
Exercises for AFS-I; December 1-27, 2014, CEMS Almora

By ◦(X) we will denote the number of elements in the finite set X. We will denote the the order
of an element g of a group by ◦(g). By < S > we will denote the subgroup of a group G generated
by S ⊆ G. If S ⊆ X, then we denote X\S by Sc.

1. Let F be a field with q elements. Find the order of GLn(F) and SLn(F).

2. Prove that for a finite group G the following conditions are equivalent:

(i) G is cyclic.

(ii) For every divisor d of ◦(G) there exists a unique subgroup of G of order d.

(iii) For every divisor d of ◦(G) there are exactly d solutions of xd = e in G.

(iv) For every divisor d of ◦(G) the number of solutions of xd = e in G is at most d.

3. Deduce from previous exercise that every finite multiplicative group of a field is cyclic.

4. Let H1, H2 be two proper subgroups of a group G and H =< (H1 ∪ H2)
c >. Then Prove

that

(i) If < H1 ∪H2 > 6= G, then H = G.

(ii) If < H1 ∪H2 >= G, then G =< (H1 ∩H2)
c >=< (H1\H2) ∪ (H2\H1) >.

(iii) H has index 1 or 2.

(iv) For a group G the following conditions are equivalent:

(a) G is union of three proper subgroups.

(b) The Klein’s group V4 is a homomorphic image of G.

(c) G contains two subgroups of index 2.

5. Let G = A1 ∪ A2 ∪ A3 where each Ai is a proper subgroup of G. Let f : G → V4 =
{e, a1, a2, a3} be defined as

f(g) =

{
ai if g ∈ Ai\(Aj ∪Ak)
e otherwise

Prove that

(i) Ai ∩Aj ⊆ Ak where {i, j, k} = {1, 2, 3}.
(ii) If x, y 6∈ Ai, then xy ∈ Ai for any i ∈ {1, 2, 3}.
(iii) f is a group epimorphism and so V4 is a homomorphic image of G.

6. Let H be a subgroup of Sn and K be the set of all even permutations in H. Prove that K is
a subgroup of H of index 1 or 2.

7. If in a group G, (ab)2 = (ba)2 for all a, b ∈ G and x2 = e implies x = e, then prove that G is
abelian.

8. Let G be a group of order 2m where m is odd. Prove that there exists a subgroup of order
m in G.
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9. Let G be a group of order 2km where m is odd. If there exists an element of order 2k in G,
then prove that there exists a normal subgroup of order m in G.

10. Let S and T be two subsets of a finite group G such that ◦(S) + ◦(T ) > ◦(G). Prove that
G = ST . Use this to prove that in a finite field every element is a sum of two squares.

11. Find all group homomorphisms between two cyclic groups and then between any two finite
abelian groups.

12. Let G be a finite abelian group of odd order. Prove that ◦(Aut(G)) is even.

13. Write down all subgroups of order 8 of S4 and S5.

14. For a group G and n ∈ N let G(n) = {gn : g ∈ G}. Prove that if for some n ∈ N G(n) = G and
(ab)n = anbn for all a, b ∈ G, then G(n−1) ⊆ Z(G) and (ab)n−1 = an−1bn−1 for all a, b ∈ G.

15. Let G be a finite group such that 3 - ◦(G) and (ab)3 = a3b3 for all a, b ∈ G. Prove that G is
abelian. Is the result true if we replace 3 with some other odd prime?

16. If for some n ∈ N G(n) = G(n−1) = G and (ab)n = anbn for all a, b ∈ G, then prove that G is
abelian.

17. Euler’s Theorem. Let a, n be two co-prime integers. Prove that n | aφ(n) − 1.

18. Wilson’s Theorem. Prove that if p is a prime, then p | (p− 1)! + 1.

19. Generalize Wilson’s Theorem by proving that if p is a prime and p ≤ n < 2p, then p |
n!

p(n−p)! + 1.

20. If a > 1 is an integer, then prove that n | φ(an − 1) for all n ∈ N.

21. Let H be a subgroup of a finite group G such that ◦(G) - i(H)!, where i(H) denotes the index
of H i.e., i(H) = ◦(G)/◦ (H). Prove that H contains a normal subgroup of G with more that
one elements.

22. Use previous exercise and the fact that An is simple for every n > 4 to prove that An for any
n > 4 does not have a subgroup of index k such that 1 < k < n.

23. Without using the simplicity of An for n > 4 prove that An does not have a subgroup of
index 2 for any n > 3.

24. Find all normal subgroups of Sn for every n.

25. Let s be an r-cycle in Sn. Find N(s) = {x ∈ Sn : xs = sx}. Also find N(s) where
s = (1 2 3)(4 5 6) in S6.

26. Find two elements in A5 which are conjugate in S5 but not in A5.

27. Let σ ∈ An. Prove that either CAn(σ) = CSn(σ) or ◦(CAn(σ)) = ◦(CSn(σ))/2, where CG(g)
denotes the conjugacy class of g in G.

28. Write down the orders of every conjugacy classe of A5 and prove that A5 is simple.
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29. Let G be a finite group, T ∈ Aut(G) and S = {g ∈ G : T (g) = g−1}. Prove that

1. If ◦(S) > 3
4 ◦ (G), then G is abelian and S = G.

2. If ◦(S) = 3
4 ◦ (G), then G contains an abelian group of index 2.

Also give an example of a non-abelian group G with T ∈ Aut(G) such that ◦(S) = 3
4 ◦ (G).

30. Let d be a a divisor of a finite abelian group G and Ad = {g ∈ G : gd = e}. Prove that
d | ◦(Ad).

31. If x = xyx, then we will call y to be an inner inverse of x. Prove that a semigroup in which
every element has a unique inner inverse is a group.

32. Find all conjugacy classes of the dihedral group Dn.

33. Let H be a proper subgroup of a finite group G. Prove that G cannot be union of all
conjugates of H.

34. Let H be a subgroup of G such that 1 < i(H) < ∞. Prove that G cannot be union of all
conjugates of H.

35. Let G be a finite group such that for any x, y ∈ G there exists T ∈ Aut(G) such that T (x) = y.
Prove that there exists a prime p such that ◦(a) = p for every a 6= e in G.

36. Let p be the smallest prime divisor of the order of a finite group G. Prove that any subgroup
of index p is normal in G.

37. For any group G prove that the commutator subgroup G′ = {a1a2...ana−11 a−12 ...a−1n : ai ∈ G}.

38. Find the commutator subgroup of Sn, An, Dn, GLn(F ), SLn(F ), where F is a field.
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Isometries: Problems for tutorials

1. Let A be an orthogonal 3 × 3 matrix with determinant 1. Show that A has an eigen value
equal to 1.

2. Let A be a 3× 3 matrix corresponding to a rotation of R3. Show that A is orthogonal with
determinant 1.

3. Let A be an orthogonal 3× 3 matrix with determinant 1. Show that it represents a rotation
of R3.

4. Compute all complex eigenvalues of the matrix A that represents a rotation of R3 through
the spin (θ, u).

5. For which values of n, On is isomorphic to SOn × {±I}?

6. Determine the matrices of the following rotations of R3:
(i) angle θ, the axis e2;
(ii) angle 2π/3, axis contains the vector (1, 1, 1)t.

7. Give an example of an infinite group acting on a finite set.

8. Let a group G acts on a finite group H. Then Hg = {h ∈ H | hg = h}, the fix of an element
g ∈ G, is a subset of H. Frame minimal conditions on the acting element g so that Hg becomes
a subgroup.

9. Show that a group G acts on the set of all left cosets of its subgroup H in it. Compute the
stabilizer of a given element gH under this action.

10. Let a group G have a subgroup H of finite index. Show that G has a normal subgroup of
finite index contained in H.

11. Consider the natural action of the symmetric group Sym(n) on the set {1, 2, . . . , n}. Let H
be the stabilizer of 1. Describe the left cosets of H in Sym(n).

12. Compute the orbits of the plane under the action (on the points of the plane) of the group
of all isometries of the plane.

13. Show that there are only five types of Platonic solids (regular polyhedra), which are Tetra-
hedron, Octahedron, Cube, Dodecahedron and Icosahedron.

14. Compute the groups of symmetries of a tetrahedron and a cube.
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AFS I, Almora December 2014

Tutorial I (Group Theory)

Date : 16 December 2014

Time : 6:30-8:30 PM

In this tutorial we will classify all groups of order 12 up to isomorphism. Throughout, G will

denote a group of order 12. Further, H will denote a Sylow 2-subgroup of G and K a Sylow

3-subgroup of G.

PROBLEM 1. Check that H has either 1 or 3 conjugates and that K has either 1 or 4 conjugates in

G.

PROBLEM 2. Show either H or K is a normal subgroup of G.

Hint.— Suppose K is not normal in G. Then K has 4 conjugates in G. What is the number of

elements of G that do not lie in the union of conjugates of K in G ?

PROBLEM 3. Suppose both H and K are normal in G. Then show that the canonical map from

H ×K into G given by (x, y) 7→ xy is an isomorphism of groups.

Hint.— [H,K] ⊆ H ∩ K = {e}. Thus the map is an injective homomorphism of groups. Now

compare cardinalities.

PROBLEM 4. Conlcude from Problem 3 that when H and K are both normal in G, we have that

G is isomorphic either to Z/2Z⊕ Z/2Z⊕ Z/3Z or to Z/4Z⊕ Z/3Z.

PROBLEM 5. Suppose that K is not normal in G. Then show that the action of G by conjugation

on the conjugates of K provides an injective homomorphism of G into S4. Conclude that G is

isomorphic to A4 and hence that H is isomorphic to Z/2Z⊕ Z/2Z.

PROBLEM 6. Suppose now that H is not normal in G and that it is isomorphic to Z/4Z. Then let

x be a generator of H and y of K. Show that we have x4 = 1, y3 = 1 and xy = y2x. Show that

these relations determine G up to isomorphism. Realize G as a group of matrices.

Hint.— To show xy = y2x or, what is the same thing, xyx−1 = y2, let H act by conjugation on K

and note that Aut(K) has a unique non-trivial element, one that exchanges y with y2.
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PROBLEM 7. Finally suppose that H is not normal in G and that it is isomorphic to Z/2Z⊕Z/2Z.

Then show that G is isomorphic to D6.

END

2
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AFS I, Almora December 2014

Tutorial II (Group Theory)

Date : 20 December 2014

Time : 3:30-5:30 PM

PROBLEM 1. Let Fq be the finite field of order q for an integer q ≥ 2 and let n ≥ 1 be an integer.

Then show that the number of solutions to the equation Xn = 1 in the multiplicative group of

Fq is gcd(n, q − 1). Apply this to obtain the formula

|PSLn(Fq)| =
1

(q − 1) gcd(n, q − 1)

∏

0≤i≤n−1

(qn − qi)

from the formula for the cardinality of GLn(Fq) given in the lectures.

PROBLEM 2. The purpose of this problem is to obtain a criterion of K. Iwasawa, given by the

theorem below, which provides a method for showing that a group is simple.

THEOREM . — Let G be a group acting on a set E and suppose that the following conditions are met.

(a) The group G is equal to its commutator subgroup [G,G].

(b) G acts doubly transitively on E.

(c) There is an element of E whose stabiliser in G contains a commutative normal subgroup A whose

conjugates in G generate G.

Then every normal subgroup of G that is distinct from G acts trivially on E.

Prove this theorem by working out the following exercises.

(i) Recall from the lectures that since G acts doubly transitively on E, any normal subgroup N of

G either acts transitively on E or acts trivially on E. Suppose that N is a normal sugroup of G

that acts transitively on E. Then show that for any x in E we have G = N. Stab(x).

(ii) Suppose x ∈ E satisfies the condition (c) of the theorem and let N be as in (i). Then show

using (i) that G = N.A.
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Hint.— Let g be an element of G. Then since the conjugates of A generate G, there is an integer

k ≥ 1 such that

g =
∏

1≤i≤k

giaig
−1
i

for some gi inG and ai inA. By (i) we have that each gi = nisi, for some ni inN and si in Stab(x).

Use the normality of N in G to now check that there is an n in N such that g = n
∏

1≤i≤k siais
−1
i .

Deduce from this that G = N.A by remarking that A is normal in Stab(x).

(iii) Using (ii) above show that G = [G,G] = [N.A,N.A] ⊆ N . Conclude the theorem.

The theorem of Jordan-Dickson announced in the lectures states that PSLn(K) is a simple group

except when n = 2 and K is either F2 or F3. In the following problems we shall verify this

theorem for n > 2 with the aid Iwasawa’s criterion given in Problem 2. As we saw in the lectures,

PSL2(F2) is isomorphic to S3 and PSL2(F3) is isomorphic to A4. While the proof of the theorem

for n = 2 and |K| > 3 is similar to the case n > 2 given below, a certain number of modifications

become necessary.

PROBLEM 3.— Let n > 2 be an integer and K be a field. Further, let V be the vector space Kn.

For any i, j with 1 ≤ i, j ≤ n with i 6= j we write Eij to denote the square matrix of order n with

the (i, j)-th entry 1 and all other entries 0. Further, for any λ in K, we write Bij(λ) to denote the

square matrix In + λEij .

(i) Check that for any λ in K and each (i, j) as above, the matrix Bij(λ) is an element of SLn(K).

A transvection of V is a K-linear automorphism T 6= id of V such that there is a hyperplane H of

V so that T (v) = v for all v in H and T (v)− v ∈ H for all v in V .

(ii) Verify that each Bij(λ) with λ 6= 0 represents a transvection with respect to the canonical

basis of V . Further, show that for each transvection of V there is a basis of V such that T is rep-

resented by the matrix B12(1) with respect to this basis. Conclude that each Bij(λ) is conjugate

to B12(1) in GLn(K), for any n ≥ 2.

(iii) Show that when n > 2, each Bij(λ) is in fact conjugate to B12(1) in SLn(K).

(iv) Cite an appropriate theorem from linear algebra that implies that SLn(K) is generated by

the matrices Bij(λ).

2
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(v) With n = 3, let g = B13(1) and h = B32(1). Then show that B12(1) is the commutator of g and

h in SL3(K). Use this to express B12(1) as a commutator in SLn(K), for all n > 2.

(vi) Conclude from the above parts that [SLn(K),SLn(K)] = SLn(K), when n > 2.

PROBLEM 4.— With V = Kn, let P (V ) denote the set of one dimensional subspaces of V . This is

generally denoted by Pn−1(K) and is called the Projective Space of dimension n− 1 over K.

(i) Show that the natural action of SLn(K) on P (V ) is doubly transitive.

(ii) Show that the subgroup of SLn(K) that acts trivially on P (V ) is the same as the center of

SLn(K).

(iii) Let [e1] denote the one dimensional subspace of V generated by e1. Determine the stabiliser

of [e1] in SLn(K).

(iv) Let n > 2 and let A be the subgroup of SLn(K) consisting of square matrices of order n with

the top row of the form [1 a1 a2 . . . an−1], where each ai in K, and the remaining rows equal to

et2, e
t
3, . . . , e

t
n, in that order. Then show that A is a commutative normal subgroup of the stabiliser

of [e1] satisfying the condition (c) of Iwasawa’s criterion.

Hint.— To show that the conjugates of A in SLn(K) generate SLn(K), remark that A contains

B12(1) and use appropriate parts of Problem 3.

(v) By means of Iwasawa’s criterion conclude that for any n > 2, any normal subgroup of SLn(K)

is either equal to it or is contained in its center. Thus obtain the Jordan-Dickson Theorem for

n > 2.

END
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