) of a regular noetherian separated scheme X before the introduction of motivic cohomology. The
GW-analogs of Resolution, Localisation, Additivity and Dévissage hold ([Sch10b, Lemma 9], [Sch10al
Introduction|, [Schl0al Theorems 7.1 and 7.2] and [Sch10a, Theorem 6.1]) but they don’t imply any-
thing interesting about GW(X), not even when X is regular noetherian separated. One of the reasons is
explained in the following example and remark.

Example 11.1. Let Z <+ X be a closed embedding of smooth schemes over some field k. Denote by U
the open complement U = X — Z. Quillen shows [Qui73] that there exists a long exact sequence of the
form

= Ki(Z) = Ki(X) = Ki(U) = Kiea(Z2) — - (51)

where as usual K(X) = K(Vect(X)).

A summary of the proof is as follows.

Proof. e By the Resolution Theorem we have K;Vect(X) — K;Coh(X) for regular X where Coh(X)
is the category of coherent sheaves,

e by the Localisation Theorem the short exact sequence Cohz(X) — Coh(X) — Coh(U) induces a
long exact sequence of K groups, and

e by Dévissage we have K;Coh(Z) = K;Cohz(X).
O

Remark 11.2. The above does not work for GW groups because the duality on Vect(X) does not extend
to a duality on Coh(X) (unless X has dimension 0). Hence we need a new framework, namely categories
of chain complexes. The motivation hereby comes from the work of Thomason-Trobaugh [TT90] and
Balmer’s triangulated Witt groups [Bal05].

10



Example 11.3. In the following, the example to keep in mind is the tuple
(Ch*Vect(X), quis, Hom(—, L[n]), € - can), (52)

where Ch®Vect(X) is the exact category of bounded complexes in Vect(X), quis is the set of quasi-
isomorphisms and L[n] is a line bundle | shifted by n, i.e. the chain complex Lin] with L concentrated
in degree —n.

Definition 11.4. A small exact category with weak equivalences and duality (ExCatWD) is a tuple
(&,w,*,can), where & is a (small) exact category, w C Mor(&) a set of morphisms called weak equiv-
alences, which is closed under composition, isomorphism and retracts, which contains all identites, and
which satisfies the “two out of three” property, i.e. if two out of f, g, fg are weak equivalences then so
is the third. * : (£°P,w) — (&,w) is an exact functor which respects weak equivalences *(w) C w and
can : 1 — % natural transformation such that cany : V' — V** is a weak equivanlence for all V € &
and canj, o cany= = ly-.

Definition 11.5. [Sch10bl Definition 1] The Grothendieck-Witt group of (&, w, *, can) € ExtCatW D is
the abelian group GWy(&) = GWy (&, w, *, can) generated by inner product spaces [X, ¢] in (&, w, *, can),
i.e. objects X € & together with weak equivalences ¢ : X — X* such that ¢*canx = ¢, subject to the
relations

o [X, ¢] = [W,] if there is a weal equivalence f : V == W such that ¢ = f*f
o (XOW, 00| =[X,¢]+[W,9]

e [B,és] = [A&C, (¢OA

in &, that is, a commutative diagram of the form

¢00 )] for any given inner product space in the category of exact sequences

A B C (53)

NlGﬁA Nldﬁa Nlaﬁc

O%— B* — A*

where ¢*can = ¢ is a (tuple of) weak equivalences ¢ = (¢4, ¢p, dc).
The following remark is clear from the definition.

Remark 11.6. If (&,*,can) is an exact category with duality then (&,iso,*,can) € ExCatW D and
GWy(&, *, can) =, GWy(&,iso,*, can) (54)
is an tsomorphism.

The following lemma, is a special case of Theorem

Lemma 11.7. Let (&, %, can) be an exact category with duality. Then (Ch®, quis, &, *,can) € ExCatW D
and the functor which sends any inner product space to the chain complex concentrated in degree 0 induces
an isomorphism

GWy(&, *, can) =N GWo(ChY&, quis, *, can) (55)

12 Simplicial objects

Standard references for simplicial homotopy theory are [GJ09], [FP90], [May67].
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Definition 12.1. Let A be the category with the ordered sets [n] = {0 < --- < n} for n € N as objects
and order preserving maps (of sets) as morphisms. A different way to understand A is the following:
Let [n] be the category with objects 0,...,n and for 0 < ¢,5 < n there is a unique morphism i — j if
1 < j (necessarily the identity when ¢ = j) and no morphism from ¢ to j otherwise.

A simplicial set (space, category,...) is a functor

X : A — Sets (Top, Cat, ...)
Similarly a cosimplicial set (space, category,...) is a functor

Y : A — Sets (Top, Cat, ...).

Example 12.2. o The functor

A — Cat
n i [n]
is a cosimplicial category.
o Let € be a small category, then
A°? — Sets

n — Fun([n],€) =: M (€)

is a simplicial set, called the nerve of €. We may understand a functor A : [n] — € as a string

of maps Ay Jo, e

map

. J Jj<i
Iy, C
{j +1 j>14
Then for A as above we have

fiofi—1

0;(A)=A00; = Ay f—0>_)"'_)Ai—1—’Ai+1—>"'

e The topological n-simplex is given as

A;Lop = {(LL'(), s 73,‘”) S Rn+1| sz =1,z; > 0}

endowed with the topology as a subspace of R"*1. The functor

A — Top

n
n— Atop

is a cosimplicial topological space. Here a map 6 : [n] — [m] induces a map A} — A

via Yi = Y g(5)=i Tj-

e Let X be a topological space. Then the functor

AP — Sets
n— Sing, X = Top(Ay,, X)

top»

defines a simplicial set.

12
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(63)
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Definition 12.3. Let X : A°? — Top (Sets) be a simplicial topological space (or a simplicial set). Then
its topological realisation is the topological space

1X| =] Xn x AL/~ = Xe @ A (70)
n>0
where (0*x,t) ~ (z,0.t) for all z € X, t € AY, and 6 : [n] — [m)].

Remark 12.4. If X € A°PSet is a simplicial set, then the geometric realisation | X| is a CW complex.

Definition 12.5. Let € be a small category. Define B€ = |€| = |4.C|. For a simplicial category
s € A%Cat define [6,| = [q— |p — ME[| = [p = |g — MG = [n— MG

13 Waldhausen’s S,-construction

The reference here is [Wal85].

Definition 13.1. Let n € N be a positive integer. Define the arrow category by </r[n] :== Fun([1], [n]).
Explicitly an object is of the form a < b for 0 < a,b < n and there is exactly one morphism (a < b) —
(/! <V)if and only if a < a’ and b < ¥, i.e. if we have a diagram in [n] of the form

a——) (71)

L

a —=
The functor
A — Cat (72)
n — rn| (73)
is a cosimplicial category. If A : o/r[n] — € is a functor for some category € we write 4, , := A(p < q).

Definition 13.2. Let (&,w) be an exact category with weak equivalences. We have a simplicial exact
category with weak equivalences

AP — Cat (74)

n — Fun(</r[n],&) (75)

Here a sequence A — B — C'is exact if for all p < ¢ the sequence A, ;, — B, 4 — Cp 4 is exact in & and a

morphism A — B is a weak equivalence if for all p < g the morphism A, ; — B, is a weak equivalence.

Definition 13.3. Let S,& C Fun(Ar[n], &) be the full subcategory of those functors A : Ar[n] — &
such that for all 0 < p < ¢ < r < n the sequence

Apq = Apr = Agr (76)

is an admissible short exact sequence in & and A, , = 0. Explicitly a functor A € S, can be depicted
as a diagram of the form

Agp >—— Ap Aps s> Ay, (77)
Aro A13 s Ay,
An—2,n—1
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Definition 13.4. Let (¢, w) be an exact category with weak equivalences. Write w% for the category
with the same objects as ¥ and weak equivalences as morphisms.

Definition 13.5. Let (&, w) be an exact category with weak equivalences. Then
wSe& 1 AP — Cat (78)
n— wS,& (79)
is a simplicial excact category. Define K(&,w) = QwSe.&|.
Remark 13.6. We can think of Se& as a bar construction of the K-theory of &.

Proposition 13.7. [Wal85, 1.9 Appendiz] Let & be an exact category considered as an exact category
with weak equivalences (&,1), where i is the class of isomorphisms in &. Then

Q| ~ |iSu&). (80)

14 The hermitian S,-construction

Let (&,w,*,can) € ExCatW D then we also have (S5,&,w, x,can) € ExCatW D. Here we set (A*), , =
AX for a functor A : Ar[n] — & € S,,&. Unfortunately n — (S,&,w, *,can) does not respect the

n—q,n—p
simplicial identities:

Example 14.1. Consider the functor 0z : [1] — [2] then the diagram

*

($28)7 — 2> (816)°P (81)

P,k
(5:6) —= (516)
doesn’t commute, since
(05(Ao1 — Aoz — A12))" = Ag 1 # (82)
Alo = 05(Al 5= Agy = Ap 1) = 05 (Aot — Aoz —~ Ar2)") (83)
Definition 14.2. Let A, B be ordered sets. Then we write AB for the concatenation, i.e. the ordered

set AU B with a <bfor all a € A and b € B. In particular write [n]P[n]=2n+1]={n' < .. <1l <
0’ <0<1<..<n}. If weinterpret [n]°P[n] as a category then it has the duality p — p’ and p’ — p.

Definition 14.3. Let (&, w, *,can) € ExCatW D. Define the simplicial category with duality
A°? — Cat (84)
n— Bné (85)

where #,6 = S;8 = Sipjorn)& and (Ax), 4 = A, o for functors A @ Ar([n]°P[n]) — &. We refer to this
process as edge-wise subdivision.

Definition 14.4. Let (%, %, can) be a category with duality. Write %}, for category with objects (X, ¢),
with X € & and ¢ : X — X* such that ¢*canx = ¢. A morphism (X, ¢) — (Y,v¢)isan f: X — Y such
that ¢ = f*f.

Proposition 14.5. [SchI0l, Proposition 2] Let (&,*,can) be an exact category with duality, then
|(iRe&)n| ~1Q"&). (86)

Definition 14.6. [Sch10bl Definition 3] Let (&, w, *, can) € ExCatW D. Then we define the Grothendieck-
Witt space of & as

GW (&) = GW(&,w, *,can) = Fibre(|(wRe& )| — |wSe&|) (87)
(A, ) — Aoi (88)

where i : [n] — [n]°P[n] is the map with p — p.
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Theorem 14.7. [Schi10b, Proposition 6] . Let (&,%,can) be an exact category with duality. Then
the functor (&,iso,*,can) — (Ch®, quis, &, *,can) € ExCatW D which sends an object E to the chain
complex E concentrated in degree 0 induces an isomorphisms for all i > 0

GW,;(&,1iso,*,can) =N GW;(Chb&, quis, *, can) (89)

Definition 14.8. Let X be a scheme, L a line bundle over X. Then we write
GW™(X, L) = GW(Ch®VectX, quis, Hom(—, L[n]), ecan) (90)
for the Grothendieck-Witt space and set GW/(X,L) = m; GW™(X,L).

Lemma 14.9.
GW(X,L)= _GW]'?(X, L) (91)

In particular
GW!(X,L) = GW™(X, L) (92)

Proof. By the Koszul sign rule, the multiplication map u : Ox[1] ® Ox[1] — Ox|[2] is —1-symmetric
(and non-degenerate bilinear). Therefore, tensor product with the —1-symmetric inner product space
(Ox[1], p) defines a functor

(Ch®Vect(X), Hom(—, L[n], € - can)) — (Ch*Vect(X), Hom(—, L[n + 2], —€ - can)) (93)
which is an equivalence of categories. O

Definition 14.10. Let ChYVect(X) C Ch®Vect(X) be the full dg subcategory of chain complexes with
(cohomological) support in Z, i.e. the category of those complexes which are acyclic outside of Z. We
define the Grothendieck-Witt groups with support in Z as

GW™(X on Z) = GW(ChY Vect(X), quis, Hom(—, L[n]), can) (94)

Theorem 14.11. [SchI0b, Theorems 10 and 14] Let Z <+ X be a closed subscheme of X andU = X —Z
the open complement. Assume further that X has an ample family of linebundles and that X and Uare
quasi-compact. Then the sequence

ChYVect(X) — Ch®Vect(X) — Ch*Vect(U) (95)
induces a homotopy fibration of the form
GW™(X on Z,L) - GW™(X,L) —» GW™(U, L). (96)
In particular there is a long exact sequence
= GWMX on Z,L) - GW(X,L) - GW*(U,L) - GW" (X on Z,L) — --- (97)

Theorem 14.12. [Schi0l, Theorems 11 and 15] Let Z <+ X be a closed subscheme of X and V <X
an open subscheme such that Z C V. Moreover assume that X has an ample family of linebundles and
that X, X — Z and V are quasi-compact. Then the morphism of categories

CHYVect(X) — CHYVect(V) (98)

induces isomorphisms
GW!(X on Z,L) — GW(V on Z,L) (99)

Corollary 14.13. [Schi0b, Theorem 16] Let X = U UV be an open cover of a scheme X, such that X
has an ample family of line bundles and such that X, U and V are quasi-compact. Then there exists a
long exact sequence

= GWMX, L) — GW(U, L) & GWV,L) — GW({UNV,L) — GW"(X,L) — -~ (100)
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As explainced in [CTHKO9T], Corollary [14.13|implies the following.

Corollary 14.14. Let X be a noetherian scheme, such that X has an ample family of line bundles.
Then there exists a spectral sequence, called the Brown-Gersten-Quillen spectral sequence, of the form

= @ W, (Ox. onz)=GW" (X) (101)

—pP—q
zeX
dimOx z=p

If 1 € Ox, and Ox,, is regular local with residue field k(x), then there are isomorphisms GW;*(Ox,, on ) =
GW!~?(k(z)) where d is the dimension of Ox .. See Proposition below.

15 Higher Grothendieck-Witt groups of DG categories

Throughout this section let £ be a commutative ring.

Definition 15.1. A differentially graded k-module (dg-module) is a chain complex of k-modules (M*, d)
together with a (k-linear) differential d : M* — M**! (d is a differential if dod = 0). The tensor product
of two dg-modules M*® and N°* is defined degree-wise by

(M*@N*)"= @ MP&N* (102)

p+g=n

with differential d(z ®y) = de®@y+ (—1)!*l2® dy where || denotes the degree of a homogeneous element
x. The internal homomorphism complex is defined as

(M, N*" = ] Homx(MP,NY) (103)
—ptg=n

with differential df = do f — (—1)I/If o d. There are three distinct maps of dg-modules,

e Evaluation

e:[M®*,N°]® M®* — N°* (104)
f@z— f(z) (105)

e Covaluation
V:M®*— [(N*,M*® N°® (106)
T (Y- rey) (107)

e Symmetry

c:M*@N® — N*®@ M* (108)
z@y— (—1)"y g g (109)

They are all chain maps, that is, they commute with the differentials. The tuple (DGMody,c,e,V, 1;)
is a closed symmetric monoidal category. Here 1; is the chain complex with k considered as a module
over itself, concentrated in degree 0.

Remark 15.2. The functor [M*®,—] : DGMody, — DGMody, is the left adjoint of M®*®— : DGMody, —
DGMody,. The sign convention for the differential on [M*®, N*®] is uniquely determined if we require the
differentials to commute with the evaluation map.

Definition 15.3. A DG-category & is given by
e A set Oba/ of objects,
e for all A, B € Obge/ a dg k-module A®*(A, B) with a distinct element 14 € &7 (A, A) for all A, and
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e for all A, B,C € Obg/ a composition map A*(A, B) ® A*(B,C) — A*(A,C) of dg k-modules (and
thus commuting with differentials) which is associative and unital.

Example 15.4. The category Ch®Vect(X) has the structure of a DG category, where the objects are
bounded chain complexes of vector bundles over X and for any two objects E®, F'* the homomorphism
chain complex is given by the dg-module [E, F]™ = || Homo, (E1, FP) with differential df = d o
f—(=DHlfod.

Definition 15.5. Let M € DGMody be a differentially graded module. We associate the k-modules
Z'M = Ker(M° — M%), B'M = Ker(M—' — M%) and H°M = Z°M/B°M. Similarly, for a
DG-category o7, we define the categories Z°«/, B« and H'.</, which all have the same objects as
«/ and morphisms (Z°«)(A,B) = Z°(</ (A, B)), (B’«)(A,B) = B°(«/(A,B)) and (H%)(A, B) =
H°(</ (A, B)), respectively.

p—q=n

Example 15.6. For the DG-category o/ = Ch*Vect(X), the category Z°a/ is the category of bounded
chain complexes with chain maps as morphisms. H'.of =: #"Vect(X) is the category of bounded chain
complezes with chain homotopy classes of chain maps as morphisms.

Definition 15.7. Let & be a DG-category. A sequence A LpLcoe ZO9(A) is called exact if and only
if there exist r € A%(B, A) and s € A°(C, B) such that rf = 1,gs = 1, fr + sg = 1. The DG-category &/
is called exact if these sequences make Z°A into an exact category.

Example 15.8. The category Ch*Vect(X) is an exact DG-category, where the exact sequences are
precisely the degree-wise split exact sequences.

Definition 15.9. Let &/ and & be DG-categories. We define the DG-category &/ @ £ via
Ob( @ B) := Ob() x Ob(AB) (110)
Hom?y g z(Ao @ By, A1 ® By) := Hom$, (Ao, A1) ® Homy(By, By) (111)
The composition is given as (fo ® go) ® (f1 ® g1) = (=Dl fo 0 f1 @ g 0 g1

Definition 15.10. A DG-category & is called (strongly) pretriangulated if o is exact and the functor

o — ChP(k) ® of (112)
A 1@ (113)

is an equivalence of categories. Here C'h®(k) is the category of bounded chain complexes of finitely
generated free k-modules.

Lemma 15.11. The DG-category Ch®Vect(X) is pretriangulated.
Proof. Write 7 = Ch*Vect(X). Then the functors

o — Ch(k) o o 2 o (114)
are inverse to each other. O

Proposition 15.12. If &7 is a pretriangulated DG-category, then H'</ is triangulated.

Definition 15.13. Let </ be a pretriangulated DG-category and w C MorZ°%</ a set of morphisms.
Denote by A“ the full subcategory of o of all objects A € o7 such that 0 — A lies in w. Then the
pair («7,w) is called a pretriangulated category with weak equivalences (ptrDGCatW) if A“ is also
pretriangulated and if a map f € MorZ%</ lies in w if and only if it induces an isomorphism in the
Verdier quotient of triangulated categories .7 (&7, w) := H</ /H’a7/*. The category

T (A ,w)

is called the triangulated category associated with (&7, w).
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Example 15.14. The category (Ch*Vect(X), quis) is a pretriangulated DG category with weak equiva-
lences. In particular Ch®Vect(X)1%%* is the category of acyclic chain compleves and 7 (Ch*Vect(X), quis) =
PPVect(X) is the usual (bounded) derived category of Vect(X).

Definition 15.15. Let (7, w) be a pretriangulated DG-category with weak equivalences. Then (Z°.«7,w)
is an exact category with weak equivalences, and we define the K-theory space of (&7, w) by

K(o,w)=K(Z'd,w) = QuwS. Z°| (115)

Theorem 15.16. [TT90, Theorem 1.9.8] Let F : (of,w) — (B,w) be a map of pretriangulated DG-
categories with weak equivalences which induces an equivalence F : T (o ,w) =2 T (B,w) of associated
triangulated categories. Then the induced map

Ki(A,w) = K;(B,w) (116)
is an isomorphism for all i.

Definition 15.17. Let &/ be a pretriangulated DG-category. Then the dual pretriangulated DG-
category «7°P has the same objects as &/ and morphism complexes

oA, B)) := o/ (B, A), (117)
where composition is defined by fog= —1/fll9lgo f.

Definition 15.18. A pretriangulated DG-category with weak equivalences and duality is a tuple (7, w, *, can)
where (&7,w) is a pretriangulated DG-category with weak equivalences, * : &/°? — ¢ is a dg functor and
can : 1 — #* € w is a natural weak equivalence with can’ o cans- = 1. Define the Grothendieck-Witt
space of (&, w, *, can) by

GW (o ,w, *,can) = GW (Z°e/ ,w, , can). (118)

Example 15.19. The tuple (Ch®VectX, quis, Hom(—, L|n]), can) is a pretriangulated DG-category with
weak equivalences and duality.

Remark 15.20. [SchiZ, Proposition 6.3] The above definition gives Grothendieck- Witt groups GW, (<)
fori>0. One can extend this definition to all i € Z by setting for i < 0

GWi(e) =W T ), (119)
where the latter are Balmer-Witt groups. In particular we have
GW!(X,L) = W" (X, L) = Wo(Ch®VectX, quis, Hom(—, L[n — i]), can), (120)
fori <0.
Theorem 15.21. [SchiZ, Theorem 6.5] Let (o, w,*,can) — (B,w,*,can) be a map of pretriangulated
DG-categories with weak equivalences and duality, such that T (o ,w) =N T(A,w) and % c .o, B. Then
GW (o ,w) = GW (B, w) (121)

Remark 15.22. If% ¢ of | B then there exist counterexamples to the above theorem; see [Schi2, Propo-
sition 2.1].

Theorem 15.23. [Schi2, Theorem 6.6] Let (o ,w) — (B,w) — (€,w) be a sequence of pretriangulated
DG-categories with weak equivalences and duality such that 7 (o ,w) — T (B,w) — T (€,w) is an exact
sequence of triangulated categories, i.e. a sequence of functors such that 7 (o ,w) C T (B,w) is the full
subcategory of those objects in T (B,w) which are zero in T (€,w) and such that T (B,w) — T (€,w)
induces an equivalence T (B,w)/ T (& ,w) — T (€,w). Then there exists a homotopy fibration

CGWo — GWRB — GWE (122)
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16 Higher Grothendieck-Witt groups of schemes

Lemma 16.1. Write (&, #%) = (Ch®Vect(X), quis, Hom(—, L[n]), ecan). Then the sequence of func-
tors

(éaae#z) - (Morgve#z) ﬂ) (65276 ZJFI) (123)
E* > 1pe (124)

induces an exact sequence of associated triangulated categories and therefore a homotopy fibration
GWM(X, L) ——— GW"(Moré) ——— GW" (X, L) (125)
g
GW™(E x &°P) = K(X)
Corollary 16.2. [Schi2, Theorem 6.1 and Remark 6.7] The sequence
GCWhx, L) 5 k(x) L .awrti(X, L) (126)

is a homotopy fibration. Therefore we have the identifications U = .GW ™' = _.GW?, .V = Q.GW!
and combined we obtain Karoubi’s fundamental theorem _.V = Q.U.

Remark 16.3. [Schi2, Proposition 8.7] The so called Karoubi-Grothendieck-Witt groups take on the
form
GWi(X,L) i>0

. . (127)
something 1 <0

They are the analog of the non-connective K-theory groups K;(X). If K;(X) =0 for alli <0, e.g if X
is reqular noetherian separated, we have [Sch12, Proposition 9.3/

GW;(X,L) = GW;(X, L) (128)

for alli € Z.

Theorem 16.4. [Schi0b, Theorem 16] Let X = UUV be an open cover of a scheme X, such that % eX
and X has an ample family of line bundles. Then there exists a long exact sequence of the form

= GWHMX) - GWU)ea GWM(V) - GW({UNV) - GW{(X) — --- (129)
Theorem 16.5. [SchiZ, Theorem 9.9] Consider the pull-back square of schemes

Y’LI% X’ (130)

|

Ye—— X

where the map Y — X is a reqular embedding and X' is the blow-up of X along Y. Assume that % e X
and that X has an ample family of line bundles. Then there exists a long exact sequence of the form

= GWHMX) - GWMY ) GWH(X') - GW(Y') - GW (X) — -+ (131)

Theorem 16.6 (Walter, Schlichting Remark 9.11 in [Sch12]). Assume that 3 € X. Then we have

+1

®GW" 7 (X) rodd
T even

r—1

CWMX) @ K;(X)™
CWM(X) ® Ki(X)

(132)

(M

GWi(Py) = {



Theorem 16.7 (Bass’ fundamental theorem for GW, Theorem 9.13 in [Sch12]). Let X be a scheme
such that % € X and such that X has an ample family of line bundles. Then there exists a split exact
sequence

0— GW(X) — GWMX[T]) ® GWM(X[T™']) —» GW(X[T,T~']) = GW/;"(X) -0  (133)
This defines GW] for i < 0 inductively.
Recall the Brown-Gersten-Quillen spectral sequence
E= & GWr,_ (Ox.onz)=GW" (X) (134)
dim??e;,m:p
The next proposition identifies the F1-term with the Grothendieck-Witt groups of the residue fields.

Proposition 16.8. Let X be a reqular local scheme of dimension d such that % € X and let x € X be
the closed point. Then there exists a homotopy equivalence

GW" 4 (k(z)) = GW™(X on ). (135)
This equivalence depends on a choice of a system of parameters of R.

Proof. Let X = Spec R for aregular local ring (R, m, k) choose a regular system of parameters (f1, ..., fg) =
m. Further let R ELR R be the differentially graded algebra concentrated in degrees 0 and —1. Then the
Koczul complex gives a quasi-isomorphism of differentially graded algebras

d

K(f1,....f0) = Q@R R) — & (136)

i=1
Hence we have isomorphisms

o

GW!(k) «— GWMK(f1,..., fn)) — GW(R on m, Hom(—, R[d])) = GW" (R on m) (137)

where the first one holds by invariance under derived equivalences (Theorem ??). The second map is
defined by (E,¢) — (E,mp) where 7 : K(f1,...,fs) — R[d] is the projection onto the component of
degree —d. This map induces isomorphism of Grothendieck-Witt groups, by devissage. O

We finish this section with a proof of the surjectivity of the map H : K3(Z') — GW3(Z') used in the
proof of Lemma

Lemma 16.9. Let 7Z/ = Z[%} Then the group GW3(Z') = 0, in particular, the map H : K3(Z') —
GWI(Z') is surjective.

Proof. By Corollary [16.2] we have an exact sequence
K5(Z) L awl(z') — GW3(Z)).
Hence, the vanishing of GW3(Z') = 0 implies the surjectivity of H : K3(Z') — GW2(Z'). By the same
corollary, we have an exact sequence
GW2(zZ) -5 Ky(2) 25 Wi (Z)) — GWE(Z).

We have GWZ(Z') = Sp(Z')* = 0 because [Sp(Z'), Sp(Z')] = Sp(Z') as Z' is Euclidean. Moreover,

the map GW2(Z') N K5(Z') is surjective because Ko(Z') = Ko(Z) = Z/2 is generated by the symbol
{—1, -1} |MiI71}, §10] which lifts to an element in GWZ(Z') (as the cup product of [-1] € GW}(Z') with
itself). O
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17 Coherent GW-groups

In this section we explain the GW-analog of Example

Definition 17.1. Let X be a noetherian scheme. Denote by QCoh%(X) the category of bounded chain
complexes of quasi-coherend Ox-modules with coherent cohomology; it has the structure of a DG-
category with the same definitions as in Example [I5.4] A dualising complex on X is a bounded chain
complex I*® of injective quasi-coherent O x-moduls such that

can: E — [[E,I],1] (138)

is a quasi-isomorphism for all E € QCoh%(X) (this only needs to be checked for E = Ox). The map
cang is defined as the composition

E- B EeEN Y (B 1, E N E 2 (B 1,1

Define the Grothendieck-Witt space
GW(X,I) = GW(QCohl(X), quis, #1, can) (139)
where #1 = [, I].

Lemma 17.2. Let Z <+ X be a closed subscheme of a noetherian scheme X, and U = X — Z the open
complement. Moreover let I be a dualising complex on X. Then il = Homy, (ixOz, 1) is a dualising
complex on Z.

Theorem 17.3. [Schi2, Theorem 9.19] Let Z <+ X be a closed subscheme of a noetherian scheme X,
and U = X — Z the open complement. Moreover let I be a dualising complex on X. Then there exists a
homotopy fibration

GW(Z,i’T) — GW (X, I) — GW(U,I) (140)

Theorem 17.4. [Schi12, Theorem 9.18] Let X be a noetherian regular separated scheme. Then an
injective resolution Ox — I°® is a dualising complex for X and induces a homotopy equivalence

GW(X) = GW(X,I°) (141)

where the lefthand side is defined in terms of vector bundles, and the right hand side in terms of complezes
with coherent cohomology.
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