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Chapter 1

Normed Linear Spaces

1.1 Convex functions and inequalities

(Refer to Rudin’s Real and Complex...)

Definition 1.1.1 A function φ : (a, b)→ R is said to be convex if

φ((1− t)x+ ty) ≤ (1− t)φ(x) + tφ(y) (1.1)

for all x, y ∈ (a, b) and 0 ≤ t ≤ 1.

(1.1) is equivalent to say

φ(z)− φ(x)

z − x
≤ φ(y)− φ(z)

y − z
(1.2)

whenever a < x < z < y < b. [Put t = z−x
y−x and simplify.]

Theorem 1.1.2

(A) Let φ be differentiable function. Then φ is convex iff φ′ is monotonically increasing.

(B) The function exp : R→ (0,∞) is a convex function.

(C) Any convex function is continuous.

Proof: (A) In (1.2) let a < w < x to obtain

φ(x)− φ(w)

x− w
≤ φ(z)− φ(x)

z − x
≤ φ(y)− φ(z)

y − z
.

Now take limit as w → x and z → y to see that φ′(x) ≤ φ′(y). For the converse, use Lagrange

Mean Value Theorem.

(C) In (1.2), take a < u < w < x < z < y < v < b and obtain

(z − x)
φ(w)− φ(u)

w − u
≤ φ(z)− φ(x) ≤ (z − x)

φ(v)− φ(y)

v − y
.

Put M = max
{∣∣∣φ(w)−φ(u)w−u

∣∣∣ , ∣∣∣φ(v)−φ(y)v−y

∣∣∣} . Given ε > 0 take δ = ε/M. ♠
The following measure theoretic inequality is a far reaching generalization of the (1.1).
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4 CHAPTER 1. NORMED LINEAR SPACES

Theorem 1.1.3 Jensen’s Inequality: Let (X,µ) be a probability measure space (i.e., µ(X) =

1) and let f ∈ L1(µ) taking values inside (a, b). Then for any convex function φ on (a, b), we

have

φ

(∫
X
f dµ

)
≤
∫
X
φ ◦ f dµ.

Proof: By the average value theorem, it follows that z :=
∫
X f dµ ∈ (a, b). Let β = β(z)

denote the supremum of LHS of (1.2) over all x such that a < x < z. Then clearly,

φ(z)− φ(x)

z − x
≤ β ≤ φ(y)− φ(z)

y − z
(1.3)

whenever a < x < z < y < b. These two inequalities can be combined to yield

β(s− z) ≤ φ(s)− φ(z)

for all a < s < b. This means that for all x ∈ X

β(f(x)− z) ≤ φ(f(x)− φ(z)

and hence, upon integration,

0 = β

(∫
X
f dµ− z

∫
X
dµ

)
≤
∫
X
φ ◦ f dµ− φ(z)

∫
X
dµ

which yields the required result, since
∫
X dµ = 1. ♠

Definition 1.1.4 Let p, q be positive real numbers such that p+ q = pq, equivalently,

1

p
+

1

q
= 1.

We then call p, q conjugate pairs of exponents. Often q is denoted by p′.

Clearly, then 1 < p, q <∞. Also, if we let p→ 1 then we get q →∞ and vice versa. So, we

allow these extreme cases as well, which, ofcourse, require us to pay special attention to them.

Theorem 1.1.5 Let 1 < p, q < ∞ be a pair of conjugate exponents. Let (X,µ) be a measure

space and f : X → [0,∞] be a measurable function. Then

(A) Hölder Inequality:∫
X
fg dµ ≤

(∫
X
fp dµ

)1/p(∫
X
gq dµ

)1/q

. (1.4)

(B) Minkowski Inequality:(∫
X

(f + g)p dµ

)1/p

≤
(∫

X
fp dµ

)1/p

+

(∫
X
gp dµ

)1/p

(1.5)

(C) Schwarz Inequality:(∫
X

(f + g)2 dµ

)1/2

≤
(∫

X
f2 dµ

)1/2

+

(∫
X
g2 dµ

)1/2

(1.6)
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Proof: (A) Let a and b be the two quantities on the right side of (1.4). If one of them is zero

it follows that fg = 0 a.e., and hence
∫
X fg dµ = 0 and hence (1.4) is true. So we may and

shall assume that a 6= 0 6= b and put F = f/a,G = g/b. It then follows that∫
X
F p dµ = 1 =

∫
X
Gq dµ. (1.7)

Since exp : R→ (0,∞) is onto, we can choose s, t ∈ R such that es = F (x)p, et = G(x)q. Since

exp is convex, and 1/p+ 1/q = 1, it follows that

F (x)G(x) = exp(s/p+ t/q) ≤ 1

p
F (x)p +

1

q
G(x)q, x ∈ X. (1.8)

Integrating over X, we obtain ∫
X
FG ≤ 1

p
+

1

q
= 1. (1.9)

Now (1.7) yields (1.4).

(B) In order to prove (1.5), we may assume that the quantities on the RHS are finite. By

convexity of the power function tp, it follows that

((f + g)/2)p ≤ 1

2
(fp + gp).

Integrating this, we obtain that
∫
X(f + g)p <∞.

Write (f + g)p = f(f + g)p−1 + g(f + g)p−1 and apply (A) to the two quantities on the

right-side to obtain ∫
X
f(f + g)p−1 ≤

(∫
X
fp
)1/p(∫

X
(f + g)(p−1)q

)1/q

∫
X
g(f + g)p−1 ≤

(∫
X
gp
)1/p(∫

X
(f + g)(p−1)q

)1/q

Adding these two and using the fact (p− 1)q = p gives us∫
X

(f + g)p ≤

[(∫
X
fp
)1/p

+

(∫
X
gp
)1/p

](∫
X

(f + g)p
)1/q

.

Cancelling out the last factor on the right, we obtain (1.5).

(C) Put p = 2 = q in (B). ♠

Remark 1.1.6 Notice that equality holds in (1.8) iff s = t and equality holds in (1.9) iff

equality holds in (1.8), a.e. Therefore, it follows that equality holds in (1.4) iff F p = Gq a.e.

Therefore, we can conclude that equality holds in (1.4) iff there exists constants α, β such that

αf = βg a.e. Similarly, it follows that equality holds in (1.5) iff there are constants α, β such

that αfp = βgq a.e.

Exercise 1.1.7 1. Let S be a collection of convex functions on (a, b) such that g(t) =

Sup {f(t) : f ∈ S} <∞. Show that g is convex.

2. Let fn : (a, b)→ R be a sequence of convex functions. Put g(t) = limsupnfn(t); h(t) =

liminfnfn(t). Are g and h convex?
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3. Let φ : (a, b)→ (c, d) be a convex function and ψ : (c, d)→ R be a non decreasing convex

function. Then ψ ◦ φ is convex.

4. Let f : (a, b)→ R be a function such that for all x, y ∈ (a, b)

f(x+ y)/2) ≤ (f(x) + f(y))/2.

(a) Show that f satisfies (1.1) for all t ∈ [0, 1] ∩D where D denotes the set of all dyadic

rationals.

(b) In fact, show that f satisfies (1.1) for all t ∈ [0, 1] ∩Q.
(c) If f is continuous, show that f is convex.

(d) In fact, if f is bounded on some open interval contained in (a, b) then show that f is

convex and hence continuous.

(e) Illustrate the necessity of continuity of f in (c).

1.2 Normed Linear Spaces

Throughout these discussion, K will denote either R or C.

Definition 1.2.1 Let X be a vector space over K. By a norm on X we mean a function

‖ ‖ : X → [0,∞) having the following properties:

(i) ‖x|| = 0 iff x = 0.

(ii) ‖αx‖ = |α|‖x‖, α ∈ K, x ∈ X.
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, x, y ∈ X.
A vector space X together with a norm is called a normed linear space (NLS).

For now on, X will always denote a normed linear space unless mentioned specifically

otherwise.

Remark 1.2.2 There is the underlying vector space, the underlying metric space and the

underlying topological space. The metric is given by d(x, y) = ‖x − y‖. with respect to this

metric, we write Br(x) denote the open ball of radius r and centre x ∈ X. The topology

gnenerated by the open balles as a basis is the corresponding metric topology. Properties (ii)

and (iii) tell you that with respect to this topology, the addition and the scalar multiplication:

(x, y) 7→ x+ y, (α, x) 7→ αx

are continuous. In particular, the maps

x 7→ x+ y, y ∈ X; x 7→ kx, k ∈ K \ {0},

are homeomorphisms.

Example 1.2.3

(i) `np := Kn
p :
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Let 1 ≤ p ≤ ∞. On Kn, define ‖ ‖p as follows:

‖x‖p =

{
(
∑n

i=1 |xi|p)
1/p , if p <∞;

max{|xi| : 1 ≤ i ≤ n}, otherwise.

The non trivial thing to verify about these examples is the triangle inequality. However,

for p = 1,∞, this is easy and direct.

For 1 < p < ∞, we appeal to Minkowski’s inequality: On the set X of n elements

{1, 2, . . . , n} we take the normalized counting measure: µ({i}) = 1/n. Points x ∈ Kn give

rise to measurable functions |x| : X → [0,∞) Then (1.5) translates into(
n∑
i=1

(|xi + yi|)p
)1/p

≤

(
n∑
i=1

(|xi|+ |yi|)p
)1/p

≤

(
n∑
i=1

|xi|p
)1/p

+

(
n∑
i=1

|yi|p
)1/p

.

This is nothing but the triangle inequality for ‖ ‖p.
Draw the pictures of unit balls in `2p and see why we need to take p ≥ 1.

(ii) `p : We now take X to be an appropriate subset of K∞, the set of all sequences N→ K.
The idea is to take infinite sums in the formulae for ‖x‖p and hence the rhs has to make sense.

Thus, let `p denote the set of all those sequences (x1, x2, . . . , ) such that∑
i

|xi|p <∞

(i.e., absolutely power p-summable sequences. Once again, verification that these are vector

spaces and the function ‖−‖p defined as above satisfies conditions other than triangle inequality

is easy. The TE itself follows from the same in the finite case upon taking the limit. Finally

for the case p = ∞, we replace ‘max’ by ‘Sup’ and the proofs are immediate consequences of

the corresponding results for finite case.

(iii) Lp(X,µ).

In fact the idea of proving Minkowski inequality for measurable functions is precisely that the

space of all power p-integrable functions on a measure space (X,µ) forms a NLS when we

define

‖f‖p =

(∫
X
|f |p dµ

)1/p

.

These spaces are also denoted by Lp(µ) or Lp(X). For the case p = ∞ we take L∞(X) to be

the space of all bounded functions, with

‖f‖∞ = Sup{|f(x) : x ∈ X}.

However, there is a catch!

For 1 ≤ p < ∞, ‖f‖ = 0 does not necessarily imply that f = 0. It only implies f = 0 a.e.

But that is quite satisfactory and is the thing that one expects, when doing measure theory

any way. Therefore, we redefine Lp(X) to be the equivalence classes of p-summable functions:

f ∼ g iff f − g = 0 a.e. And then the positive definiteness of ‖ ‖p is restored.

In view of this, we redefine L∞(X) also as follows: A measurable function f : X → K is

said to be essentially bounded if there exists α > 0 such that µ(x ∈ X : |f(x)| > α) = 0. The
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equivalence classes of all essentially bounded measurable functions is denoted by L∞(X) (the

equivalence is defined as before). For f ∈ L∞(X) we then define

‖f‖∞ = the infimum of α such that µ(x ∈ X : |f(x)| > α) = 0.

It is routine to verify that with this norm L∞(X) becomes a NLS.

(iv) Let X be any set and B(X) be the space of all bounded K-valued functions on X. For

f ∈ B(X) we define ‖f‖∞ = Sup {|f(x)| : x ∈ X}. Then B(X) becomes a NLS with this

sup norm. In case X is a metric space, we can consider various subspaces of B(X) :

C(X) = {f ∈ B(X) : f in continuous};
C0(X) = {f ∈ C(X) : ∀ ε > 0, ∃ a compact set K ⊂ X with |f(x)| < ε, x ∈ X \K}.
Cc(X) = {f ∈ C(X) : ∃ a compact subset K ⊂ X : f(x) = 0 for all x 6∈ K}.
Elements of C0(X) (resp Cc(X)) are called continuous functions vanishing at ∞ (continuous

functions with compact support). The norm on all these is the sup norm.

(v) We are also interested in spaces Cm(U ;K) of m-times differentiable functions on nice

subspaces U ⊂ Kn. For instance, when U is an open or a closed interval, then we can give

Cm(U) the norm defined by

‖f‖ =
m∑
i=0

‖f (i)‖∞

where f (i) denotes the ith derivative. One can also consider smooth functions and holomorphic

functions and so on.

1.3 Subspaces, Quotients and Products

Definition 1.3.1 Let X be a NLS. Then by a subspace of X we mean a vector subspace Y

together with the norm defined for elements of Y as if they are in X. It follows easily that Y

itself becomes a NLS and a metric subspace as well as a topological subspace.

Remark 1.3.2 We shall meet lots of subspaces. There is a slightly weaker notion of a subspace

which is quite useful. At this stage we shall illustrate this with an example rather than making

a definition. Suppose 1 ≤ p < p′ ≤ ∞. Let X be a measure space with finite volume. Then we

would like to think of Lp
′
(X) as a subspace of Lp(X). For this to hold, we should, first of all

identify Lp
′

as a vector-subspace of Lp.

For p′ = ∞, note that any essentially bounded function is p-integrable, because we have

assumed µ(X) < ∞. Thus, L∞(X) ⊂ Lp(X). Moreover, a sequence {fn} converges to 0 in

the sup norm implies that it converges to 0 in p-norm. This implies that the inclusion map is

continuous as well.

However, there can be sequences {fn} in L∞ which converge to 0 in Lp but not in L∞.

For instance, take X = [0, 1] witn the standard Lebesgue measure, fn = 1 for t ≤ 1/n and 0

otherwise. It is in this broader sense that we can now treat L∞(X) as a subspace of Lp(X),

though the norms are different and even the topologies different.

The same comments hold for the case p′ <∞, viz., ‖f‖p ≤ ‖f‖p′ . For this, we have to use

the following formula, which is an easy consequence of Hölder’s inequality, applied to |f |p is
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place of f and constant function 1 in place of g and the conjugate exponents being p′/p and q

such that p/p′ + 1/q = 1 :

‖f‖pp =

∫
X
|f |p dµ ≤

(∫
X

(|f |p)p′/p dµ
)p/p′ (∫

X
(1)qdµ

)1/q

= (‖f‖p′)p.

For another concept of subspace, wait till theorem 1.4.7.

Defining quotient spaces is a little more involved.

Definition 1.3.3 Let X be NLS and Y be a closed subspace. On the quotient vector space

X/Y, we define ‘the induced norm’ as follows: for x ∈ X, let

‖|x+ Y ‖| = inf {‖x+ y‖ : y ∈ Y }.

Verification that ‖| ‖| defines a norm on X/Y is straight forward. We call this quotient space

of X by Y.

The beauty of this construction and the justification for the name comes from the fact

that the underlying topological space of X/Y with this norm is equal to the quotient topology

coming from the underlying topological space of X. In fact:

Theorem 1.3.4 The function η : X → X/Y viz., η(x) = x+ Y is a continuous, open surjec-

tion. A sequence {xn + Y } in X/Y converges in X/Y iff there is a sequence yn ∈ Y such that

xn + yn is convergent in X.

Proof: Suppose zn → z ∈ X. Then

‖|(zn + Y )− (z + Y )‖| = ‖|(zn − z) + Y ‖| ≤ ‖zn − z‖

shows that zn+Y → z+Y. This proves the ‘if’ part of the second claim as well as the continuity

of η. Conversely suppose xn + Y → x+ Y. Then there are integers n1 < n2 < · · · such that for

all n > nk, ‖|(xn + Y )− (x+ Y )‖| < 1/k. This in turn implies that for nk ≤ n ≤ nk+1, there

exist yn ∈ Y such that

‖xn − x+ yn‖ < 1/k.

This then implies that (xn + yn)→ x.

Since η is clearly surjective, it remains to show that η is open. Let U ⊂ X be open and

x + Y ∈ η(U) with x ∈ U. There exists r > 0 such that the open ball Br(x) ⊂ U . We claim

that the open ball Br(x + Y ) ⊂ η(U). So, let ‖|(z + Y ) − (x + Y )‖| < r. This means that

there exist y ∈ Y such that ‖z − x + y‖ < r which implies that z + y ∈ Br(x) ⊂ U. But then

z + Y = η(z + y) ∈ η(U). ♠

Remark 1.3.5 This result will come handy later to you in proving open mapping theorem.

Theorem 1.3.6 Let 1 ≤ p ≤ ∞. Let (Xi, ‖ ‖(i)), i = 1, 2, . . . , k be NLSs. Then on the product

vector space X = X1 ×X2 × · · · ×Xk, define:

‖x‖p =


(∑k

i=1 ‖xi‖
p
(i)

)1/p
; p <∞;

max {‖xi‖(i) : 1 ≤ i ≤ k}, p =∞.
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Then (X, ‖ ‖p) is a NLS. Moreover, a sequence {x(n)} in X converges iff each of the coordinate

sequences {x(n)i converges in Xi. Moreover, the projection maps Pi : X → Xi can be identified

with the quotient maps by the subspaces Yi = {x : xi = 0}.

Proof: Exercise.

Exercise 1.3.7

1. Let K ⊂ X be compact and F ⊂ X be a closed subset disjoint from K. Then there exists

r > 0 such that (K +Br(0)) ∩ F = ∅.

2. Let ‖ ‖(i), i = 1, . . . , k be norms of X and r1, . . . , rk be positive reals. Then for any

1 ≤ p ≤ ∞ if we define

‖x‖ =


(∑k

i=1 ri‖x‖
p
(i)

)1/p
; p <∞;

Sup {ri‖x‖(i) : i = 1, . . . , k}, p =∞

Then ‖ ‖ is a norm on X. Moreover, a sequence xn ∈ X converges to x wrt ‖ ‖ iff it is

so wrt each ‖ ‖(i).

3. Let 0 < p < 1 and n ≥ 2. For x ∈ Rn, define ‖x‖ := (
∑n

i=1 |xi|p)1/p. Then show that ‖ ‖
is not a norm.

1.4 Linear Functions: continuity

Theorem 1.4.1 Let f : X → Y be a linear function. Then the following are equivalent:

(i) f is continuous on X.

(ii) f is continuous at 0 ∈ X.
(iii) f is bounded on some closed ball of positive radius around 0.

(iv) f is uniformly continuous on X.

(v) There exist α > 0 such that ‖f(x)‖ ≤ α‖x‖, for all x ∈ X. (Hint: Take α = ε/δ.)

Corollary 1.4.2 A linear functional f : X → K is continuous iff the hyperspace Z(f) = {x ∈
X : f(x) = 0} is a closed set in X.

Proof: If f ≡ 0 there is nothing to prove. Otherwise choose x ∈ X such that f(x) = 1. If

f is not continuous at 0 then there is a sequence xn ∈ X such that xn → 0 and |f(xn)| > 1.

Consider the sequence zn = x−xn/f(xn) which is inside Z(f) but its limit is x which is outside

Z(f). That contradicts the closedness of Z(f).

The converse is easy, since {0} is closed in K. ♠

Theorem 1.4.3 A subspace Y ⊂ X is equal to X iff its topological interior Y ◦ in X is non

empty. In particular, a hypersurface Y is closed iff it is nowhere dense.



1.4. LINEAR FUNCTIONS: CONTINUITY 11

Proof: If Y = X then Y ◦ = X and hence non empty. On the other hand, if Y ◦ 6= ∅, then

there exists an open ball Br(a) ⊂ Y. Given any x ∈ X check that a+ r
2‖x||x ∈ Br(a) ⊂ Y. That

implies x ∈ Y.
The second part follows from the fact that a subset is nowhere dense iff its closure has

empty interior. ♠

Definition 1.4.4 Following this important theorem, we shall introduce the notation B(X,Y )

for the set of all continuous linear maps from X to Y . It follows easily that B(X,Y ) is a vector

subspace of all functions from X → Y.

For f ∈ B(X,Y ), it is not difficult to see that

inf {α : ‖f(x)‖ ≤ α‖x‖, for all x ∈ X} = Sup {‖f(x)‖ : ‖x‖ = 1}.

We denote this common value by ‖f‖. It turns out that this makes B(X,Y ) into a NLS

(exercise). You shall study this space in more detail later.

An important special case is when Y = K and then we use the notation

X ′ := B(X,K).

Pay attention to the notation which is not to be confused with X∗ which denotes the space of

all linear functionals on X. These two spaces co-incide with X is finite dimensional.

Definition 1.4.5 A linear function f : X → Y of normed linear spaces is said to be norm

preserving , if ‖f(x)‖ = ‖x‖ for all x ∈ X. If further, it is onto also then we call it an isometry.

Remark 1.4.6 Note that a norm preserving linear function is automatically continuous and

injective. If it is an isometry, then its inverse exists, and is automatically linear and norm

preserving. Therefore, it is a homeomorphism.

Theorem 1.4.7 Let f : X → Y be a linear function. Then f is a homeomorphism onto the

subspace f(X) ⊂ Y, iff there exist positive real numbers α, β such that

α‖x‖ ≤ ‖f(x)‖ ≤ β‖x‖, x ∈ X. (1.10)

Proof: The first inequality implies that f is injective. Therefore f is a bijection and its inverse

is a linear map. The second inequality now tells us that f is continuous and first one implies

that f−1 is continuous.

Conversely, Suppose f : X → Y is a homeomorphism. Then clearly f is onto. We take

β = ‖f‖ and α = ‖f−1‖ and verify the inequality. ♠

Remark 1.4.8 This result leads us to another concept of a subspace that we were waiting for.

Under the situation of the above theorem, X can be effectively identified with the subspace

f(X) of Y. Even though the norms on X and that on f(X) may differ, the two topologies are

the same: a sequence {xn} in X converges iff the sequence {f(xn)} converges in f(X).
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Example 1.4.9 Two NLSs are said to be equivalent if there is a linear homeomorphism be-

tween them. All `np for 1 ≤ p ≤ ∞ are equivalent. This is best illustrated by a picture of the

unit balls in R2 with respect to various norms. However, on infinite dimensional spaces, these

norms are not equivalent.

Theorem 1.4.10 Let f : `n2 → X be an injective linear map into a NLS X. Then f : `n2 →
f(`n2 ) = Y is a linear homeomorphism onto a closed subspace Y.

Proof: The closedness of Y follows from the completeness of Y, once we establish that f is

homeomorphism.

Now put yi = f(ei), i = 1, . . . , n. Then {yi} form a basis for Y and hence every element

y ∈ Y has a unique linear combination

t1y1 + t2y2 + · · ·+ tnyn.

Also, we have f(t1, . . . , tn) = t1y1 + . . . + tnyn. By continuity of the vector space operations,

it follows that f is continuous. We need to show the continuity of f−1. This will follow if we

show that each ti : Y → K is continuous. This in turn follows if we show Z(ti) is a closed

subspace of Y.

This is done by induction on n.

For n = 1, we can take α = β = ‖f(e1)‖ and verify the inequality (1.10). Suppose the

result holds for n− 1. This in particular implies that every subspace of X of dimension n− 1

is closed and hence in particular, all Z(ti) are closed. ♠
We now give another useful result which is due to Riesz, especially while dealing with NLS

which are not necessarily inner product spaces.

Theorem 1.4.11 Riesz: Let X be a NLS and Y be a proper closed subspace. Let 0 ≤ r < 1.

Then there exists x = xr ∈ X such that ‖x‖ = 1 and r ≤ d(x, Y ) ≤ 1.

Proof: Start with any x′ ∈ X \Y and put d = d(x′, Y ) > 0. If r = 0 there is nothing to prove.

Otherwise, since d/r > d, it follows that there exists y0 ∈ Y such that ‖x′ − y0‖ < d/r. Put

x = (x′ − y0)/‖x′ − y0‖ so that ‖x| = 1. Now for any y ∈ Y,
‖y − x‖ = ‖(‖x′−y0‖y+y0)−x′‖

‖x′−y0‖ ≥ d
‖x′−y0‖ ≥ r. ♠

Corollary 1.4.12 A NLS is finite dimensional iff any and hence every closed ball of positive

radius in X is compact.

Proof: The ‘only if’ part is the so called Heine- Borel theorem in Kn. To see the ‘if’ part,

assume that Br(x) is compact for some x ∈ X and hence B1(0) is compact. Cover it with a

finitely many open balls B1/2(xi), i = 1, 2, . . . , k say. We claim that Span {x1, . . . , xk} is the

whole of X. If Y is this span, being finite dimensional, it is a closed subspace of X. If Y 6= X,

then by the above theorem, there exists x ∈ X \ Y such that ‖x‖ = 1 and d(x, Y ) ≥ 1/2. This

means that x 6∈ B1/2(xi) for any i but x ∈ B1(0), which is absurd. ♠
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Remark 1.4.13 You may wonder the role of putting the restriction r < 1 in the above

theorem. Of course, in the proof, we have immediately used this condition. That does not

automatically mean that this condition is necessary. The problem (1.4.14.7) illustrates the

necessity of this condition, which may initially go against your intuition.

Exercise 1.4.14

1. Let X be any infinite dimensional NLS. Show that there exists

(a) a linear one-to-one function F : X → X which is not continuous.

(b) a linear functional f : X → K which is not continuous.

(c) a subspace Y ⊂ X which is not closed.

2. Let X be finite dimensional. Show that every linear functional f : X → K is continuous.

3. Let F : X → Y be a surjective linear map where Y is finite dimensional. Then F is an

open mapping. Also F is continuous iff Z(F ) is closed.

4. Let Y1, Y2 be subspaces of X. If Y1 is closed and Y2 is finite dimensional, then Y1 + Y2 is

closed.

5. Given a < b ∈ R show that there is a family of smooth functions fa,b : R→ [0, 1] satisfing

the following

(i) f ′(t) ≥ 0, t ∈ R.
(ii) f(t) = 0, t ≤ a.
(iii) f(t) = 1, t ≥ b.

6. Show that given 0 ≤ r < 1 there exists a continuous (smooth) function h : R → [0, 1]

such that h(0) = 0
∫ 1
0 h(t) dt = r and Sup {|h(t)‖t ∈ R} < 1.

7. Consider X = {f ∈ C[0, 1] : f(0) = 0} and Y = {f ∈ X :
∫ 1
0 f(t)dt = 0}, where

C[0, 1] is taken with the sup norm. Then Y is a closed subspace of X. However, there

are no elements g ∈ X such that ‖g‖ = 1 and d(g, Y ) = 1. (Note: In a Hilbert space such

elements would exist! (Compare this with theorem 1.4.11.)

Hint: Use the previous two exercises.

8. (Hilbert Cube) Let 1 ≤ p <∞. Let

E = {x ∈ `p : |x(j)|p ≤ 1/j2, for all j ≥ 1}.

Then E is a compact convex subset of `p and E is not contained in any finite dimen-

sional subspace of `p. (For p = 2, E is called the Hilbert cube. However, note that the

corresponding set in `∞ viz.,

{x ∈ `∞ : |x(j)| ≤ 1, j ≥ 1}

is not compact.
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Chapter 2

Hahn-Banach Theorems

2.1 A Separation Theorem

Theorem 2.1.1 Let X be a vector space over C and XR denote the underlying real vector

space.

(A) If u is the real part of a complex linear functional on X then u : XR → R is real linear and

f(x) = u(x)− ıu(ıx), for all x ∈ X. (2.1)

(B) If u : XR → R is linear then (2.1) defines f as a complex linear functional on X.

(C) If X is a NLS and f, u are related as in (2.1), then ‖f‖ = ‖u‖.

Proof: (A) (Note that the real part u of a complex linear functional is a real linear functional.)

Since for any complex number z, we have

z = <(z)− ı<(ız)

(where <(z) denotes the real part of z), we have, in (2.1)

LHS = <(f(x))− ı<(ıf(x)) = u(x)− ı<(f(ıx) = RHS.

(B) It is clear that for a real linear functional u, f defined by (2.1) is also real linear. Moreover,

f(ıx) = u(ıx)− ıu(−x) = ı(u(x)− ıu(ıx)) = ıf(x)

which implies that f is complex linear.

(C) Clearly

‖f‖ = Sup {|f(x)| : ‖x‖ ≤ 1} ≥ Sup {|<(f(x))| : ‖x‖ ≤ 1} = ‖u‖.

On the other hand, for any x we can choose λ ∈ S1 such that f(λx) = λf(x) = |f(x)|. It then

follows that u(λx) = f(λx). Also if ‖x‖ ≤ 1 then ‖λx‖ ≤ 1. It follows that ‖f‖ ≤ ‖u‖ as well.

♠

Lemma 2.1.2 Let X be NLS over R and E 6= ∅ be a convex subset of X. Let Y be a subspace

of X such that Y ∩ E = ∅. If Y is not a hyperspace then there exists x ∈ X \ Y such that

Span {Y, x} ∩ E = ∅.

15
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Proof: Consider

S = Y + ∪{rE : r > 0}.

Since E is open it follows that S is open. We claim S ∩ −S = ∅. For, if x ∈ S ∩ −S, then

x = y1 + r1e1 = −(y2 + r2e2),

for some yi ∈ Y, ei ∈ E and ri > 0. This means that

−y1 + y2
r1 + r2

=
r1

r1 + r2
e1 +

r2
r1 + r2

e2

which, in turn implies that Y ∩ E 6= ∅ a contradiction.

Also, observe that Y ∩S = ∅ = Y ∩−S. Suppose we show there exists b ∈ X \ (Y ∪S∪−S).

Then this b will satisfy our requirement: For Span {Y, b} ∩ E 6= ∅ implies there are elements

y ∈ Y, e ∈ E and r ∈ R such that y + rb = e. Clearly, r 6= 0. Therefore b = e/r − y/r. If r > 0

this implies b ∈ S and if r < 0 this implies b ∈ −S a contradiction in either case.

How do you prove X 6= Y ∩ S ∪ −S. This will differ from author to author. We use the

following topological lemma.

Lemma 2.1.3 Let Y be a subspace of X of codimension at least 2. Then X \ Y is path

connected.

The proof of this lemma is left to the reader as an exercise. Granting that, we see that S,−S
are disjoint open subsets of X \ Y which is path connected. Therefore, X \ (Y ∪ S ∪ −S) =

(X \ Y ) \ (S ∪ −S) 6= ∅. ♠

Theorem 2.1.4 (Banach Separation Theorem) Let X be NLS over R and E ⊂ X be a

non empty open convex subset. Given any subspace Y ⊂ X such that Y ∩ E = ∅, there exists

a hyperspace H of X such that H ∩ E = ∅ and Y ⊂ H. In other words, there is f ∈ X ′ such

that f |Y = 0 and f(x) 6= 0 for every x ∈ E.

Proof: Apply Zorn’s lemma to the previous lemma. ♠

Theorem 2.1.5 Hahn-Banach Separation theorem: Let X be a NLS and E1, E2 be two

non empty, disjoint, convex subsets of X and let E1 be open. Then there exist f ∈ X ′ and

α ∈ R such that

<f(x1) < α ≤ <f(x2), for all x1 ∈ E1, x2 ∈ E2. (2.2)

Proof: In view of theorem 2.1.1, it is enough to consider X as a real vector space and find

u ∈ X ′R satisfying the above inequality in place of <f. We can then take f(x) = u(x)− ıu(ıx)

and go home.

Since E1∩E2 = ∅, 0 6∈ E1−E2. Clearly E1−E2 is non empty, open and convex. Therefore

by the previous theorem, there exists f ∈ X ′ such that 0 6∈ f(E1 − E2). This implies that

f(E1)∩ f(E2) = ∅. Both are convex sets and hence are disjoint intervals. By multiplying f by

−1, if necessary, we may assume that f(E1) lies to the left of f(E2). Finally, since f(E1) is

open, we can take α to be the right-end point of the interval f(E1). Inequality (2.2) follows.

♠
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Corollary 2.1.6 Let X be a NLS and E be a convex subset with a non empty interior. Given

b 6∈ E◦, there exists f ∈ X ′ such that for all x ∈ E we have

<f(x) ≤ <f(b).

Proof: Apply the theorem with E1 = E◦ and E2 = {b} to obtain f ∈ X ′ such that <f(x) <

<f(b) for all x ∈ E◦. The result follows by continuity of f. ♠

Remark 2.1.7 The hyperplane defined by {x ∈ X : <f(x) = <f(b)} is called a supporting

hyperplane for E. When we take b ∈ Ē \ E◦, this is called a proper supporting hyperplane.

2.2 Extension Theorems

Theorem 2.2.1 Let X be a NLS and Y be a subspace. For every g ∈ Y ′ there exists f ∈ X ′

such that f |Y = g and ‖f‖ = ‖g‖.

Proof: In view of theorem 2.1.1, it is enough to prove the statement for the case when K = R
and that is what we are going to do.

Again, if g ≡ 0 then we can take f ≡ 0 and go home. So assume ‖g‖ 6= 0 and by dividing

out by ‖g‖ we may assume ‖g‖ = 1. Let a ∈ Y be such that g(a) = 1. Put E = B(a, 1) the

open ball of radius 1 and centre a.

If y ∈ E ∩ Y then

‖g(y)− 1‖ = ‖g(y)− g(a)‖ = ‖g(y − a)‖ ≤ ‖g‖‖y − a‖ < 1

and hence g(y) 6= 0. This implies that E ∩Z(g) = ∅. By the Banach separation theorem 2.1.4,

there exits f ∈ X ′ such that f ≡ 0 on Z(g) and is never zero on E. By rescaling we may

assume that f(a) = 1. But then f(a) = g(a) = 1 and Z(g) ⊂ Z(f |Y ). Therefore f |Y = g.

Clearly ‖f‖ ≥ ‖g‖ = 1. On the other hand, for any x 6∈ Z(f) we have a − x/f(x) ∈ Z(f).

Therefore a−x/f(x) 6∈ E which is the same as saying ‖a−x/f(x)−a‖ ≥ 1, i.e., ‖x‖ ≥ ‖f(x)‖.
Therefore ‖f‖ ≤ 1 also. ♠

Corollary 2.2.2 Let X be a NLS and 0 6= a ∈ X. Then there exists f ∈ X ′ such that

f(a) = ‖a‖ and ‖f‖ = 1.

Proof: Apply the above theorem with Y = Span {a} and g : Y → K given by g(ka) = k‖a‖.♠

Corollary 2.2.3 Let X be a NLS.

(A) Given a subspace Y ⊂ X and a ∈ X, a ∈ Ȳ iff for every f ∈ X ′ such that f(Y ) = {0}, we

have, f(a) = 0.

(B) Given linearly independent elements x1, . . . , xn ∈ X, there exist x′1, . . . , x
′
n ∈ X ′ such that

x′i(xj) = δij .

Proof: Exercise.
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Example 2.2.4 As an illustration of the application of the above corollary in approximation

theory let us prove the following: Let {r1, . . . , rn, . . .} be a countable dense subset of [0, 1] and

let

xj(t) =

{
1, if 0 ≤ t ≤ rj
0, otherwise.

Then every x ∈ L2[0, 1] can be approximated in the mean square arbitrarily closely by a linear

combination of {x1, x2, . . .}.
Note that proving this statement is the same as showing that the closure of Span{x1, x2 . . .} =

Y is the whole of L2. So, it is enough to show that for every linear functional f on L2, which

vanishes on all xj , is identically zero. Now we know that there exist y ∈ L2[0, 1] = X such that

f(x) =

∫ 1

0
xy dm, x ∈ X

For every s ∈ [0, 1], put z(s) =
∫ s
0 y dm. Then z ∈ C[0, 1] and z(rj) = f(xj) = 0 for all j. This

implies z ≡ 0. This in turn implies that y = 0 as an element of L2[0, 1] which means f ≡ 0.

We shall now consider the uniqueness aspect of the extension. Even in the case of finite

dimensional situation, there is no guarantee of uniqueness. Our first step toward this leads to

a new concept:

Definition 2.2.5 A NLS is said to be strictly convex if ‖x+ y‖ < 2 wherever, ‖x‖ = ‖y‖ = 1

and x 6= y.

Remark 2.2.6 It is an easy consequence of parallelogram law that every inner product space

is strictly convex. (Later we shall see that an inner product satisfies even stronger convexity

property, viz., uniform convexity.) Thus, `np is strictly convex for 1 < p < ∞. On the other

hand, for p = 1,∞, this is not the case as illustrated by the picture of the unit ball in these

spaces.

Theorem 2.2.7 Taylor-Foguel Let X be a NLS. Then every f ∈ Y ′ for every subspace

Y ⊂ X has a unique norm preserving extension to X iff X ′ is strictly convex.

Proof: Assume that X ′ is SC. Let Y be a subspace of X and f ∈ Y ′. Suppose f1, f2 ∈ X ′ are

such that fj |Y = f and ‖fj‖ = ‖f‖. On Y, we have (f1 + f2)/2 = f and therefore

‖f‖ =
1

2
(‖f1‖+ ‖f2‖) ≥ ‖(f1 + f2)/2‖ ≥ ‖f‖.

By strict convexity of X ′, this implies f1 = f2.

Conversely, X ′ is not SC, i.e., there are f1, f2 ∈ X ′ such that f1 6= f2 and such that

1 = ‖f1‖ = ‖f2‖ = ‖(f1 + f2)/2‖. Put Y = {x ∈ X : f1(x) = f2(x)}. Clearly, Y is a closed

subspace. We shall show that ‖fj |Y ‖ = 1 for j = 1, 2. It then follows that X does not have

unique extension property.

Clearly ‖fj |Y ‖ ≤ ‖fj‖ ≤ 1, it is enough to show that there is a sequence yn ∈ Y such that

‖yn‖ = 1 and f1(yn)→ 1.
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There exists a ∈ X \ Y such that f1(a) = 1 6= f2(a). Since ‖f1 + f2‖ = 2, we can find

a sequence xn of unit norms in X such that (f1 + f2)(xn) → 2. Passing onto subsequences

in two stages, we may assume that {f1(xn)} and {f2(xn)} converge to α, β respectively. It

follows that |α| ≤ 1 and |β| ≤ 1. But |α + β| = 2. Therefore, it is necessary that α = β and

|α| = 1. Now by rescaling, we may assume that the sequence xn of unit norms in X is such

that f1(xn)→ 1 and f2(xn)→ 1.

Put kn = f1(xn)−f2(xn)
1−f2(a) . Then kn → 0 and hence there exists n0 such that ‖xn − kna‖ 6= 0

for n ≥ n0. For these n, put zn = xn − kna. Then

f1(zn) = f1(xn)− kn =
f2(xn)− f2(a)f1(xn)

1− f2(a)
= f2(xn)− knf2(a) = f2(zn).

Therefore zn ∈ Y. Taking yn = zn/‖zn‖, we get a sequence as required. ♠

2.3 Completeness of a Norm

Recall that a NLS X is a Banach space if the underlying metric space is complete. We shall

now give a criterion for completeness which is quite useful.

Definition 2.3.1 Let {xn} be a sequence in a NLS X. Put sn =
∑n

1 xi. Then {sn} is called

the sequence of partial sums of {xm}. We say {xm} is summable or equivalently
∑∞

1 xn is

convergent if the sequence {sn} is convergent in X to say s and then we write s =
∑∞

i=1 xi.

We say {xn} is absolutely summable (summable in norm) if
∑∞

i=1 ‖xi‖ < ∞. It is not at all

clear why absolute summability should imply summability as is the case with sequences in K.

Theorem 2.3.2 A NLS is a Banach space iff every absolutely summable sequence is summable.

Proof: Let X be a Banach space and
∑∞

0 ‖xi‖ <∞. Then ‖sm+k−sm‖ ≤
∑m+k

i=m+1 ‖xi‖ <∞.
This implies {sm} is a Cauchy sequence and hence is convergent. Therefore {xi} is summable.

Conversely, assume thatX is NLS in which every absolutely summable sequence is summable.

Let {sm} be a Cauchy sequence in X. In order to show that {sn} is convergent, it suf-

fices to display a subsequence which is convergent. Let n1 be such that for all n ≥ n1,

we have ‖sn − sn1‖ ≤ 1. Inductively, having chosen nk, let nk+1 > nk be such that for all

n ≥ nk+1, ‖sn − snk+1
‖ ≤ 1/2k. Put xk = snk+1

− snk
. Then clearly

∑∞
1 ‖xk‖ ≤

∑
k

1
2k
< ∞.

By the hypothesis, this implies that the sequence {xk} is summable, i.e.,
∑

k xk is convergent.

This merely implies that the sequence {snk
} is convergent as required. ♠

Theorem 2.3.3 Let X be a NLS and Y be a closed subspace. Then Y with the induced norm

and X/Y with the quotient norm are Banach spaces iff X is.

Proof: Let X be a Banach space. Then being a closed subspace, Y is also complete. To

Show X/Y is a Banach space, let {xn +Y } be an absolutely summable sequence in X/Y with

respect to the quotient norm ‖| ‖|. This means that
∑

n ‖|xn + Y ‖| <∞. Now, for each n we

can find yn ∈ Y such that ‖xn + yn‖ ≤ ‖|xn +Y ‖|+ 1/2n. Therefore, the sequence {xn + yn} is



20 CHAPTER 2. HAHN-BANACH THEOREMS

absolutely summable in X. Since X is assumed to be Banach, let x =
∑

n(xn + yn). We claim

x+ Y is the sum
∑

n(xn + Y ). For

‖|(
m∑
1

(xn + Y ))− (x+ Y )‖| = ‖|(
m∑
1

(xn + yn))− (x+ Y )‖| ≤ ‖(
m∑
1

(xn + yn)− x‖ → 0.

Conversely, assume that Y and X/Y are Banach and let {xn} be a Cauchy sequence in X. It

follows easily that {xn + Y } is Cauchy in X/Y and hence is convergent to say x+ Y. Choose

a sequence (!) yn ∈ Y such that xn + yn → x. But then

‖yn − ym‖ = ‖(yn + xn − x)− (xn − xm)− (xm + ym − x)‖

it follows that {yn} is Cauchy in Y and hence converges to say y ∈ Y. This means xn → x−y ∈
X. ♠

Theorem 2.3.4 A finite product X1 × · · · ×Xk of NLSs is a Banach space iff each of Xi is.

Proof: Exercise.

Theorem 2.3.5 Let X,Y be NLSs. Then B(X,Y ) is a Banach space iff Y is.

Proof: Let Y be a Banach space. Given a Cauchy sequence {fn} in B(X,Y ). Then for each

x ∈ X and for all n,m we have

‖fn(x)− fm(x)‖ ≤ ‖fn − fm‖‖x||

for all n,m. Given ε > 0 choose n0 such that for n,m ≥ n0, ‖fn − fm‖ ≤ ε. Then

‖fn(x)− fm(x)‖ ≤ ε‖x‖, n,m ≥ n0. (2.3)

In particular, we have shown that {fn(x)} is a Cauchy sequence in Y and hence we may define

f(x) = limn fn(x). It is easily checked that this f : X → Y is linear. Fixing n = n0 and letting

m→∞ in (2.3), we get

‖(fn0 − f)(x)‖ ≤ ε‖x‖. (2.4)

This implies fn0 − f ∈ B(X,Y ) and therefore, f ∈ B(X,Y ). Moreover, (2.4) implies that

fn → f in B(X,Y ).

Conversely, assume that B(X,Y ) is a Banach space. Given a Cauchy sequence {yn} in Y,

we want to show that it is convergent. Choose any non zero f ∈ X ′. (See Corollary 2.2.2.)

Define Fn(x) = f(x)yn, x ∈ X. Then Fn ∈ B(X,Y ) and

‖Fn(x)− Fm(x)‖ = ‖yn − ym‖‖f(x)‖ ≤ ‖yn − ym‖‖f |‖x‖

which shows {Fn} is Cauchy. Therefore, Fn → F ∈ B(X,Y ). In particular, yn = Fn(a) →
F (a) ∈ Y. ♠

Exercise 2.3.6
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1. Let Y be a subspace of a NLS X such that the codimension of Y in X is at least 2. Then

show that X \ Y is path connected.

2. Let Y be a subspace of X and a ∈ X \ Ȳ . Then there exists f ∈ X ′ such that ‖f‖ =

1, f |Y ≡ 0 and f(a) = d(a, Y ).

3. Let T be a set with at least two points, and t0 ∈ T. Let X = B(T,C) be the space of all

complex valued bounded functions on T. Take H = {x ∈ X : x(t0) ∈ R}. Then H is a

hypersurface of XR and H ∩ ıH = {x ∈ X : x(t0) = 0}.

4. Let K,F be two disjoint convex subsets of X with K compact and F closed. Then there

exists f ∈ X ′ and real numbers α, β such that

<f(x) < α < β < <f(y), x ∈ K, y ∈ F.

5. A NLS X is said to be smooth if for every 0 6= x ∈ X there is f ∈ X ′ such that f(x) = ‖x‖
and ‖f‖ = 1. Show that if X ′ is strictly convex (resp. smooth) then X is smooth (resp.

strictly convex).

6. Let D denote the open unit disc in C. Let X = {f ∈ C(D̄) : f is analytic in D}. Define

‖f‖ = Sup {|f(z)| : |z| = 1}. Then X is a Banach space.

7. Given f ∈ `p for some p <∞, show that ‖f‖t → ‖f‖∞ as t→∞.

8. For any x ∈ `p, y ∈ `q, z ∈ `r, where 1
p + 1

q + 1
r = 1, show that∑

i

|xiyizi| ≤ ‖x‖p‖y‖q‖z‖r.

9. Let X be a Banach space and F ∈ B(X,X) be such that ‖F‖ < 1. Then show that

IX ± F are invertible.

10. Let X and Y be Banach spaces, F ∈ B(X,Y ), G ∈ (Y,X) are such that G ◦ F = IX .

Given any T ∈ B(X,Y ) such that ‖T −F‖‖G‖ < 1, show that there is S ∈ B(Y,X) such

that ST = IX .

11. Let X be the infinite dimensional vector space of all polynomials p(T ) = a0 +a1T + . . .+

anT
n. Define

‖p‖ = Sup {|p(t)|; 0 ≤ t ≤ 1}; ‖p‖1 =

n∑
0

|ai|.

Then ‖ ‖, ‖ ‖1 are norms on X such that ‖p‖ ≤ ‖p‖1. However, there are no constants

α > 0 such that ‖p‖1 ≤ α‖p‖ for all p ∈ X.

12. Let X be a real NLS and f : X → R be a continuous function such that f(x + y) =

f(x) + f(y) for all x, y ∈ X. Show that f is linear.
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Chapter 3

Hilbert Spaces

IPSs and Hilbert Spaces: definition and examples, polarization identify and parallelogram

law, Schwarz inequality, strict and uniform convexity,), more examples, orthonormality and

Pythagoras theorem, Gram-Schmidt, Examples, Bessel inequality and Riesz-Fisher theorem,

Fourier expansion and Parseval identity, some examples, separability.

3.1 Definition and Examples

Definition 3.1.1 An inner product on a vector space X over K is a map 〈−, −〉 : X×X → K
satisfying the following axioms:

(i) 〈x, x〉 ≥ 0, x ∈ X and equality holds iff x = 0.

(ii) 〈x1 + x2, y〉 = 〈x1, y〉+ 〈x2, y〉 and 〈kx, y〉 = k〈x, y〉.
(iii) 〈y, x〉 = 〈x, y〉.

Remark 3.1.2 (i) is referred to as positive definiteness; (ii) is called linearity in the first slot;

(iii) Note that the ‘bar’ on the right hand side of rule (iii) denotes the complex conjugate when

K = C and the identity when K = R. Thus, it is called conjugate symmetry, or symmetry

accordingly. Note that combing (ii) and (iii), you get conjugate linearity (resp. linearity) in

the second slot. In some books (especially in some physics books, the slots are interchanged

but this does not influence the the rest of the theory in any way.)

A vector space X together with an inner product is called an inner product space (IPS) or a

pre-Hilbert space. As you may have anticipated, an inner product induces a norm on X as

follows:

‖x‖2 = 〈x, x〉.

Thus, an IPS is a NLS and therefore, a metric space as well. If this metric is complete then

the IPS is called a Hilbert space. The norm given by an inner product satisfies the so called

Parallelogram Law:

‖x+ y‖2 + ‖x− y‖2 = 2[‖x‖2 + ‖y‖2

which can be verified easily.

23
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A natural question that arises here is: can one recover the inner product from a norm?

The key step toward an answer is the so called

Polarization Identity:

4〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2 (3.1)

or

4〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2 + ı‖x+ ıy‖2 − ı‖x− ıy‖2 (3.2)

respectively if X is real or complex NLS. Here the norm on the right hand side is the one

corresponding to the inner product on the left. Therefore, beginning with a norm, which

should satisfy the parallelogram law above, if we want to get an inner product such that the

corresponding norm is the given one, we must define the inner product as above. It turns out

that this definition indeed gives us an inner product. The verification is left to the reader as

an exercise and should skip reading the proof and go ahead. After giving a good trial, she may

come back to this.

[Let us first consider the real case. Checking symmetry is easy. Putting x =

y, we also see easily that 〈x, x〉 = ‖x|2. In order to prove the linearity in the

first slot, fix y ∈ X and consider the function f(x) = 〈x, y〉 as given by (3.1).

Then f is continuous and from exercise 2.3.6.12, it is enough to show that f is

an additive homomorphism. That is f(x+z) = f(x)+f(z). For this, we apply parallelogram

law to ‖x + z + y‖2 in two different ways, viz., writing x + z + y = (x + y) + z =

x+ (y + z), we obtain

‖x+ z + y‖2 = 2(‖x+ y‖2 + ‖z‖2)− ‖x+ y − z‖2 = 2(‖x‖2 + ‖z + y‖2)− ‖x− y − z‖2.

Likewise we also get

‖x+ z − y‖2 = 2(‖x− y‖2 + ‖z‖2)− ‖x− y − z‖2 = 2(‖x‖2 + ‖z − y‖2)− ‖x+ y − z‖2.

Therefore

2(‖x+ z + y‖2 − ‖x+ z − y‖2) = 2(‖x+ y‖2 − ‖x− y‖2 + 2(‖z + y‖2 − ‖z − y‖2)

as required.

In the case of complex NLS, we consider the real and imaginary parts of RHS

of (3.2) separately. What we have proved so far tells us that the real part defines

a real inner product, which we may now denote by 〈x, y〉R. Consider the imaginary

part:

〈x, y〉C := 〈x, ıy〉R.

Then 〈x, x〉C = 0 because |1 + ı|2 = |1− ı|2, and

4〈y, x〉C = 4〈y, ıx〉R = 4〈ıx, y〉R = ‖ıx+ y‖2 − ‖ıx− y‖2 = ‖x− ıy‖2 − ‖x+ ı‖2 = −4〈x, y〉C
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which proves that 〈y, x〉C = −〈x, y〉C. However, the linearity in the first slot for

〈x, y〉C is proved exactly similarly as in the case earlier case. It now follows

that

〈x, y〉 = 〈x, y〉R + ı〈x, y〉C

is an inner product.]

3.2 Orthonormal Sets

Definition 3.2.1 Let X be an IPS. Two elements x, y ∈ X are said to be orthogonal to

each other if 〈x, y〉 = 0. We write this by x ⊥ y. Similarly, if every element of a subset A

is orthogonal to every element of another subset B we write A ⊥ B. A itself is called an

orthogonal set if a 6= b ∈ A implies a ⊥ b, i.e., any two distinct elements of A are orthogonal

to each other. If further, each element of A is of norm 1 then A is called an orthonormal set.

The following properties are immediate:

(A) Pythagoras: If {x1, . . . , xk} is an orthogonal set then

‖x1 + · · ·+ xn‖2 = ‖x1‖2 + · · ·+ ‖xn‖2.

(B) Every orthogonal subset of X \ {0} is linearly independent.

(C) If x 6= y belong to an orthonormal set, then ‖x− y‖2 = 2.

Theorem 3.2.2 (Gram-Schmidt) Given a linearly independent set {xn : n = 1, 2, . . .},
define y1 = x1;u1 = y1/‖y1‖; and for n ≥ 2, define

yn = xn −
n−1∑
i=1

〈xn, ui〉ui, un = yn/‖yn‖.

Then {un : n = 1, 2, . . .} is orthonormal and

Span {u1, . . . , un} = Span {x1, x2, . . . , xn}, for all n.

Remark 3.2.3 Indeed, if xis are all continuous functions from some topological space into X,

then so are the resulting uis.

Example 3.2.4 We know that a polynomial p(t) in one variable over K has only finitely many

roots. This means that we can consider them as genuine elements of of L2[a, b] and then it

follows that {1, t, t2 . . . , } is a linearly independent set spanning the space of all polynomials.

However, it is clear that this is not an orthogonal set. So, we can apply GS process to it and get

an orthonormal set {l0, l1, . . . , ln. . . .} of polynomials. For the special case when [a, b] = [−1, 1]

these li are called Legendre polynomials. A simple computation (exercise) will show that

l0 = 1/
√

2, l1 =
√

3t/
√

2, l2 =
√

10(3t2 − 1)/4, and so on.

More generally, given a continuous positive function ω : [a, b] → R, we can consider the

space L2[a, b]ω of all measurable functions x : [a, b] → K such that
∫ b
a |x|

2ω dµ < ∞. If we

define

〈x, y〉ω =

∫ b

a
xȳω dµ
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then it is a routine to check that L2[a, b]ω becomes an inner product space. If our choice of

ω is such that for all n ∈ Z+,
∫ b
a |t|

2nω dµ < ∞, then we can talk about orthonormal set of

polynomials with respect to the weight function ω. Classically interesting cases occur when

[a, b] = [−1, 1]. The case of Legendre polynomials corresponds to the weight function 1. For

ω(t) = 1/
√

1− t2;
√

1− t2, they are respectively called Tchebychev polynomials of I kind and

II kind. For ω(t) = e−t, e−t
2
, they are called Laguerre polynomials and Hermite polynomials.

There are fat books written on them and they play some major role in various branches of

mathematics.

Theorem 3.2.5 (Bessel’s inequality) : Let E be a finite or countable orthonormal set in

an IPS X. Then for every x ∈ X we have,∑
e∈E
|〈x, e〉|2 ≤ ‖x‖2.

Moreover equality in the above expression holds iff x ∈ Span E.

Proof: First consider the case when E is finite. Put z =
∑

e∈E〈x, e〉e. Then

〈x, z〉 = 〈z, x〉 = 〈z, z〉 =
∑
e∈E
|〈x, e〉|2.

Therefore,

0 ≤ ‖x− z‖2 = 〈x− z, x− z〉
= 〈x, x〉+ 〈z, z〉 − 〈x, z〉 − 〈z, x〉
= ‖x‖2 −

∑
e∈E |〈x, e〉|2,

which takes care of the statement when E is finite. Upon taking the limit we obtain the result

when E is countably infinite also. The last assertion is obvious from the steps in the proof:

equality holds iff ‖x− z‖2 = 0 iff x = z iff x ∈ Span E. ♠

Corollary 3.2.6 Let E be any orthonormal set in an IPS X. Then for any x ∈ X the set

Ex = {e ∈ E : 〈x, e〉 6= 0} is a countable set. If {e1, e2, . . . , } is an enumeration of Ex then

〈x, en〉 → 0 as n→∞.

Proof: For every m ≥ 1, let Em = {e ∈ E : |〈x, e〉|2 ≥ ‖x‖2/m.} Then it follows easily from

Bessel inequality that #(Em) ≤ m. Now Ex = ∪mEm is a countable union of finite sets and

hence is countable. The last part follows since for any convergent series of real numbers, the

nth term must tend to zero. ♠
The next theorem tells the role of a countable infinite orthonormal set in a Hilbert space.

Theorem 3.2.7 Riesz-Fisher: Let {en : n = 1, 2 . . . , } be an orthonornal set in a Hilbert

space H and let λn ∈ K be a sequence of scalars. Then the following are equivalent:

(A) There exists x ∈ H such that 〈x, en〉 = λn, for all n.

(B)
∑

n |λn|2 <∞.
(C)

∑∞
1 λnen is convergent in H.



3.3. SEPARABILITY 27

Proof: (A) =⇒ (B): Use Bessel’s inequality.

(B) =⇒ (C): The sequence of partial sums sn =
∑n

1 λmem is Cauchy, due to the fact that {en}
is orthonormal.

(C) =⇒ (A) Take x =
∑

n λnen. ♠

Definition 3.2.8 An orthonormal set in an IPS is called an orthonormal basis if it is not

contained in any larger orthonormal set. A simple application of Zorn’s lemma tells you that

every orthonormal set is contained in an orthonormal basis.

Theorem 3.2.9 Let {eα} be an orthonormal set in a Hilbert space. Then the following are

equivalent:

(A) {eα} is an orthonormal basis for H.

(B) (Fourier) Given x ∈ H, the set {α : 〈x, eα〉 6= 0} is countable and x =
∑

n〈x, en〉en.
(C) Parseval identity: For x ∈ H,

‖x‖2 =
∞∑
1

|〈x, en〉|2.

(D) For x ∈ H, 〈x, eα〉 = 0 for all α implies x = 0.

Proof: (A) =⇒ (B) We have seen that Ex is countable for each x. By Bessel’s inequality,

∞∑
1

|〈x, en〉|2 ≤ ‖x‖2 <∞.

By Riesz-Fisher,
∑

i〈x, ei〉ei makes sense as an element, say, y ∈ H. If y 6= x then take

e = y−x
‖y−x‖ and show that {eα} ∪ {e} is an orthonormal set, contradicting the maximality of

{eα}.
Other implications are left as an exercise to the reader. ♠

3.3 Separability

Theorem 3.3.1 Let X be a Hilbert space. Then the following are equivalent:

(A) H has a countable orthonormal basis.

(B) H is isometric to `n2 for some 0 ≤ n ≤ ∞.
(C) H is separable.

Proof: (A) =⇒ (B): We may assume that H 6= (0) and let {en : n = 1, 2 . . . , } be an

orthonormal basis for H. Define F : H → `n2 by the formula

F (x)n = 〈x, en〉,

i.e., the nth entry of the sequence F (x) is equal to 〈x, en〉. Clearly, F is linear. Appeal to

Bessel’s inequality to see that F is continuous. Use Parseval’s formula to see that F is an

isometry. Appeal to Riesz-Fisher to see that F is onto.

(B) =⇒ (C): Obvious.
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(C) =⇒ (A): Start with a countable dense subset {a1, . . . , an, . . .}. We construct a sequence

{kn} finite or infinite as follows: Put k1 = 1. Having chosen kn let kn+1 be the first number

such that {ak1 , ak2 , . . . , akn , akn+1} is an independent set, if it exists; otherwise, stop. Rename

aknas bn. Check that {b1, b2, . . . , } is an independent set such that

Span {b1, b2 . . . , } = Span {a1, a2, . . .}.

Apply Gram-Schmidt to {b1, b2, . . .} to obtain an orthonormal set {e1, e2, . . .}. To show that

this is a basis, it is enough to show that 〈x, en〉 = 0 for all n implies x = 0. But this condition

implies 〈x, bn〉 = 0 for all n which in turn implies 〈x, an〉 = 0 for all n. Since {a1, a2, . . . , } is

dense there exists a subsequence amn converging to x. By continuity of the inner product, we

get,

〈x, x〉 = 〈x, lim
n
amn〉 = lim

n
〈x, amn〉 = 0.

Therefore x = 0. ♠

Example 3.3.2 Weierstrass’s approximation theorem says that given any continuous function

f : [a, b] → K and an ε > 0, there exists a polynomial function p(t) such that ‖f − p‖∞ < ε.

This in turn implies that the space of all polynomials is dense in L2[a, b]. In particular, this

means that the various set of special polynomials such as Legendre polynomials etc. that we

have discussed in example 3.2.4 are all orthonormal basis for the respective Hilbert spaces.

Example 3.3.3 Another important class of orthonormal sets occurs when we are studying

Fourier analysis of periodic functions on R (which are the same as functions on S1). Consider

the space L2[−π, π], and the sequence of functions

un(t) = eınt/
√

2π, n ∈ Z

Check that this is an orthonormal set. A classical theorem in Fourier analysis asserts that this

is indeed an orthonormal basis. This is equivalent to saying that given a measurable function

x on [−π, π], there are unique x̂ ∈ K (called Fourier coefficients of x) such that

x =
∞∑
−∞

x̂nun

as an element of L2[−π, π].

Exercise 3.3.4

1. Let A ⊂ R+ be such that for every countable (or finite) subset B ⊂ A, we have
∑

r∈B r <

∞. Then A is countable. ( Compare Corollary 3.2.6.)

2. Let X = C[a, b]. For f, g ∈ X, let

〈f, g〉0 =

∫ b

a

∫ b

a
f(s)g(t) ds dt,

and

〈f, g〉 =

∫ b

a

∫ b

a

sin(s− t)
s− t

f(s)g(t) ds dt.
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Then 〈 , 〉0 is not an inner product but 〈 , 〉 is. Hint:

〈f, g〉 =
1

2

∫ 1

−1

(∫ b

a
eıusf(s) ds

)(∫ b

a
e−ıutg(t) dt

)
.

3. In any inner product space, we can introduce the notion of angle: For x = 0 or y = 0, let

Θx,y = 0. For x 6= 0 6= y, let Θx,y = arc cos 〈x, y〉‖x‖‖y‖ . Show that Θx,y satisfying the cosine

formula:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ cos Θx,y.

4. Show that a NLS X is an inner product space iff every two-dimensional subspace of X

is so.

5. Let X,Y be two inner product spaces. We say they are isomorphic if there is a linear

map f : X → Y which preserves the inner product. Show that X is isomorphic to Y iff

as NLSs they are isometric.

6. Let D be a domain in C and let L2(D) be the space of equivalence classes of square

integrable complex valued functions on D with the inner product given by

〈f, g〉 =

∫
D
f(z)g(z) dx dy.

Let A2(D) denote the subspace of analytic functions. Show that L2(D) is a Hilbert space

and A2(D) is a closed subspace. In fact, if fn → f in L2 norm, then fn converges to f

uniformly on every closed disc in D. (Hint: If Br(z0) ⊂ D then by mean value theorem

for analytic functions we have

f(z0) =
1

πr2

∫
|z−z0|≤r

f(z) dx dy.

Now use Hölder’s inequality to obtain |f(z0)| ≤ ‖f‖r
√
π.)


