NCM WORKSHOP: MODULAR FORMS AND GALOIS REPRESENTATIONS

Introduction to Rigid Analytic Geometry
Problem sheet (Tutor: Arvind Kumar)

- (1) Let $|\cdot|$ be a non-Archimedean absolute value on a field K. Prove the following:
 - (a) Let $a, b \in K$ satisfy $|a| \neq |b|$. Then

$$|a+b| = \max\{|a|, |b|\}.$$

- (b) Any triangle in K is isosceles.
- (c) Each point of a disc in K can serve as its center. Hence if an intersection of two disks is non-empty, they are concentric.
- (2) Prove that T_n is a K-algebra.
- (3) Let $|\cdot|$ be the Gauss norm on T_n . Then prove the following.
 - (a) If |f| = 1, then there exists $c \in k$ with |c| = 1 such that f + c is not a unit.
 - (b)

$$\cap_{\mathfrak{m}}\mathfrak{m}=(0),$$

where \mathfrak{m} runs through the set of maximal ideals of T_n .

- (4) Give an example of $f \in \mathbb{Q}_p\langle X \rangle$ such that $|f| > \sup_{x \in \mathbb{Z}_p} |f(x)|$.
- (5) Let A, B be integral domains such that there is a finite injective morphism $A \hookrightarrow B$. Prove that A is a field if and only if B is a field.
- (6) Let $f: A \to B$ be a morphism of K-affinoid algebras and let $\mathfrak{m} \subset B$ be a maximal ideal. Then prove that $f^{-1}(\mathfrak{m})$ is a maximal ideal in A.
- (7) Prove that T_n is a K-Banach algebra (complete the proof given in the classroom).
- (8) Prove that residue norm defined on an affinoid algebra is a norm.