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Lecture 1 - Wednesday, December 11

1.1 General comments and reference material. The first two of the three sections in these notes

cover two hour-and-a-half-long lectures on modular representations of finite groups - finite dimensional

representations of finite groups over (mostly algebraically closed) fields of ‘bad’ characteristic - that

were given at IISER Tirupati on December 11 and 13 of 2019, as part of an NCM workshop on Modular

Forms and Galois Representations, organized by Professors Shalini Bhattacharya and Eknath Ghate.

Section 3 contains the example of representations of S4 in characteristic 3, that was worked out by

Anand Chitrao in the tutorial on December 13.

1.1.1 References. Here are some references that I have used (all of which cover much more than the

material here):

‚ Daniel Bump’s notes, at: http://sporadic.stanford.edu/modrep/
1
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‚ Tony Feng’s version of Daniel Bump’s notes, available as of now at:

https://www.mit.edu/ fengt/mod rep theory.pdf

‚ Alperin’s book ‘Local Representation Theory’ - this is what was followed for much of Lecture 2.

One topic I regret not being able to discuss is a comparison of the representation theories of SL2pFpq
in characteristic 0, in positive characteristic different from p, and in characteristic p - especially the

computations concerning reduction from characteristic zero to characteristic p. This and a lot of other

very interesting material on mod p representations of various groups can be found in an article of

Professor Dipendra Prasad available at:

http://www.math.iitb.ac.in/„dprasad/dp-mod-p-2010.pdf

1.1.2 Comments on these notes. These notes are mostly just a catalogue of some of the basic, standard

results in the subject. Proofs are mostly omitted, but some verbal commentary/heuristics has been

indulged in to help informally relate to the results. Some easy examples have been discussed too - the

cases of S3, S4 and SL2pFpq, of course with most justifications suppressed in the case of SL2pFpq.

These notes cover lesser material than what the number of pages might indicate - I erred on the side

of overexplaining. After all, apart from small additions (such as the statements of the first two of the

three main theorems on the Brauer correspondence) this consists entirely of material that was covered

in a total of three hours. The references above are all more efficient.

This subject is not what I do for a living, and errors are bound to be there: use at your own risk (or

use this to get a flavour of the subject and then move to one of the standard references such as the ones

given above).

1.1.3 Acknowledgements. I thank Professors Eknath Ghate and Shalini Bhattacharya for the kind

invitation to the NCM Workshop, and Anand Chitrao for going through a good part of the following

notes and pointing out a large number of inaccuracies and typos.

1.2 Some notation and conventions. Let G be a finite group, k a field, and p a prime number. For

most of these notes - i.e., except in some examples where we state explicitly otherwise - we will assume

that the characteristic of k is p. Our rings A will be associative and with a multiplicative identity, but

their multiplications will not be assumed to be commutative.

A representation ρ : GÑ GLkpEq may be written variously as pρ,Eq, or ρ, or E, or g ÞÑ pv ÞÑ g ¨ vq, by

abuse of notation.

Recall the group algebra krGs :“
!

ř

gPG agg | ag P k @ g P G
)

, whose multiplication is given by

´

ÿ

ahh
¯´

ÿ

bgg
¯

“
ÿ

h,gPG

ahbghg “
ÿ

gPG

˜

ÿ

hPG

ahbh´1g

¸

g.
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Throughout, we will use the ‘correspondence’ (which is more precisely an equivalence categories in

particular) between representations of G and modules over krGs. To recall this correspondence, let E

be a k-vector space. Then:

‚ Any representation of G on E, written as g ÞÑ pv ÞÑ g ¨ vq, upgrades the k-vector space E into a

krGs-module via
´

ř

gPG agg
¯

¨ v “
ř

gPG agpg ¨ vq; and

‚ If a krGs-module structure on E is given, which is compatible with the k-vector space structure on

E, it defines a representation of G on E by g0 ÞÑ pv ÞÑ δg0 ¨ vq, where δg0 P krGs is the element 1 ¨ g0.

This dictionary respects the notion of a map of G-representations, in the following sense. Suppose

E1 and E2 are G-representations, and hence also thought of as krGs-modules. Then, given a k-linear

transformation T : E1 Ñ E2, T is a map of G-representations if and only if it is a homomorphism of

krGs-modules (this makes the above correspondence ‘functorial’, where the functor is described by the

above bullet points at the level of objects, and is the ‘identity’ at the level of morphisms).

Under this dictionary, a representation of G is irreducible if and only if the corresponding krGs-module

is simple, i.e., has no proper nonzero submodule.

A representation of G is completely reducible (i.e., is a direct sum of irreducible representations) if and

only if the corresponding krGs-module is semisimple, i.e., is a direct sum of simple submodules.

Note: All modules over krGs considered in this lecture will be assumed to be finite dimensional as

vector spaces over k.

1.3 Failure of complete reducibility in bad characteristic. Throughout, #S will denote the

cardinality of a set S.

Recall that if k had characteristic 0, then every finite dimensional representation of G would be com-

pletely reducible. Usually two proofs are given for this fact - either using a G-invariant inner product, or

‘taking a vector space section and averaging over G’. The latter proof continues to apply if pp,#Gq “ 1,

but the proof as well as the result fails when pp,#Gq ą 1 (that is to say, when p divides the cardinality

of G). The following exercise gives a simple but instructive counterexample.

Exercise 1.3.1. Suppose G “ Z{pZ. Since char k “ p, k contains a copy of Z{pZ (note that this is

used in stating (i) below).

(i) Check that the following homomorphism GÑ GL2pkq “ GLkpk
2q is a representation of G:

Z{pZ Q x ÞÑ

˜

1 x

0 1

¸

P GL2pkq.

(ii) Let e1 “ p1, 0q be the first standard basis vector of k2. Show that the only proper nonzero G-

invariant subspace of k2 is ke1, which is the span of e1. (Thus, this representation cannot be

completely reducible, because proper G-invariant subspaces of k2 do not span it).
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(iii) Since each element of G leaves ke1 invariant and hence has an induced action on k2{ke1, we get

a quotient representation G Ñ GLkpk
2{ke1q. Show that both the subrepresentation of G on ke1

and the quotient representation of G on k2{ke1 are trivial, even though the representation of G

on k2 is not.

Let us now generalize part of the above exercise to all p-groups.

Lemma 1.3.2. Suppose G is a p-group. Then every irreducible representation pρ, V q of G on a k-vector

space is trivial.

Note that the above lemma is implied by the following lemma (Lemma 1.3.3), which is what we will

prove:

Lemma 1.3.3. Suppose G is a p-group. Then every representation pρ, V q of G in a k-vector space

contains a nonzero vector fixed by G.

Proof. Reduction to the case where k “ Fp and V is of finite dimension. (Ignore this if you are willing

to assume that k equals Fp and that V is of finite dimension over k). Let pρ, V q be a representation of

G, which we wish to show to have a nonzero G-fixed vector. Choose any 0 ‰ v P V , and recall that

k being of characteristic p contains Fp. Then the Fp-span of tρpgqv | g P Gu, call it V0, is a nonzero

Fp-linear subspace of V (i.e., it is not a k-vector subspace of V but only a subspace of V viewed as an

Fp-vector space). Being spanned by #G elements, V0 has dimension at most #G as a vector space over

Fp. Clearly, V0 is invariant under the action of ρpgq, for each g P G. Since ρpgq : V Ñ V is k-linear, the

restriction of ρpgq to V0 is Fp-linear.

Hence it is enough to show that V0 has a nonzero G-fixed vector. We can therefore replace pρ, V q with

pg ÞÑ ρpgq|V0 , V0q to assume that k “ Fp and that V is a finite dimensional vector space over k “ Fp.

Proof when k “ Fq for some power q of p, and V is of finite dimension. Let us assume that pρ, V q is

a representation of G on an n-dimensional Fq-vector space V “ Fnq , where q is a power of p (we just

showed that we could assume q “ p, but keeping this slightly more general q with us does not hurt).

Since G is a p-group, so is ρpGq Ă GLnpFqq. Therefore, ρpGq is contained in a p-Sylow subgroup of

GLnpFqq. We claim that one of the p-Sylow subgroups of GLnpFqq is given by the group UnpFqq of upper

triangular matrices with 1’s on all diagonal entries. For this, note that #UnpFqq “ qnpn´1q{2, while

#GLnpFqq “ pqn ´ 1qpqn ´ qq . . . pqn ´ qn´1q “ qnpn´1q{2pqn ´ 1qpqn´1 ´ 1q . . . pq ´ 1q,

so that #UnpFqq is the largest power of p dividing #GLnpFqq. Therefore, UnpFqq Ă GLnpFqq is a

p-Sylow subgroup.

Thus, by one of the Sylow theorems, there exists T P GLnpFqq such that TρpGqT´1 is contained in

UnpFqq, and hence fixes the basis vector e1 “ p1, 0, . . . , 0q P k
n (as every element of UnpFqq does).
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Since TρpGqT´1 fixes e1, it follows that ρpGq fixes T´1e1 (I wrongly wrote Te1 in the lecture, and this

was pointed out to me after the lecture). Thus, there exists a nonzero vector (namely T´1e1) in V fixed

by the action of G, as desired. �

Remark 1.3.4. An alternate proof - after reducing to the finite dimensional case where k “ Fq -

involves noting that the G-orbits that are not given by G-fixed points, i.e., the non-singleton orbits, all

have cardinalities that are multiples of p. Since the cardinality of Fnq is a multiple of p, it follows that

the number of G-fixed points in Fnq is a multiple of p. This multiple is nonzero since 0 P Fnq is G-fixed,

so there should be at least p´ 1 nonzero G-fixed points in Fnq .

Corollary 1.3.5. If G is a p-group with #G ą 1, then not all representations of G are completely

reducible.

Proof. Since all irreducible representations of G are trivial by the above lemma, G acts trivially on

completely reducible representations, but there exist representations on which G acts nontrivially (e.g.,

the regular representation of G, which corresponds to krGs viewed as a left module over itself by left

multiplication), which therefore cannot be completely reducible. �

1.4 Review of semisimplicity for rings and modules. Recall the following basic theorem about

semisimple modules, where the main example to keep in mind will be the case of the ring A “ krGs:

Proposition 1.4.1. Let A be a ring and M an A-module. The following are equivalent:

(i) M is the sum of its simple submodules;

(ii) M is the direct sum of some of its simple submodules;

(iii) Every submodule N Ă M is a direct summand (i.e., there exists a submodule N 1 Ă M such that

M “ N ‘N 1, that is to say, M “ N `N 1 and that N XN 1 “ t0u).

Recall that a semisimple module is by definition a direct sum of a family of simple modules, so a

semisimple module can be actually defined by any of the criteria (i)-(iii) of the above proposition.

The following is an easy corollary:

Corollary 1.4.2. Every submodule of a semisimple module is semisimple. Every quotient module of a

semisimple module is semisimple. A direct sum of a collection of semisimple modules is semisimple.

Definition 1.4.3. A ring A is said to be semisimple if A, viewed as a left module over itself by left

multiplication, is a semisimple module.

Since every left A-module is a quotient of a free left A-module, the corollary above gives:

Corollary 1.4.4. A is a semisimple ring if and only if every left A-module is a semisimple left A-

module.
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Remark 1.4.5. ‚ Since all representations of G are completely reducible when p#G, pq “ 1, it follows

that the ring krGs is semisimple whenever p#G, pq “ 1.

‚ If p#G, pq ‰ 1, it is not hard to prove that not all representations of G are completely reducible (we

have already seen this when G is a p-group), though we skip a proof.

1.5 The radical and semisimplicity. One tool to understand the failure of semisimplicity of krGs

when p#G, pq “ 1 is the (Jacobson) radical of krGs, a notion we now proceed to define.

Definition 1.5.1. (i) Let M be a left module over A “ krGs. Then its radical is defined to be the

intersection of the maximal left submodules (i.e., maximal proper left submodules) of M :

radpMq “
č

M 1ĂM
M 1 maximal

pproperq submodule

M 1.

It is clearly a left A-submodule of M .

(ii) The (Jacobson) radical of A is defined to be the intersection of all maximal left ideals of A:

radpAq “
č

mĂA
m maximal left ideal

m.

We will not prove the following proposition, which summarizes some basic results concerning the Ja-

cobson radical, but merely give some ideas on how to think of them:

Proposition 1.5.2. Let A be a k-algebra (i.e., a ring containing k in its center), and assume that A is

finite dimensional as a k-vector space, i.e., dimk A ă 8 (think of A “ krGs). Let M be a left A-module

with dimkM ă 8

(i) The left ideal radpAq of A is in fact a two-sided ideal.

(ii) M is semisimple if and only if radpMq “ 0.

(iii) If M2 “ M{M 1 for a left A-submodule M 1 of M , then M2 is semisimple if and only if M 1 Ą

radpMq - i.e., semisimple quotients (M2) of M are precisely those that factor through M Ñ

M{radpMq.

(iv) radpMq “ radpAq ¨M (where radpAq ¨M is the submodule of M consisting of the set of finite linear

combinations
ř

aimi, where each ai belongs to radpAq and each mi to M).

(v) A is semisimple (as a ring) if and only if radpAq “ t0u.

Now let us indicate some informal ideas related to its proof, just to make it believable that radicals can

be related to semisimplicity.

Some ideas ‘in one direction’: It is easy to see (from one of the three isomorphism theorems for modules)

that M{M 1 is simple if and only if M 1 is a maximal submodule of M , so radpMq is in the kernel of every
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simple quotient of M , and hence in the kernel of every semisimple quotient of M . Note also that simple

left A-modules N are precisely of the form A{m as m varies over maximal left ideals of A: if 0 ‰ x P N ,

then a ÞÑ ax defines a left A-module surjection AÑ N , quotienting to an isomorphism A{annpxq
–
Ñ N ,

and then the simplicity of N forces the annihilator annpxq of x to be a maximal left ideal of A. Since

radpAq is contained in every maximal left ideal, radpAq annihilates x (for every 0 ‰ x P N). Thus,

radpAq annihilates every simple left A-module, and hence also every semisimple left A-module.

Now some ideas ‘in the other direction’. We have an injection of left A-modules

A{radpAq ãÑ
ź

A{m,

where m runs over the maximal left ieals of A. But since A is finite dimensional, one can restrict to

finitely many maximal ideals and still get an injection of left A-modules:

A{radpAq ãÑ

n
ź

i“1

A{mi “

n
à

i“1

A{mi

(for finitely many modules, the direct sum is the same as the direct product). Thus, A{radpAq is a

semisimple left A-module. If you believe that radpAq is a two-sided ideal of A, so that the quotient

A{radpAq is actually a ring, this shows that A{radpAq is a semisimple left module over itself, and hence

a semisimple ring. Thus, any left A-module annihilated by radpAq, being a module over A{radpAq, is

semisimple (see Corollary 1.4.4).

Note: I think there were some stupid errors I made on the board that I unfortunately cannot recall or

find in my notes; perhaps I wrongly wrote a maximal submodule of M as m ¨M or that m annihilates

a simple quotient of M or something of this sort, because at some point I mixed up left and right

multiplication on the spot; please correct them if at all you are using notes that you wrote from the

lecture.

The above proposition allows us to write down informally:

Corollary 1.5.3. M{radpMq is the ‘maximal semisimple quotient’ of M .

1.6 The Jordan-Holder series, the radical and socle series. Once the ring A is not semisimple,

how does one think of left A-modules as built up from simple left A-modules?

Definition 1.6.1. A left A-module M is said to be of finite length if there exists a chain 0 “ M0 Ă

M1 Ă ¨ ¨ ¨ Ă Mn “ M of left A-submodules of M such that for 1 ď i ď n, Mi{Mi´1 is a simple left

A-module. Such a chain is called a composition series for M , n is called the length of this composition

series, and the (multi)set 1 tM1{M0,M2{M1, . . . ,Mn{Mn´1u of simple modules (understood to be taken

up to isomorphism) is called the (multi)set of Jordan-Holder factors of this composition series.

1A multiset is like a set but in which elements are allowed to occur more than once; e.g., t0, 1, 1u and t0, 1u are the

same as sets but not as multisets.
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We will keep using the following obvious fact without further mention: if A contains k and is finite

dimensional as a k-vector space, then finite length A-modules are precisely those A-modules which are

finite dimensional as k-vector spaces.

The following lemma is the Jordan-Holder theorem in this setting:

Lemma 1.6.2. Suppose a left A-module M has finite length. Any two Jordan-Holder series for M have

the same length and the same multiset of Jordan-Holder factors, and hence we may define these to be

the length of M and the (multi)set of Jordan-Holder factors of M , respectively.

The idea is that one can think ofM as being built up of the simple leftA-modulesM1{M0,M2{M1, . . . ,Mn{Mn´1:

after all, in the case whereM “ N1‘¨ ¨ ¨‘Nn is a sum of simple leftA-modules, settingMi :“ N1`¨ ¨ ¨`Ni

for 1 ď i ď n (and M0 “ 0), it is easy to check that 0 “ M0 Ă M1 Ă ¨ ¨ ¨ Ă Mn “ M is a composition

series for M and the corresponding Jordan-Holder factors are N1, . . . , Nn, which are precisely the simple

modules N1, . . . , Nn that sum to N .

The above lemma also allows us to talk of the Jordan-Holder multiplicity of a simple left A-module N

in a left A-module M - the number of times N occurs in the multiset of Jordan-Holder factors of M .

Exercise 1.6.3. But this conception of thinking of M as built up out of its Jordan-Holder factors

does not describe M completely. To illustrate this in the case where A “ Z, check that both Z{4Z
and Z{2Z ‘ Z{2Z have the same Jordan-Holder factors, namely the (multi)set tZ{2Z,Z{2Zu, though

they are of course non-isomorphic Z-modules. To illustrate this in a case where A is of the form krGs,

note that when G “ Z{pZ, the module k2 of Exercise 1.3.1 has Jordan-Holder factors tk, ku by (iii) of

that exercise (where k is viewed as the krGs-module corresponding to the trivial representation of G),

i.e., the same as for a direct sum of two copies of the trivial representation, but that module is not

isomorphic to a direct sum of two copies of the trivial representation.

Another problem with this description is that a module can have many composition series (though

all of them will give the same Jordan-Holder factors), so there is something noncanonical about this

description.

Two ways to make ‘part’ of this canonical are given by the radical series and the socle series of M .

For this, let us first define the socle of M :

Definition 1.6.4. The socle of M is its left A-submodule socpMq given by:

tx PM | pradAq ¨ x “ t0uu.

It is easy to see that socpMq is the maximal semisimple left A-submodule of M , because semisimple

left A-modules are precisely those that are annihilated by radpAq.

Definition 1.6.5. Let A be a k-algebra (i.e., a ring containing k in its center) which is finite dimensional

as a k-vector space. Let M be a left A-module which is of finite length, or equivalently dimkM ă 8.
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(i) The radical series of M is the chain of left A-submodules of M given by:

M Ą radpMq
Proposition 1.5.2pivq

“ radpAq ¨M Ą radpradMq “ pradAq2M Ą ¨ ¨ ¨ Ą pradAqrM “ 0

(that this filtration is strictly decreasing and hence eventually zero follows from the fact that for

each left A-submodule 0 ‰M 1 ĂM , the quotient left A-module M 1{radpM 1q, being the maximal

semisimple quotient of M 1, is nonzero: this follows from the fact that, M 1 being finite dimensional,

among the nonzero quotient left A-modules of M 1, we can choose one whose dimension over k is

the smallest possible; this quotient is necessarily simple and hence semisimple).

(ii) The socle series of M is the series of left A-submodules of M given by

N0 “ 0 Ă N1 Ă N2 Ă ¨ ¨ ¨ Ă Nr “M,

where N1 “ socpMq is the maximal semisimple left A-submodule of M , and inductively, for

1 ď i ď r, once Ni´1 is defined, Ni is the pre-image of socpM{Ni´1q under the quotient map

M ÑM{Ni´1.

Remark 1.6.6. (a) In (ii) of the above definition, note that Ni{Ni´1 – socpM{Ni´1q is semisimple,

and Ni is in fact maximal among the left A-submodules of M that contain Ni´1 and satisfy that

their quotient by Ni´1 is semisimple. Thus, N1 being maximal semisimple in M , one cannot get a

larger semisimple left A-submodule of M , one takes the next in the series to be the maximal left

A-submodule N2 containing N1 such that N2{N1 is semisimple, and so on.

(b) There is clearly a similar interpretation with radical series involving maximal semisimple quotients.

And there is, as with the radical series, a justification for why, in the case of the socle series, Nr

has to be the whole of M for some r.

The radical series and the socle series are canonically defined, though they are not composition series

(the successive quotients are only semisimple, not simple).

1.7 The number of irreducible representations of G up to isomorphism. Let Ĝ be the set

of (isomorphism classes of) irreducible representations of G. So far we know the following about the

number of irreducible representations of G up to isomorphism, i.e., about #Ĝ:

(i) If G is a p-group, we have seen that any irreducible representation of G is trivial, so this number

equals one.

(ii) In the characteristic zero case, it is well known that, if k “ k̄, then this number equals the number

of conjugacy classes of G.

(ii) above continues to be true if p#G, pq “ 1, but as (i) shows, not otherwise.

Yet, (i) and (ii) happen to have a common generalization to all (finite) G, assuming k “ k̄, to state

which we will use the following definition.
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Definition 1.7.1. A conjugacy class C Ă G is said to be p-regular if any g P C has order prime to p

(this needs to be checked only for one g P C as all elements in a conjugacy class have the same order).

Then (ii) above generalizes nicely, as follows:

Theorem 1.7.2 (Brauer, Nesbitt). Assume k “ k̄. Then the number #Ĝ of irreducible representations

of G up to isomorphism equals the number of p-regular conjugacy classes in G.

The above theorem is one of several theorems due to Brauer and Nesbitt, so it cannot be called ‘the’

Brauer-Nesbitt theorem. As an easy exercise, check that the above theorem generalizes both (i) and

(ii) (under the assumption k “ k̄).

We will not discuss the proof of the above theorem, but here is an idea. First, let us discuss the proof of

(ii) above considering the characteristic zero case, or the case where p#G, pq “ 1. One shows that both

#Ĝ and the number of conjugacy classes in G equal dimk krGs{rkrGs, krGss. This uses an isomorphism

of k-algebras:

(1) krGs –
ź

pπ,V qPĜ

EndkpV q.

Thus, at the level of k-vector spaces, we have:

krGs{rkrGs, krGss –
ź

pπ,V qPĜ

EndkpV q{rEndkpV q,EndkpV qs –
ź

pπ,V qPĜ

k

(this does not make sense at the level of rings, because rkrGs, krGss is not a left ideal in krGs). Hence

#Ĝ equals dimk krGs{rkrGs, krGss, and to complete the proof, one shows that rkrGs, krGss is the set of

elements
ř

gPG agg P krGs with the property that for each conjugacy class C Ă G,
ř

gPC ag “ 0 - note

that this forces #Ĝ “ dimkpkrGs{rkrGs, krGssq to be the number of conjugacy classes in G.

Of course, this proof does not work when p#G, pq ‰ 1. For instance, (1) above is no longer true, though

it becomes true if on the left-hand side we replace krGs with krGs{radpkrGsq.

Thus, #Ĝ is actually the dimension of the k-vector space
krGs

pradpkrGsqq ` rkrGs, krGss
(I may have care-

lessly omitted the ‘`’ on the board). One has to then show that this dimension equals the number of

p-regular conjugacy classes. We will not prove this result, but merely remark that the presence of the

radical brings in conditions that involve raising elements of G to large p-powers, and raising elements

of a conjugacy class of G to a large p-power takes it to a p-regular conjugacy class.

Example 1.7.3. The group S3 consisting of the permutations of t1, 2, 3u has three conjugacy classes

- the singleton conjugacy class containing just the identity element, the three-element conjugacy class

consisting of the transpositions each of which has order (exactly) 2, and the two-element conjugacy class

consisting of the three cycles each of which has order (exactly) 3.

So, while there are three conjugacy classes (and hence S3 has exactly three irreducible representations

up to isomorphism in characteristic zero), only two of these conjugacy classes are 3-regular, so the above
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theorem tells us that S3 has exactly two irreducible representations over F̄3, up to isomorphism, so let

us see this explicitly.

First, there are two ‘obvious’ irreducible representations of S3 over F̄3: the trivial representation, and

the ‘sign representation’ or the ‘sign character’, which is by definition the composite:

S3 Ñ S3{A3
–
Ñ t˘1u ãÑ F̄3 “ GL1pF̄3q,

where A3 Ă S3 is the alternating group consisting of the three cycles and the identity element, which is

a normal subgroup of S3. Thus, we need to see that every irreducible representation of S3 is isomorphic

to one of these. These are clearly the only irreducible representations (up to isomorphism) that factor

through the two-element group S3{A3, so it is enough to show that any irreducible representation

ρ : S3 Ñ GLF̄3
pV q, where V is a finite dimensional vector space over F̄3, is trivial on A3. The subspace

of V consisting of A3-fixed vectors is S3-invariant (by the normality of A3 in S3), and nonzero (by

Lemma 1.3.3), and hence equals V by the irreducibility of ρ, forcing ρ to be trivial on A3 Ă S3, as

desired.

1.8 Indecomposable modules and the Krull-Schmidt theorem. As we said earlier, a left krGs-

module is not in general the direct sum of its Jordan-Holder factors, and hence cannot be reconstructed

from them. One therefore also tries to study left krGs-modules in terms of modules which may not be

simple, but are ‘indecomposable’ in the following sense:

Definition 1.8.1. A left A-module M is said to be indecomposable if M cannot be written as the direct

sum of two proper left A-submodules of M .

So another approach to studying left krGs-modules could be to write a left krGs-module as a direct sum of

indecomposable modules, and then study the indecomposable left krGs-modules. But this immediately

begs the question of whether there is a well-defined notion of ‘indecomposable components’ of a left

krGs-module, and the famous Krull-Schmidt theorem asserts that this is the case for left modules of

finite length over krGs (i.e., for finite dimensional representations):

Theorem 1.8.2 (The Krull-Schmidt Theorem). Let E be a left module of finite length over a k-algebra

A that is finite dimensional as a k-vector space. Then:

(i) E has a decomposition E “M1 ‘ ¨ ¨ ¨ ‘Mn into indecomposable left modules.

(ii) The multiset tM1, . . . ,Mnu (its elements considered up to isomorphism) is unique. In other words,

if E “ M1 ‘ ¨ ¨ ¨ ‘Mn “ M 1
1 ‘ ¨ ¨ ¨ ‘M 1

r, where each Mi and each M 1
j are indecomposable, then

n “ r, and there exists a permutation σ P Sn such that Mi –M 1
σpiq for each i.

Of course, in the above theorem, Mi will in general be only isomorphic to M 1
σpiq - Mi and M 1

σpiq will

not be the same left A-submodule of M , but only be two possibly distinct left A-submodules of M

isomorphic to each other - this is already the case for A “ krGs when G is the trivial group.
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When we decompose a representation E of G in characteristic zero into irreducible subrepresentations,

the decomposition is not canonical on the nose, but the sum of all subrepresentations of E isomorphic

to a given representation σ is canonical - it is called the σ-isotypic component of E. But an analogous

assertion is not true for decomposition into indecomposable left krGs-modules: in the situation of the

above theorem, the subspace of E given as
à

t1ďiďn|Mi–σu

Mi will not in general be equal (but only be

isomorphic) to
à

t1ďjďn|M 1
j–σu

M 1
j . For instance, this is the case with G “ Z{2Z when p “ 2, since the left

krGs-module krGs‘k (the factor k being the trivial representation of G considered as a left krGs-module)

can also be decomposed as ιpkrGsq ‘ k, with ι : krGs ãÑ krGs ‘ k being defined by a ÞÑ pa, a ¨ 1q.

1.9 Projective indecomposable modules and projective covers. Note: For the rest of this

lecture, we will often simply say an ‘A-module’ or an ‘A-submodule’ to mean a left A-module or a left

A-submodule, etc.

Recall that an A-module P is called projective if for any surjection λ : M �M2 of A-modules, the map

HomApP,Mq Ñ HomApP,M
2q given by ϕ ÞÑ λ ˝ ϕ surjective, i.e., if the dotted arrow in the following

diagram necessarily exists:

M // M2 // 0

P

aa OO .

The projective indecomposable krGs-modules play an important role in studying the representation

theory of G. They also happen to have many nice properties, as we shortly state.

First, using that dimk krGs ă 8, one can prove:

Lemma 1.9.1. Suppose M is a krGs-module of finite length. Then:

(i) There exists a projective krGs-module P and a surjection ϕ : P Ñ M of krGs-modules which is

‘essential’ in the sense that ϕ|N is not surjective for any proper krGs-submodule N Ă P .

(ii) The krGs-module P in (i) above is unique up to (a non-unique) isomorphism (though the map ϕ

is not).

Definition 1.9.2. Such a P or a pP,ϕq as in the above lemma is called a projective cover of M .

Here is one reason why the above lemma is nice. Recall that every module is the quotient of a free

module (which is automatically projective). But such a free/projective module quotienting to a given

module is highly non-unique. The above lemma says that there is a ‘good’ way of choosing a projective

module with M as a quotient, which is in some sense minimal (projective covers don’t exist in the

kind of generality that injective envelopes to, but the fact that krGs is Artinian and that M is of finite
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length ensures the existence of a projective cover). An equivalent characterization of a projective cover

P ÑM of M in our situation is that the resulting map

P {radpP q – P {radpAqP ÑM{radpAqM –M{radpMq

should be an isomorphism (so that P is minimal enough to ensure that its maximal semisimple quotient

P {radpP q is no bigger than M{radpMq).

Example 1.9.3. As Anand Chitrao pointed out in response to a question, although G is finite, krGs

can have infinitely many indecomposable modules up to isomophism - e.g., this is the case with G “

Z{pZ ˆ Z{pZ. This example is worked out towards the end of Section 4 (in Chapter II) of Alperin’s

‘Local Representation Theory’.

Assume that k “ k̄. The infiniteness in the above exercise goes away if we restrict to projective

indecomposable modules:

Theorem 1.9.4. Assume that k “ k̄. Then exists a bijection between the set of isomorphism classes

of simple krGs-modules and the set of isomorphism classes of indecomposable projective krGs-modules,

that takes any simple krGs-module S to a projective cover of S. The inverse of this isomorphism takes

a projective indecomposable module P to the module P {radpP q (in particular, for any indecomposable

projective krGs-module P , the semisimple module P {radpP q is actually simple).

The proof of this theorem is not difficult; apart from playing with projectivity in standard ways, e.g.,

as indicated by the following commutative diagram

P //

��

P {radpP q

–

��
Q // Q{radpQq

,

one uses a crucial property that holds in the category of krGs-modules, that a krGs-module turns out

to be indecomposable if and only if its endomorphism ring is a local ring (where the assumption that

k “ k̄ is used). I think I missed stating this assumption k “ k̄ in the lecture, and I certainly missed it

in the earlier crude draft of these notes. The standard references use k “ k̄, but I haven’t checked if

this assumption can be removed.

1.10 Three more properties of projective indecomposable modules. Suppose P is a projec-

tive indecomposable krGs-module. Then there are two obvious semisimple modules one can associate

to P - the maximal semisimple submodule socpP q and the maximal semisimple quotient P {radpP q.

If we know that P corresponds to a simple krGs-module S as per Theorem 1.9.4, then P {radpP q – S.

The following non-obvious theorem says that socpP q is isomorphic to S too.

Theorem 1.10.1. If P is a projective indecomposable krGs-module, then P {radpP q – socpP q.
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In other words, informally speaking, the structure of the ‘submodule lattice’ of P can be pictorially

represented as follows:

P

S:“P {radP

radpP q

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

socpP q

S–socpP q

1

(unlike the theorem, the above informal diagram only represents a very typical case, and is not meant

to imply that socpP q is always contained in radpP q, which may not be the case, e.g., it is not the case

if P is simple).

The next property concerns the multiplicity of a projective indecomposable krGs-module P in the

regular representation (i.e., krGs viewed as a module over itself), in the sense of Theorem 1.8.2:

Theorem 1.10.2. Assume that k “ k̄. Let S be a simple krGs module and P the corresponding

projective indecomposable module. The multiplicity of P in krGs (in the sense of the decomposition of

Theorem 1.8.2) equals the dimension dimk S of S as a k-vector space.

Note that in the case where k has characteristic zero, or where p#G, pq “ 1, any simple krGs-module S is

also projective (so P “ S), and its multiplicity in the regular representation krGs equals dimk S. Thus,

when we generalize from characteristic zero to characteristic p, the ‘dimk S’ term no longer remains

equal to the Jordan-Holder multiplicity of S in krGs (as defined in Subsection 1.6) , but rather equal to

the Krull-Schmidt multiplicity of P in krGs. In other words, the same S of characteristic zero has two

different analogues in characteristic p, namely S and P , and in generalizing the theorem on multiplicities

in the regular representation from characteristic 0 to characteristic p, one of the S’s remains S while

the other becomes P .

The proof of the above theorem is actually easy, and here is a sketch (a proof if you know the identifi-

cations mentioned in it). If krGs “
À

i ciPi, with ci the multiplicity of the projective indecomposable

module Pi corresponding to the simple module Si “ Pi{radpPiq, then

krGs{pradkrGsq –
à

i

cipPi{pradkrGs ¨ Piqq “
à

i

cipPi{radpPiqq “
à

i

ciSi.

Now krGs{pradkrGsq can be identified with
ś

i EndkpSiq (thanks to the assumption k “ k̄) as a map of

GˆG-representations, and then the equality krGs{pradkrGsq –
À

i ciSi forces ci “ dimk Si.
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Example 1.10.3. Let us see how Theorem 1.10.2 works out when G “ S3 and k “ F̄3. We saw in

Example 1.7.3 that S3 has exactly two simple modules up to isomorphism, the trivial representation

and the sign character. So we would like to see that S3 has exactly two indecomposable projective

modules, each occurring in krS3s with multiplicity one. I leave the following for you to check. Thinking

of S3 as the dihedral group generated by elements x, y with x3 “ y2 “ 1 and yxy´1 “ x´1, check that

we have a decomposition of krS3s into a direct sum of two left ideals:

krS3s “ krS3sp1´ yq ‘ krS3sp1` yq

(I wrote a more complicated expression in the lecture, which is not necessary for our purposes).

Thus, krS3sp1 ´ yq and krS3sp1 ` yq are projective krS3s-modules. Their indecomposability follows by

Lemma 1.3.3 once you check that the subgroup A3 Ă S3 of order 3 (which equals t1, x, x2u) has exactly

one fixed vector up to scaling, namely of the form p1 ` x ` x2qp1 ˘ yq, in each of krS3sp1 ´ yq and

krS3sp1` yq.

Check that the Jordan-Holder factors of krS3sp1 ´ yq are the sign character, the trivial character and

the sign character necessarily in that order, making it a projective cover of the sign character, and that

the Jordan-Holder factors of krS3sp1 ` yq are the trivial character, the sign character and the trivial

character necessarily in that order, making it a projective cover of the trivial representation.

A third property of projective indecomposable modules is the ‘symmetry of the Cartan matrix’, where

the Cartan matrix of G is defined as follows:

Definition 1.10.4. Let S1, . . . , Sn be the set of simple krGs-modules up to isomorphism, and P1, . . . , Pn

the corresponding projective indecomposable modules. Then the Cartan matrix of G (for the field k)

is defined to be the nˆn matrix rcijs, where for 1 ď i, j ď n, cij is the Jordan-Holder multiplicity of Si

in Pj (as defined in Subsection 1.6).

Proposition 1.10.5. Suppose k “ k̄. Then the Cartan matrix C is symmetric, i.e., cij “ cji for all

1 ď i, j ď n, with notation as in the above definition.

The above ‘surprising’ result has a beautiful explanation and proof in terms of ‘characteristic zero’

theory: Brauer and Nesbitt related the characteristic zero and characteristic p representation theories

of G, to get a beautiful factorization of C as a product tDD of matrices, where D is a (not necessarily

nˆ n) matrix called the ‘decomposition matrix’ of G, and where tD denotes the transpose of D. This

forces C to be symmetric, since tp tDDq “ tD t tD “ tDD.

Here are some more indulgently informal ideas regarding this approach. First (at least when k “ F̄pq,
one can pass from the algebraically closed field k to a finite extension Fq of Fp that is ‘large enough’

(depending on G). One can choose a finite extension K of Qp such that k “ Fq is the residue field of

the ring OK of integers of K. Then one proves the existence of a triangle of the following form, whose
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arrows we will not define precisely, the so called CDE triangle:

PkpGq

e $$

c // RkpGq

RKrGs

d

::
.

Here PkpGq is the set of finite Z-linear combinations of (isomorphism classes of) indecomposable pro-

jective krGs-modules, while RKpGq is the set of finite Z-linear combinations of (isomorphism classes

of) simple KrGs-modules, and the definition of RkpGq is obtained by replacing ‘K’ with ‘k’ in that of

RKpGq.

The horizontal arrow ‘c’ of the above diagram is what captures the matrix C. The downward (and

rightward) arrow ‘e’ involves lifting projective krGs-modules first to projective OKrGs-modules, which

give elements of RKpGq, while the upward (and rightward) arrow ‘d’ involves choosing G-invariant

lattices in KrGs-modules and reducing from OK to k.

The arrows ‘e’ and ‘d’ give us matrices D1 and D2 respectively with respect to obvious bases on their

sources and targets, resulting in a factorization C “ D1D2. One then shows that the above maps satisfy

a certain ‘adjointness’ relation that allows one to show that D1 “
tD2, so that C is a product of the

form tDD (with D “ D2), and hence symmetric.

1.11 Example: mod-p-representations of SL2pFpq.

Exercise 1.11.1. Show that the number of p-regular conjugacy classes in SL2pFpq is exactly p.

Hint: Think in terms of eigenvalues; how many conjugacy classes can correspond to a given pair pλ, λ´1q

of eigenvalues?

Therefore, we should have p irreducible representations of SL2pFpq up to isomorphism (by Theorem

1.7.2), if k “ k̄. Even without assuming k “ k̄, these turn out to be given by V1, . . . , Vp, where for

1 ď i ď p, Vi is a certain i-dimensional irreducible representation of SL2pFpq described as follows.

Vi can be described as the i-dimensional vector space consisting of homogeneous polynomials in krx, ys

of degree i´ 1, where g P SL2pFpq acts on a polynomial function f by:
˜˜

a b

c d

¸

¨ f

¸

px, yq “ fpax` cy, bx` dyq.

For those who know what symmetric powers are, here is another description. V1 is the space k2, thought

of as 2ˆ 1 column matrices, on which SL2pFpq acts by matrix multiplication from the left (this makes

sense because Fp Ă k). This representation is called the standard representation of SL2pFpq. For

1 ď i ď p, the representation Vi is then the pi ´ 1q-st symmetric power of V1 (the action of each

g P SL2pFpq on V1 also induces an action of g on each symmetric power of V1).
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Proving that V1, . . . , Vp are irreducible is not difficult, but it is not ‘obvious’ either. The proof of this

irreducibility may be said to involve an adapation of considerations from ‘highest weight theory’ for

finite dimensional lie algebras over, say, C. Of the representations V1, . . . , Vp, one can show that only

one is projective, namely, Vp. One knows a description of projective indecomposable covers for each Vi,

1 ď i ď p´ 1, but we will not go into it; a reference is Alperin’s ‘Local Representation Theory’.

Lecture 2 - Friday, December 13

2.1 Product decompositions of rings and central idempotents. We would like to discuss the

notion of blocks for the representations of G, or equivalently for modules over krGs.

This basically amounts to the following: if A “ A1 ˆ A2 ˆ ¨ ¨ ¨ ˆ An is a product of rings, we can

study A-modules by separately studying modules over A1, . . . , An (as we will see below). Much of this

subsection will be discussed using very simple exercises - please read through them even if you do not

work out every detail, since we will need them in the subsequent sections.

Let A be a ring. Suppose we know that A decomposes as a product A1ˆA2 of rings A1 and A2 (where

the addition and multiplication in A1 ˆA2 are defined component-wise).

Let e1 “ p1, 0q P A1 ˆA2 “ A and e2 “ p0, 1q P A1 ˆA2 “ A.

Exercise 2.1.1. Note/prove the following:

‚ e1, e2 are central idempotents in A, and thanks to this centrality, I1 :“ Ae1 and I2 :“ Ae2 are two-

sided ideals of A. Further, we have an isomorphism A – Ae1‘Ae2 (isomorphism as left A-modules).

‚ We have isomorphisms of rings A{I2 – A1 and A{I1 – A2, given by the ‘projection’ maps px, yq`I2 ÞÑ

x and px, yq ` I1 ÞÑ y, respectively.

Exercise 2.1.2. (i) Conversely, given central idempotents e1, e2 P A with e1 ` e2 “ 1, show that

the addition and multiplication inherited by A1 :“ Ae1 and A2 :“ Ae2 from A make them into

rings with multiplicative identities e1 and e2 respectively, and that the map A Ñ A1 ˆ A2 given

by a ÞÑ pae1, ae2q is an isomorphism of rings.

(ii) Given a decomposition A “ I1‘I2 of the left A-module A as a direct sum of two left A-submodules,

where I1, I2 Ă A are left ideals (equivalently, left A-submodules of A), write 1 “ e1` e2 according

to this decomposition. Assume further that I1 and I2 are two-sided ideals of A, and not just

left ideals. Show that e1 and e2 are central idempotent elements of A, so that by (i) we have a

decomposition A – A1 ˆA2 of A as a product of rings.

Hint: pe1 ` e2q
2 “ e2

1 ` e2
2 ` e1e2 ` e2e1. Note that e1e2, e2e1 P I1 X I2 “ t0u, so 1 “ e2

1 ` e2
2 is

again a decomposition of 1 according to A “ I1 ‘ I2, forcing e2
1 “ e1 and e2

2 “ e2.

Note: Henceforth, we will often drop ‘left’ for simplicity: an ‘A-module’ will mean a left A-module, an

‘ideal’ of A will mean a left ideal of A, a two-sided ideal of A will be qualified with ‘two-sided’ etc.
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Exercise 2.1.3. Prove the following:

(i) Any A1-module M1 can be thought of as an A-module annihilated by I2, because A1 – A{I2 is

a quotient of A. This way, A1 modules can be thought of as precisely the A-modules annihilated

by I2. Similarly, A2-modules are precisely the A-modules annihilated by I1.

(ii) Given an A-module M , we can uniquely write M “M1‘M2, where M1 ĂM is an A-submodule

annihilated by I2, and M2 Ă M is an A-submodule annihilated by I1 (take Mi to be the A-

submodule of M consisting of all elements annihilated by I3´i). Thus, M1 is an A1-module

thought of as an A-module, and M2 is an A2-module thought of as an A-module.

(iii) Every map ϕ : M Ñ N of A-modules respects the decomposition of (ii) - i.e., if we write M “

M1 ‘M2 and N “ N1 ‘N2 as above, then ϕpM1q Ă N1, and ϕpM2q Ă N2.

(iv) A module M of finite length over A is annihilated by I2 (i.e., is an A1-module thought of as

an A-module) if and only if every composition factor of M is annihilated by I2, and a similar

statement applies to I1 and A2 in place of I2 and A1.

For those who are familiar with the language of categories and functors, the upshot is that the category

of A-modules can be thought of as a product of the category of A1-modules and the category of A2-

modules. Thus, to study A-modules, it is enough to separately study A1-modules and A2-modules.

Now the same could be done with decompositions of A into a product of n rings as opposed to two

rings:

Exercise 2.1.4. Let n P N. Generalize and extend the considerations of and preceding Exercise 2.1.2

by establishing bijections between the following three kinds of objects:

(i) Decompositions A “ I1 ‘ ¨ ¨ ¨ ‘ In of A into a direct sum of n two-sided ideals;

(ii) Expressions 1 “ e1 ` ¨ ¨ ¨ ` en of 1 P A into a sum of n central idemopotents e1, . . . , en; and

(iii) Expressions A – A1 ˆ ¨ ¨ ¨ ˆ An of the ring A as a product of n rings (up to a suitable notion of

equivalence).

In each case, be clear on up to what equivalence you are considering the decompositions.

Exercise 2.1.5. Generalize the considerations of Exercise 2.1.3 to the case of decompositions A “

A1ˆ ¨ ¨ ¨ˆAn of A into a product of n rings, so that studying left modules over A reduces to separately

studying left modules over the possibly much smaller rings A1, . . . , An.

2.2 The definition and some first properties of blocks. How do we apply this to the ring

A :“ krGs? First, there may be several decompositions of krGs into a product of rings (or equivalently

a direct sum of two-sided ideals), so we need to find a ‘canonical’ choice of decomposition (else different

people will work with different decompositions and that will result in confusion). In other words, we

want a unique decomposition instead of an arbitrary decomposition.
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This is done by the following easy exercise, which says that one gets such a decomposition by decom-

posing A into ‘as many factors as possible’, or even by ‘keeping on decomposing A into a product of

factors until one cannot go any further’:

Exercise 2.2.1. Let A “ krGs. If A “ I1 ‘ ¨ ¨ ¨ ‘ In and A “ I 11 ‘ ¨ ¨ ¨ ‘ I 1r are two decompositions

of A into two-sided ideals, such that no Ii or I 1j is a direct sum of smaller two-sided ideals of A, then

show that n “ r, and that the multi-sets tI1, . . . , Inu and tI 11, . . . , I
1
ru are equal (i.e., D a permutation

σ P Sn “ Sr such that Ii “ I 1σpiq inside A for each i).

By applying Exercise 2.1.4 together with the above exercise, one gets a suitably canonical decomposition

of krGs into a product A1ˆ¨ ¨ ¨ˆAn of rings, such that none of the rings A1, . . . , An can be decomposed

into a product of smaller rings.

By Exercise 2.1.5, studying modules over krGs is equivalent to separately studying modules over

A1, . . . , An.

The term ‘block’ or a ‘block of A’ is used for either of the following two things (and informally also for

related constructs):

‚ Any one Ai from among the factor rings A1, . . . , An occurring in the above decomposition of krGs

into a product of rings that cannot be decomposed any further; and

‚ For any fixed Ai as above, the collection of modules over Ai, thought of as modules over A via the

surjection A Ñ Ai arising as a projection from the product decomposition A “ A1 ˆ ¨ ¨ ¨ ˆ An. Any

module belonging this collection will be referred to as ‘belonging to this block’

Thus, to say that studying A-modules reduces to separately studying modules over the Ai, becomes in

this language the assertion that to study modules over A, it is enough to separately study blocks of A.

For instance, to study how the indecomposable A-modules look like, one asks how indecomposable

modules over or in any given block of A look like.

Remark 2.2.2. A decomposition krGs “
À

ciPi of krGs into indecomposable projective modules is its

decomposition into a direct sum of left ideals, where as the block decomposition involves decomposition

into two-sided ideals. Thus, one would typically expect one block to contain multiple indecomposable

projectives, as seen in the example of S3 when p “ 3, discussed below.

Example 2.2.3. In Examples 1.7.3 and 1.10.3 of Lecture 1, we saw that S3 has two simple modules

up to isomorphism, and hence two indecomposable projective modules up to isomorphism. But both

these belong to the same block, as each indecomposable projective module was seen to have both the

non-isomorphic simple modules as composition factors. Therefore, we conclude that S3 has only one

block.

One advantage of the notion of blocks - apart from that a block consists of modules over a smaller ring

and hence is typically simper to describe (e.g., one can often find a concrete description of the collection
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of indecomposable modules over a given block) - is that often it is blocks that get transferred to a bigger

group from a smaller group.

Thus, for instance, it turns out that SL2pFpq has three blocks (to be discussed later), and only two of

these will be accounted for by a correspondence (called the Brauer correspondence) from blocks for the

subgroup B of SL2pFpq consisting of the upper triangular matrices of SL2pFpq.

Remark 2.2.4. Another way to think of blocks involves thinking of krGs as a krGˆGs-module. Recall

the regular representation of G ˆ G on krGs given by pg1, g2qp
ř

gPG aggq “
ř

gPG ag ¨ pg1gg
´1
2 q (i.e.,

pg1, g2q P GˆG acts by left multiplication by g1 together with right multiplication by g´1
2 ). This being

a representation of GˆG turns krGs into a krGˆGs-module. It is immediate that the two-sided ideals

in krGs are precisely the krGˆGs-submodules of krGs. Thus, decompositions of krGs as direct sums of

two-sided ideals which cannot be decomposed further are the same as the decompositions of krGs into

indecomposable krGˆGs-modules. In other words, blocks can also be thought of as the indecomposable

components of the krG ˆ Gs-module krGs in the sense of Theorem 1.8.2 (though in this case they are

defined on the nose and not just up to isomorphism).

When do two simple modules belong to the same block? The following remark gives a simple sufficient

condition, explaining that any two Jordan-Holder factors of an indecomposable module belong to the

same block.

Remark 2.2.5. Not every module belongs to a block, but every module is uniquely a direct sum of

submodules each belonging to a block. It follows that every indecomposable module has to belong

to some block. On the other hand, part of Exercise 2.1.5, namely the part that generalizes Exercise

2.1.3(iv), says in particular that a finitely generated krGs-module M belongs to a particular block

if and only each of its composition factors do. We conclude that any two composition factors of an

indecomposable module belong to the same block.

Unfortunately, the converse is not true: ‘belonging to the same block’ is an equivalence relation, but

it turns out that ‘being composition factors of a common indecomposable module’ is not - the latter

relation is not transitive. The following proposition tells us how to ‘fix’ this (namely, by taking the

transitive closure of the latter relation): while two simple modules belonging to the same block may not

be composition factors of a common indecomposable module, one can pass from one of them to another

through a chain of simple modules, any two successive elements of which are composition factors of a

common indecomposable module (the proposition gives two stronger versions of this).

Proposition 2.2.6. Let S, T be simple krGs-modules. Then the following are equivalent:

(i) S, T lie in the same block;

(ii) There exist simple modules S “ S1, . . . , Sm “ T such that for each 1 ď i ď m´ 1, there exists an

indecomposable projective krGs-module having both Si and Si`1 as composition factors; and
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(iii) There exist simple A-modules S “ T1, . . . , Tn “ T such that for 1 ď i ď n ´ 1, there exists a

nonsplit extension between one of Ti, Ti`1 and the other: in other words, there exists a module

M , not isomorphic to Ti ‘ Ti`1 (this is the meaning of ‘non-split’) such that either Ti Ă M and

M{Ti – Ti`1, or Ti`1 ĂM and M{Ti`1 – Ti.

For the proof of this proposition and that of various results that are going to be quoted, a reference is

Chapter IV of the book ‘Local Representation Theory’ by Alperin.

Note that (ii) and (iii) are sufficient conditions by Remark 2.2.5, so the main difficulty, if it can be

called so, is to show that they are also necessary, i.e., implied by (i).

2.3 Review of induced representations. (This subsection was assumed, and not discussed, in the

lecture).

We would like to transfer representations between two groups, so let us review two ‘standard’ ways to

do so. Let H Ă G be a subgroup of our finite group G.

Given a krGs-module V , there is an obvious way to get a krHs-module - since H is a subgroup of G, we

can restrict the action of G on V to H. In other words, krHs is naturally a subring of krGs, and every

krGs-module V can be thought of as a module over the smaller ring krHs. This representation is called

the representation of H obtained from V by restriction from G to H, and will be denoted V |H .

Given a krHs-module U , there is a slightly less obvious way to get a krGs-module from it. Namely, one

can define the k-vector space:

UG :“ tf : GÑ U | fphgq “ h ¨ fpgq @h P Hu.

We can then upgrade UG from a k-vector space to a krGs-module, i.e., to a representation of G, by

making g0 P G act on f P UG by requiring that for all g P G:

pg0 ¨ fqpgq “ fpgg0q P U

- check that this indeed defines a representation of G.

The krGs-module UG is called the representation of G or the krGs-module obtained by inducing U from

H to G. This process of obtaining UG from U is called induction of representations. Common sense

modifications of this terminology will be resorted to: e.g., will refer to UG as an ‘induced module’ etc.

(Alperin’s book typically uses U for a module for a bigger group and V for a related module for a smaller

group; I apologize for getting these switched, but hope these changed conventions hardly matter).

The above definition might look a bit artificial unlike the previous ‘restriction’ V ÞÑ V |H , and it is

probably more natural to think of the krGs-module UG in terms of two of its properties that relate it

to the restriction V ÞÑ V |H discussed above, that we are going to recall.
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To do this, first note that there are k-linear maps:

ε : U Ñ UG and δ : UG Ñ U,

where for all u P U , εpuq P UG is the map GÑ U given by:

εpuqpgq “

$

&

%

g ¨ u, if g P H, so that g ¨ u is defined; and

0, otherwise
,

and, for all f P UG, δpfq is defined to be the element fp1q P U .

Note that ε and δ are not just k-linear, but actually maps of krHs-modules (where UG is thought of as

a krHs-module via restriction), though of course they cannot be maps of krGs-modules since U is only

a krHs-module and not a krGs-module.

The following result, called Frobenius reciprocity, are the two properties referred to above as relating

induction to restriction:

Proposition 2.3.1. Let U be a krHs-module, and V a krGs-module.

(i) The map

HomkrGspU
G, V q Ñ HomkrHspU, V |Hq

given by precomposition with ε (i.e., by the prescription T ÞÑ T ˝ εq is an isomorphism of k-vector

spaces.

(ii) The map

HomkrGspV,U
Gq Ñ HomkrHspV |H , Uq

given by post-composition with δ (i.e., by the prescription T ÞÑ δ˝T ) is an isomorphism of k-vector

spaces.

For those who are familiar with the language of categories and functors, (i) of this proposition says that

induction is a left-adjoint functor to restriction, and (ii) of this proposition says that restriction is a

left-adjoint functor to induction.

2.4 The easy case of the Green correspondence. As mentioned in Lecture 1 (see Exercise 1.6.3),

since we are working over ‘bad characteristic’, i.e., pp,#Gq ‰ 1, just knowing the Jordan-Holder factors

of a finite length krGs-module M does not allow us to reconstruct M up to isomorphism.

However, we also know that a finite length krGs-module M decomposes as a direct sum of indecompos-

able modules, so if we know how to describe all indecomposable modules over krGs, then we can construct

every finite length krGs-module up to isomorphism. But this is much harder than describing all simple

modules over krGs - for instance, as mentioned last time, even for an easy group like G “ Z{pZˆZ{pZ,

there are infinitely many indecomposable krGs-modules (i.e., indecomposable representations of G) up

to isomorphism.
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However, in many situations, it turns out to be possible to study some of the indecomposable represen-

tations of a group G in terms of indecomposable representations of a subgroup L. A result of this nature

is the Green correspondence. In this subsection, we state the Green correspondence in an especially

easy case: namely, in the case where, for a p-Sylow subgroup P Ă G, we have that for every x P G,

xPx´1 X P equals either the whole of P or the trivial group. Note that this is equivalent to requiring

that the intersection of any two distinct p-Sylow subgroups of G is the trivial group t1u.

(Warning: the next two paragraphs are redundant, and have been put in simply to explain the theorem

using more ‘English’ rather than Mathematics).

Let L be the normalizer of the p-Sylow subgroup P Ă G. The Green correspondence then gives a

bijection

(2)

"

Isomorphism classes of
non-projective indecomposable

krGs-modules

*

Ø

"

Isomorphism classes of
non-projective indecomposable

krLs-modules

*

- the forward direction (from G to L) is given by (i) of Theorem 2.4.1 below, the reverse direction from

L to G is given by (ii) of the same theorem.

The idea behind defining such a correspondence is as follows:

‚ If V is an indecomposable krGs-module, an obvious way to get a krLs-module is to restrict the

G-representation V to L to get a representation V |L of L. The problem is that V |L may not be

indecomposable.

‚ If U is an indecomposable krLs-module, an obvious way to get a krGs-module is to induce the

L-representation U to G to get a representation UG of L. The problem is that UG may not be

indecomposable.

In the Green correspondence, one shows (in our easy case of trivial intersections of Sylow subgroups)

that though V |L is not indecomposable, its ‘Krull-Schmidt’ decomposition into indecomposable krGs-

modules has a unique non-projective component, which may be taken to be the indecomposable krLs-

module UpV q associated to V . A similar comment applied to the second bullet point above gives an

indecomposable krGs-module V pUq associated to U .

So here is the formal statement of the Green correspondence in the easy case we are currently considering.

Theorem 2.4.1. Assume that the intersection of any two distinct p-Sylow subgroups of G is the trivial

group. Let P Ă G be a p-Sylow subgroup, and L its normalizer. Then:

(i) Given an indecomposable krGs-module V , the krLs-module V |L can be written as a direct sum

V |L “ UpV q‘X, where UpV q is a non-projective indecomposable krLs-module and X is a projec-

tive (possibly decomposable) krLs-module: note that UpV q and X are unique up to isomorphism

by the Krull-Schmidt theorem (Theorem 1.8.2).

(ii) Given an indecomposable krLs-module U , the krGs-module UG obtained by inducing U from L to

G can be written as a direct sum UG “ V pUq‘Y , where V pUq is a non-projective indecomposable
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krGs-module, and Y is a projective (possibly decomposable) krGs-module: note that V pUq and Y

are unique up to isomorphism by the Krull-Schmidt theorem.

(iii) There exists a bijection
"

Isomorphism classes of
non-projective indecomposable

krGs-modules

*

Ñ

"

Isomorphism classes of
non-projective indecomposable

krLs-modules

*

,

which takes a non-projective indecomposable krGs-module V to the non-projective indecomposable

krLs-module UpV q described in (i). Moreover, the inverse of this (obviously unique) bijection takes

a non-projective indecomposable krLs-module U to the non-projective indecomposable krGs-module

V pUq described in (ii).

We will not comment on the proof of this theorem at all, except for remarking that it uses the theorem

of Mackey on how the restriction of an induced representation decomposes - i.e., how the representation

pσH1q|H2 of H2 decomposes, where H1, H2 Ă G are subgroups and σ is a representation of H1.

Example 2.4.2. While the condition that the intersection of any two distinct p-Sylow subgroups

of G be trivial is quite restrictive, there is a nice special case in which it is satisfied: namely, it is

satisfied by SL2pFpq, simply because every p-Sylow subgroup of that group has order p. Thus, in

this case the Green correspondence gives a bijection between the isomorphism classes of non-projective

indecomposable representations of SL2pFpq and those of the subgroup B of upper triangular matrices

of SL2pFpq - it is left to the reader, if any, to check that B is indeed the normalizer of some p-Sylow

subgroup of SL2pFpq. Note that B is a semidirect product of Fˆp with Fp and is solvable - barely a

step away from being abelian - and is hence a much simpler group than SL2pFpq. Thus, the set of

indecomposable representations of B (up to isomorphism) is much easier to study.

For the general case of the Green correspondence (without requiring the intersection of distinct p-Sylow

subgroups to be trivial), the statement of Theorem 2.4.1 needs to be modified: the bijection (2) needs

to now take the form (informally speaking):

(3)

"

Isomorphism classes of
‘sufficiently non-projective’

indecomposable krGs-modules

*

Ø

"

Isomorphism classes of
‘sufficiently non-projective’

indecomposable krLs-modules

*

.

But what does ‘sufficiently non-projective’ mean? To explain that, we need to introduce the notion

of a ‘vertex’ for an indecomposable representation, which is a certain p-subgroup of G (or rather, a

conjugacy class of p-subgroups of G) that gives an idea of how non-projective the representation is.

2.5 Relative projectivity, vertices and sources. In characteristic zero or when p#G, pq “ 1,

it follows from the decomposition of the regular representation (the krGs-module krGs) that every

simple krGs-module is projective, so that by complete reducibility every krGs-module of finite length is

projective.

This is of course not true when p#G, pq ‰ 1, for otherwise every indecomposable module would be

simple.
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The non-projectivity of a krGs-module W means, by definition, that a surjection ϕ : V � W of krGs-

modules may not have a krGs-linear section, i.e., there may not exist a map s : W Ñ V of krGs-modules

such that ϕ ˝ s equals the identity on W (of course, there will exist k-linear maps s : W Ñ V such that

ϕ ˝ s equals the identity on W , but one will in general not be able to choose such an s to be a map of

krGs-modules).

How do we measure this failure of projectivity? The failure of projectivity is due to p#G, pq being

greater than one or equivalently, to G having a nontrivial p-Sylow subgroup P . Let us take a re-look

at this:

If ϕ : V � W is a surjective map of krGs-modules (in particular of krP s-modules), then whenever ϕ

has a krP s-linear section s1 : W Ñ V , we claim that it also has a krGs-linear section s : W Ñ V . To

see this, suppose that s1 : W Ñ V is krP s-linear section, so that s1pwq “ p´1ps1pp ¨ wqq for all w P W

and p P P . Thus, if g P G and w P W , g´1ps1pg ¨ wqq depends only on the image 9g of g in P zG, so we

may denote it by 9g´1s1 9gpwq. Now, define s : W Ñ V by:

spwq “
1

#pG{P q

ÿ

9gPP zG

9g´1s 9gpwq,

where this formula makes sense because #pP zGq is relatively prime to p and hence invertible in k. I

leave it to you to check that s : W Ñ V is a section of krGs-modules. Note that this argument is an

adaptation of one of the two usual proofs of complete reducibility in characteristic zero.

The above paragraph can be informally summarized as saying that “any failure of projectivity already

manifests at the level of a p-Sylow subgroup P Ă G”. In other words, krGs-modules may not be

projective, but they are always ‘relatively P -projective’ in the sense of the following definition:

Definition 2.5.1. Let H Ă G be a subgroup. Then a krGs-module W is said to be relatively H-

projective if any surjection ϕ : V � W that admits a krHs-linear section, also admits a krGs-linear

section (i.e., “any obstruction to projectivity manifests at the level of the subgroup H”).

Example 2.5.2. (i) If H Ă G is a p-Sylow subgroup, we just saw that every krGs-module is relatively

H-projective (it is immediate that the same argument also works if H is only required to contain

a p-Sylow subgroup).

(ii) On the other hand, if H is the trivial group, it follows from definition that a krGs-module is

relatively H-projective if and only if it is projective. Thus, the notion of projectivity is a special

case of the notion of relative projectivity.

Just as with the usual notion of projectivity, there are many equivalent characterizations of relative

H-projectivity. One of them is as follows:

Lemma 2.5.3. A krGs-module V is relatively H-projective if and only if it is a direct summand of a

module of the form UG, where U is an H-module.
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To see how this generalizes the usual notion of projectivity, we simply need to observe that when

H “ t1u is the trivial group, UG is isomorphic to the free module krGsn, where n “ dimk U .

Note that, roughly speaking, ‘the larger H is, the easier it is to be relatively H-projective’. For instance,

clearly, a relatively H-projective module is also relatively H 1-projective for any subgroup H 1 of G that

contains H. In other words, we would like to think of a measure of the non-projectivity of an indecom-

posable representation of G as the ‘smallest’ p-group H contained in G such that the representation

is relatively H-projective, assuming that such an H exists and is unique for that property (so that it

is well-defined). But it is easy to see that such an H cannot possibly be unique: if H and H 1 are

conjugate by an element of G, an indecomposable representation of G is relatively H-projective if and

only if it is relatively H 1-projective. But one might hope for such an H to exist and be well-defined up

to conjugacy: the following theorem says that this can indeed be done.

Theorem 2.5.4. Let V be an indecomposable krGs-module. Then:

(i) There exists a p-subgroup Q Ă G (by this we mean that Q is a subgroup of G which is a p-group),

unique up to conjugacy, such that given any subgroup H Ă G, V is relatively H-projective if and

only if H contains a conjugate of Q.

(ii) Given a subgroup Q Ă G as in (i), there exists an indecomposable representation U of Q, unique

up to conjugacy by the normalizer NGpQq of Q in G, such that V is a direct summand of UG. 2

Definition 2.5.5. Given any indecomposable krGs-module V , a p-subgroup Q as in the above theorem,

which is unique up to conjugacy, is called a vertex of V . A representation σ as in the above theorem is

called a source of V .

It is this p-subgroup Q of G (well-defined up to conjugacy) that we would like to think of as a measure of

the non-projectivity of the indecomposable krGs-module V . The larger the vertex of an indecomposable

module is, the less projective it is.

Thanks to this notion of vertex, we can now state the Green correspondence - please note how the

statement of the following theorem generalizes (2) and makes (3) precise, and how it generalizes Theorem

2.4.1.

Theorem 2.5.6. Let Q be a p-subgroup of G, and L a subgroup of G that contains the normalizer

NGpQq of Q in G. Then:

(i) For any krGs-module V , the krLs-module V |L has a unique indecomposable summand UpV q that

has a vertex contained in Q 3 but does not have a vertex contained in any sQs´1 XQ, s P GzL;

2i.e., if the representation U is given as σ : Q Ñ GLkpUq, and if the representation σ1 of Q too satisfies the same property,

then there exists x P NGpQq such that σ1 is isomorphic to the representation Q Ñ GLkpUq defined by g ÞÑ σpx´1gxq.
3One should either require this containment in Q and the analogous one in (ii), or assume that Q is p-Sylow; in the

lecture I meant to do the latter, but might have the glaring omission of avoiding both in the lecture.
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in fact, V |L “ UpV q ‘X for a krGs-module X each of whose indecomposable components has a

vertex contained in sQs´1XL, for some s P GzL (X is ‘relatively more projective than UpV q’). 4

(ii) For any krLs-module U , the krGs-module UG has a unique indecomposable summand V pUq that

has a vertex contained in Q but does not have a vertex contained in any sQs´1 XQ, s P GzL; in

fact, UG “ V pUq‘Y for a krGs-module Y each of whose indecomposable components has a vertex

contained in sQs´1 XQ for some s P GzL (thus, Y is ‘relatively more projective than V pUq’).

(iii) The map of (i) sending V to UpV q gives a bijection
"

Isomorphism classes of indecomposable
krGs-modules with a vertex which is contained in Q
but is not G-conjugate to any sQs´1 XQ, s P GzL

*

Ø

"

Isomorphism classes of indecomposable
krLs-modules with a vertex which is contained in Q
but is not G-conjugate to any sQs´1 XQ, s P GzL

*

,

whose inverse is the map U ÞÑ V pUq of (ii).

(iv) The bijection of (iii) preserves vertices: i.e., V and UpV q have the same vertex for every krGs-

module V (and hence so also do U and V pUq for every krLs-module U).

2.6 Defect groups. Thanks to the notion of vertices, we can now define the notion of a defect group

of a block. Just as a vertex of an indecomposable module is a p-subgroup of G that measures its non-

projectivity, the defect group of a block of G is a p-subgroup that measures how far non-projective the

indecomposable modules belonging to the block can get. The formal definition will need the following

theorem, where we denote by ∆ : GÑ GˆG the ‘diagonal’ map given by g ÞÑ pg, gq:

Theorem 2.6.1. If B is a block of krGs, thought of as an indecomposable krGˆGs-module as in Remark

2.2.4, then it has a vertex of the form ∆pDq Ă GˆG, for a p-subgroup D of G.

Definition 2.6.2. Given a block B of G, a subgroup D as in the above theorem is called a defect group

of the block B. It is immediately verified that a defect group D of B is unique up to G-conjugacy,

thanks to the uniqueness of ∆pDq up to GˆG-conjugacy. The cardinality of any defect group of B is

called the defect of the block B (in the lecture, I erroneously used the term ‘defect’ for ‘defect group’).

Remark 2.6.3. The assertion that the krG ˆ Gs-module B has a vertex contained in ∆pGq follows

once we show that B is relatively ∆pGq-projective; this is an easy consequence of identifying krGs with

krpG ˆ Gq{∆pGqs as a G ˆ G-module - this identification can be done because pG ˆ Gq{∆pGq can be

identified (as a set) with G by pg, hq ÞÑ gh´1, and with this, the left-multiplication action of GˆG on

pGˆGq{∆pGq gets transferred to the regular action pg1, g2q ¨ g “ g1gg
´1
2 of GˆG on G.

Example 2.6.4. (i) If p#G, pq “ 1 (or when k has characteristic zero), we know that every simple

krGs-module is projective. It is easy to see that the block containing this module does not contain

any other simple krGs-module (where ‘other’ means ‘non-isomorphic’) - e.g., note that the isotypic

subspace of krGs corresponding to any irreducible representation of G is a two-sided ideal in this

case. Thus, in this situation, there are as many blocks as there are irreducible representations of

4To see why the set of conditions on the vertices of UpV q and the set of conditions on the indecomposable components

of X are mutually exclusive, see Lemma 2 in Section 11 of Alperin’s ‘Local Representation Theory’.
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G up to isomorphism. Since every indecomposable GˆG-module is simple and projective in this

case (note that p#pGˆGq, pq “ 1 as well), it follows that each block of G has defect zero.

(ii) If G is a p-group, then the trivial representation of G is the only irreducible representation of G

up to isomorphism, so by Remark 2.2.5, there is only one block of krGs-modules. It is easy to see

that the entire group G is a defect group of this block.

Here is a statement of a relation between vertices and defect groups, - crudely speaking, a defect group

for a block tightly bounds from above our measure of non-projectivity of the indecomposable modules

in the block:

Proposition 2.6.5. Let B be a block of G with a defect group D.

(i) For every indecomposable krGs-module V belonging to B, D contains a vertex of V .

(ii) There exists an indecomposable module in the block B which has D as a vertex.

Remark 2.6.6. For S3 when p “ 3, we saw in Example 2.2.3 that we have only one block. Its defect

group, being a 3-group, can only be the trivial group or the unique 3-Sylow subgroup A3 Ă S3. Since

not every S3-module is projective, Proposition 2.6.5 tells us that A3 is a defect group for this block.

2.7 The Brauer correspondence. I did not get time to discuss the Brauer correspondence in

the lectures. I will copy some results from Chapter IV of Alperin’s book below. While the Green

correspondence transfers indecomposable modules from a smaller group to a bigger group, the Brauer

correspondence transfers blocks (as opposed to individual representations) from a smaller group to a

bigger group. First, one has the following:

Definition 2.7.1. Let H Ă G be a subgroup, and b a block of H. If B is a block of G such that:

(i) Viewing B and b respectively as a krGˆGs-module and a krHˆHs-module, b is a direct summand

of the restriction B|HˆH ; and

(ii) B is the only block of G satisfying the property of (i);

then we say that B corresponds to b, and write B “ bG.

To be sure, there is an ‘if’ in the above definition: given a block b of H, a block B “ bG as above may

not exist. But there are many situations in which bG exists, as in the following lemma:

Lemma 2.7.2. Let b be a block of the subgroup H of G. Let D be a defect group of b. If H contains

the centralizer CGpDq of D in G, then bG is defined.

Note that the larger D becomes, the smaller CGpDq becomes, and hence it gets easier for H to contain

CGpDq. Thus, the blocks containing ‘sufficiently non-projective representations’ are those that can be

transferred to G.
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Now the theorem below, called Brauer’s First Main Theorem, says that if H contains the normalizer

NGpDq Ą CGpDq of D in G, then this correspondence works better:

Theorem 2.7.3. If D Ă G is a p-subgroup and H is a subgroup of G containing the normalizer NGpDq

of D in G, then the assignment b ÞÑ bG defines a bijection
!

blocks of H
with defect group D

)

Ø

!

blocks of G
with defect group D

)

.

Given the definition of b ÞÑ bG, which looks similar to the Green correspondence, one would obviously

ask what its relation with the Green correspondence is - rather, one can ask if the Green correspondence

is compatible in the obvious way (as in the following theorem) with the Brauer correspondence. The

following theorem, called Brauer’s Second Main Theorem, gives a result in this spirit:

Theorem 2.7.4. Let H Ă G be a subgroup, V an indecomposable krHs-module and U an indecomposable

krGs-module. Assume that:

‚ Some vertex Q of V satisfies CGpQq Ă H; and

‚ U is a direct summand of V |H (a condition one sees in the Green correspondence).

Then, denoting by b the block of H containing U , then the block bG of G is well-defined and contains V .

The principal block of G is the block containing the trivial representation. There is a Brauer’s Third

Main Theorem, asserting that under certain circumstances, only a principal block can transfer to a

principal block. We will skip even a precise statement of this result.

2.8 Blocks of SL2pFpq. Let us study the blocks of of G “ SL2pFpq, where we now assume that p

is odd. Recall the simple krGs-modules V1, . . . , Vp from Subsection 1.11. Of these, one can show that

the simple module Vp is projective, and that its block in SL2pFpq consists of those representations all

of whose Jordan-Holder factors are isomorphic to Vp - since Vp is projective, these are just direct sums

of finitely many copies of Vp (we are only considering finite length representations).

So there is at least one more block for SL2pFpq, one that contains some of V1, . . . , Vp´1. We claim that in

fact there are at least two more - namely, we claim that for 1 ď i, j ď p´1, Vi and Vj belong to distinct

blocks if i ı j pmod 2q. This uses the simple idea called the central character of a representation.

A representation ρ : G Ñ GLkpV q of G is said to have central character χ : ZpGq Ñ kˆ, where

ZpGq Ă G is the center of G, if ρpzgq “ χpzqρpgq for all z P ZpGq, g P G (where χpzqρpgq P GLkpV q

refers to the composite of ρpgq P GLkpV q with scalar multiplication by χpzq P kˆ). Schur’s lemma

immediately implies that every irreducible representation of G has a central character, if k “ k̄.

For our G “ SL2pFpq, we have ZpGq “ t˘1u - the identity matrix and the negative of it (we will

continue to denote these as ˘1 rather than as their matrix forms).

‚ For 1 ď i ď p´ 1, Vi has a central character χi, characterized by χip´1q “ p´1qi - in particular, the

central characters of Vi and Vj are different if 1 ď i, j ď p´ 1 and i ı j pmod 2q.
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‚ If two simple krGs-modules have different central characters, they belong to different blocks - this is

an easy consequence of the fact that for each z P ZpGq, the linear operator
ř

gPG agg ÞÑ
ř

gPG agpzgq

commutes with the action of G ˆ G (or equivalently with both left and right mutiplication of krGs

on itself), and hence taking the common generalized eigenspaces of these commuting operators gives

a decomposition of any two-sided ideal in krGs into smaller two-sided ideals.

Thus, we now have shown that there are at least three different blocks for G - the one containing Vp, at

least one each corresponding to the collection tVi | 1 ď i ď p´ 1, i oddu, and at least one corresponding

to the collection tVi | 1 ď i ď p´ 1, i evenu.

It so turns out that there are exactly three blocks for G: in other words, if 1 ď i, j ď p´1 and i, j are of

the same parity, then it so turns out that Vi and Vj belong to the same block. For this, one can produce

(and I am skipping the details) a non-split extension between Vi and Vp´1´i for each 1 ď i ă p´ 1, and

one between Vi and Vp`1´i for each 1 ă i ď p´ 1. If I correctly understood and remember a discussion

with Professor Dipendra Prasad, the nonsplit extensions between Vi and Vp´1´i (1 ď i ă p ´ 1) can

also be obtained by reducing suitable characteristic zero cuspidal representations of SL2pFpq (having

dimension p´ 1) modulo p, and the nonsplit extensions between Vi and Vp`1´i (1 ă i ď p´ 1) can also

be obtained by reducing suitable characteristic zero principal series representations of SL2pFpq (having

dimenion p ` 1) modulo p. Results in this spirit can be found in Section 4 of his article mentioned

earlier, namely http://www.math.iitb.ac.in/„dprasad/dp-mod-p-2010.pdf

In any case, the existence of these extensions means that Vi and Vp´1´i are in the same block for

1 ď i ă p ´ 1, while Vi and Vp`1´i are in the same block for 1 ă i ď p ´ 1. Using this, one can show

that Vi and Vj are in the same block if 1 ď i, j ď p´ 1 and i, j are of the same parity.

Moreover, one can show that Vi is not projective if 1 ď i ď p ´ 1, so that each of the two blocks of

SL2pFpq that do not contain Vp has a p-Sylow subgroup of SL2pFpq as its defect group.

2.9 The Brauer Correspondence for SL2pFpq. We saw that there are three blocks for SL2pFpq,
and that only two of them have a non-trivial defect group, which we may and do choose to be the

subgroup U of upper triangular matrices in SL2pFpq with the diagonal entries 1. Thus, one would like

to see how these two blocks arise via the Brauer correspondence. We continue to assume that p ą 2.

Thus, we need subgroups of SL2pFpq that contain the normalizer of our chosen defect group U of these

blocks, namely, those that contain the subgroup B of upper triangular matrices in SL2pFpq (now the

letter B will no longer stand for a block for G).

Let us look at what the blocks of B are. What are the simple krBs-modules? Since every simple

krBs-module has a U -fixed vector (U being a p-group), the normality of U in B forces (as we have seen

earlier) each simple krBs-module to consist entirely of U -fixed vectors.
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In other words, every irreducible representation of B factors through the quotient B � B{U , and it is

easy to check that the map

˜

a b

0 a´1

¸

ÞÑ a factors to an isomorphism of groups B{U Ñ Fˆp .

Thus, the irreducible representations of B are obtained by pull back via B Ñ B{U – Fˆp from the

irreducible representations of Fˆp , which being a cyclic group of order p ´ 1 (which is prime to p) has

exactly p´ 1 homomorphisms Fˆp Ñ kˆ “ GL1pkq as its irreducible representations.

What are these characters? Since k has characteristic p, we have Fp ãÑ k as fields, so Fˆp ãÑ kˆ as

groups. This inclusion θ : Fˆp ãÑ kˆ “ GL1pkq is one irreducible representation. The fact that Fˆp
is cyclic then implies that 1, θ, θ2, . . . , θp´1 are distinct homomorphisms Fˆp Ñ kˆ “ GL1pkq, so the

irreducible representations of B are obtained by pulling these back to B under B Ñ B{U – Fˆp . Let

us, by abuse of notation, denote the resulting characters B Ñ kˆ “ GL1pkq also by 1 “ θ0, θ, . . . , θp´1.

Thus:

θi

˜˜

a b

0 a´1

¸¸

“ ai.

These are the irreducible representations of B, i.e., the simple krBs-modules.

When are θi and θj in the same block? First, the same argument as with SL2pFpq tells us that for

1 ď i, j ď p´1, θi and θj belong to different blocks of i and j are of different parity. Namely,

˜

´1 0

0 ´1

¸

is central in B, and θi and θj take different values on this central element unless i ” j modulo 2.

Now let us see that θi and θj will belong to the same block if i ” j modulo 2. This is easy: a non-split

extension between θi and θi`2 is easily checked to be given by the representation:
˜

a b

0 a´1

¸

ÞÑ θi`1

˜˜

a b

0 a´1

¸¸

¨

˜

a b

0 a´1

¸

“

˜

ai`2 ai`1b

0 ai

¸

.

(In other words, all we have done is to note that the ‘standard’ representation of B given by the inclusion

B ãÑ G “ SL2pFpq ãÑ GL2pkq is a non-split extension between θ and θ´1, and to tensor it with θi`1 to

get a nonsplit extension between θi`2 and θi).

Thus, B has two blocks - one consisting of the θi with i even, and another consisting of the θi with i

odd. And SL2pFpq has exactly two blocks of nontrivial defect, each consisting of the Vi, 1 ď i ď p´ 1,

with a given parity.

So what is the Brauer correspondence from the two blocks of B to the two blocks of SL2pFpq with

nontrivial defect? For this, by the Theorem 2.7.4, we need to merely find out the blocks of the direct

summands of each Vi|B.

It is easily verified that, for 1 ď i ď p´ 1, the Jordan-Holder factors of Vi|B are θi´1, θi´3, . . . , θ´pi´1q.

Clearly, all of these belong to the unique block of B containing θi´1.
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Thus, for any 1 ď i ď p´ 1, the unique block of SL2pFpq containing Vi arises by Brauer correspondence

from the unique block of B containing θi´1.

Some material from the Tutorial on Friday, December 13

3.1 Blocks for S4. You may recall that, during the tutorial on Friday, December 13, Professor Ghate

suggested working out the blocks for S4 when the characteristic of k is 3, and accordingly the tutor,

Anand Chitrao, described them. So let us discuss it here. Assume that p “ 3 and that k “ k̄.

3.1.1 The number of irreducible representations up to isomorphism. First, how many simple krS4s-

modules are there up to isomorphism? We know that this is precisely the number of 3-regular conjugacy

classes in S4 (Theorem 1.7.2). Conjugacy classes in S4 are determined by their cycle type, and hence

representatives for conjugacy classes in S4 can be taken to be t1, p1, 2q, p1, 2qp3, 4q, p1, 2, 3q, p1, 2, 3, 4qu.

Of these, all but p1, 2, 3q are 3-regular, so there are four 3-regular conjugacy classes in S4, and hence

four irreducible representations of S4 up to isomorphism.

3.1.2 The list of irreducible representations of S4 up to isomorphism. Here are four irreducible repre-

sentations of S4:

(i) ρ1, the trivial character of S4, namely the map S4 Ñ kˆ “ GL1pkq taking the constant value 1.

(ii) ρ2, the sign character of S4, namely the unique nontrivial homomorphism S4 Ñ GL1pkq which

factors as:

(4) sgn : S4 Ñ S4{A4 – t˘1u ãÑ kˆ “ GL1pkq.

(iii) Each element of S4 acts by permutation on the standard basis te1, e2, e3, e4u of k4, and hence

extends k-linearly to a vector space automorphism of k4, resulting in a representation S4 Ñ

GLkpk
4q “ GL4pkq. This representation is not irreducible, because it has an S4-invariant subspace

given by

(5) Vstd :“ ta1e1 ` a2e2 ` a3e3 ` a4e4 | a1 ` a2 ` a3 ` a4 “ 0u.

This way, we get a representation ρ3 : S4 Ñ GLkpVstdq, which is three dimensional since Vstd is

three dimensional. This representation is called the standard representation of S4. I leave it to

you to check that this representation of S4 is irreducible.

(iv) A fourth representation of S4 is given by ρ4 : S4 Ñ GLkpVstdq, where Vstd is the three dimensional

vector space considered in (iii) above, given by ρ4pgq “ ρ3pgqsgnpgq, where ρ3 is as in (iii) and

sgnpgq is as in (4). It is immediate from the irreducibility of ρ3 that ρ4 is irreducible too.

However, to justify that we indeed have four pairwise nonisomorphic irreducible representations of S4

at this point, we need to show that the representations ρ3 and ρ4 are not isomorphic, i.e., that there
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exists no T P GLkpVstdq such that ρ3pgq “ Tρ4pgqT
´1 for all g P S4. This follows if we show that

det ρ3pgq ‰ det ρ4pgq for some g P S4. However, note that for all g P S4:

det ρ4pgq “ detpρ3pgqsgnpgqq “ pdet ρ3pgqqpsgnpgqqdimVstd “ pdet ρ3pgqq ¨ sgnpgq,

since dimVstd is odd and sgnpgq P t˘1u. Thus, any g P S4 such that sgnpgq “ ´1 (i.e., any g P S4zA4)

will satisfy that det ρ3pgq ‰ det ρ4pgq, as needed.

Thus, we have finished constructing the four simple krS4s-modules ρ1, ρ2, ρ3 and ρ4, where the first two

are of dimension 1 each over k and the latter two are of dimension 3 each over k.

3.1.3 Some facts we will use. Here are two facts that will help us deal with problems such as deter-

mining projectivity of modules:

(i) Checking projectivity after restricting to a Sylow subgroup. A G-representation V is projective

if the restriction V |H of V to a p-Sylow subgroup H is projective. This follows from Example

2.5.2(i), which tells us that a surjection W � V of krGs-modules has a krGs-linear section if and

only if it has a krHs-linear section, where H Ă G is a p-Sylow subgroup. For S4, we can use the

3-Sylow subgroup A3 Ă S4 that acts by three cycles on t1, 2, 3u and fixes 4.

(ii) Checking non-projectivity using a quotient. Suppose the action of G on a representation V factors

through a surjective group homomorphism G� G1 - i.e., V is a representation of G1, viewed as a

representation of G via the surjective group homomorphism G � G1. If V is non-projective as a

krG1s-module, i.e., there is a surjection W Ñ V of krG1s-modules without a krG1s-linear section,

it is immediate that this is also a surjection of krGs-modules without a krGs-linear section, so

that V is also non-projective as a krGs-module. For our group G “ S4, we will use as the quotient

GÑ G1 a surjection S4 Ñ S3 that will be defined in Subsubsection 3.1.5 below.

3.1.4 ρ3 and ρ4 are projective. Let us show that the krS4s-modules ρ3 and ρ4 are projective, using (i)

of Subsubsection 3.1.3.

As mentioned there, we consider the 3-Sylow subgroup of S4 which is the copy of A3 Ă S4 (recall that

we are considering p “ 3) that fixes 4 P t1, 2, 3, 4u and cyclically permutes t1, 2, 3u.

To show that ρ3 is projective, by (i) of Subsubsection 3.1.3, it suffices to show that the restriction of ρ3

to this subgroup A3 is a projective krA3s-module. In fact, this subspace is even a free krA3s-module:

I will leave it to you to check this; use that the space of ρ3 is Vstd (from (5)), which is isomorphic to

k3 by the isomorphism pa1, a2, a3, a4q ÞÑ pa1, a2, a3q (because if a1e1 ` a2e2 ` a3e3 ` a4e4 P Vstd, then

a4 “ ´pa1 ` a2 ` a3q is determined by a1, a2 and a3).

Since ρ4|A3 – ρ3|A3 (as sgn is trivial on A3), it follows that ρ4 is projective as a krA3s-module. By

Subsubsection 3.1.3, it follows that ρ4 is krS4s-projective as well.
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3.1.5 A surjection S4 Ñ S3. However, it turns out that ρ1 and ρ2 are not krS4s-projective, and we

will need to find projective covers for them.

The proof of non-projectivity and the construction of projective covers for ρ1 and ρ2 will use (ii) of

Subsubsection 3.1.3, for which we need to construct a surjection τ : S4 Ñ S3 (which is commonly seen

in the characteristic zero representation theory of S4 as well).

Such a surjection τ can be obtained as follows (I am explaining this at greater length than necessary

to drive home the following point whose utility is perhaps not emphasized well in elementary courses

on group theory). To get a homomorphism S4 Ñ Sn for some n, one simply needs to get S4 act on

an n-element set. There are several ‘natural’ sets with an action of S4, such as the (set of) elements

of t1, 2, 3, 4u, pairs of elements of t1, 2, 3, 4u, unordered pairs of distinct elements of t1, 2, 3, 4u, triples

of elements of t1, 2, 3, 4u, elements or pairs of elements or triples of elements of S4 (by left or right

multiplication), conjugacy classes of S4, Sylow subgroups of S4, subgroups of S4 of a fixed cardinality

etc.

So we should look for a set of three elements ‘naturally related to S4 or to t1, 2, 3, 4u’, and this can be

found in the set of partitions of t1, 2, 3, 4u into two disjoint sets of order two each:

t1, 2, 3, 4u “ t1, 2u Y t3, 4u “ t1, 3u Y t2, 4u “ t1, 4u Y t2, 3u.

Clearly S4 acts by permutation on these, giving a homomorphism τ : S4 Ñ S3. We claim that τ is

surjective: for this, it suffices to check that any transposition in S3 lies in the image of this homomor-

phism, something that is readily verified. Hence, as described earlier, the composite of any irreducible

representation of S3 with τ is an irreducible representation of S4.

It will help to know the kernel of this surjection, which has order p#S4q{p#S3q “ 4. I leave it to you to

check that this kernel is the normal subgroupN Ă S3 with elements t1, p1, 2qp3, 4q, p1, 3qp2, 4q, p1, 4qp2, 3qu.

Since N consists of elements of order dividing two, we have that N – Z{2Zˆ Z{2Z.

3.1.6 Projective covers for ρ1 and ρ2. To study ρ1 and ρ2, we claim that they factor through the

surjection τ : S4 Ñ S3. This is immediate: N consists of even permutations, so both the trivial

representation and the sign character are trivial on N . Now it is easy to see that ρ1 and ρ2 are obtained

by viewing the trivial representation and the sign character of S3, respectively, as S4-representations

via the surjection τ : S4 Ñ S3.

In other words, if V1 and V2 denote the one-dimensional vector spaces hosting the trivial representation

and sign character (respectively) of S3, then we may view ρ1 and ρ2 as the representations of S4 on V1

and V2, respectively, with S4 acting through τ : S4 � S3 on V1 and V2.

To prove that neither V1 nor V2 is projective as a krS4s-module, by Subsubsection 3.1.3(ii), it suffices

to show that V1 and V2 are not projective as krS3s-modules; but this follows from the fact that both

the projective indecomposable modules of S3 up to isomorphism have dimension 3 as a k-vector space

(see Example 1.10.3).
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This motivates a construction of projective covers for ρ1 and ρ2 as follows. Let P1 be a projective

cover of the trivial representation of S3, and P2 one of the sign character of S3. Viewing P1 and P2 as

S4-representations via τ , the surjections P1 Ñ V1 and P2 Ñ V2 are also surjections of krS4s-modules. It

is immediate that P1 Ñ V1 and P2 Ñ V2 are essential, because they are essential as maps of S3-modules.

This doesn’t yet prove that Pi is a projective cover of Vi for i “ 1, 2, because it is not obvious that any

projective S3 module remains projective when viewed as an S4-module via τ (e.g., if we considered a

surjection to the trivial group instead of to S3, an analogous assertion would not be true). Rather, we

can use (i) of Subsubsection 3.1.3, which reduces us to checking that P1|A3 and P2|A3 are projective,

where A3 Ă S4 is a 3-Sylow subgroup, which we choose as in Subsection 3.1.3(i). Now, via τ : S4 Ñ S3,

A3 Ă S4 maps isomorphically onto the unique 3-Sylow subgroup τpA3q Ă S3, so it is enough to show

that P1|τpA3q and P2|τpA3q are projective.

But this is easy, as follows. The S3-representations P1 and P2 are direct summands of krS3s, so P1|τpA3q

and P2|τpA3q are direct summands of the krA3s-module krS3s|τpA3q, and you can check that krS3s|τpA3q –

krτpA3qs ‘ krτpA3qs (e.g., if H Ă G is any subgroup, by writing G as the union of the cosets Hg, it is

easy to see that krGs is isomorphic to krHs#pHzGq as a left-krHs-module, and is hence free).

3.1.7 Blocks for S4, p “ 3. Let P3 and P4 be the spaces on which ρ3 and ρ4 act (these can be identified

with Vstd). Therefore, P3 and P4 are projective indecomposable modules over krS4s, and for i “ 1, 2, 3, 4,

Pi is a projective cover of ρi.

Now P3 and P4 are both simple and projective, while the composition factors of P1 and P2 are ρ1, ρ2, ρ1

and ρ2, ρ1, ρ2 respectively (because this reduces to the description of indecomposable projective modules

for S3 when p “ 3, see Example 1.10.3).

Therefore, by Proposition 2.2.6, it follows that P1 and P2 belong to the same block, while each of P3

and P4 constitutes the only simple module in the block containing it. In other words, there are three

blocks for S4 when p “ 3 - one containing P1 and P2, one containing P3, and one containing P4.

The defect groups of these blocks are easy to compute. Any finitely generated module belonging to

a block containing P3 will have only P3 among its Jordan-Holder factors, and since P3 is projective,

it follows from the Jordan-Holder theorem that these modules will all be direct sums of finitely many

copies of P3, and hence projective. Therefore, they all have the trivial group as their vertex. Thus, by

Proposition 2.6.5, the defect group of this block is the trivial group. Exactly the same applies to P4 to

show that the defect group of the block containing P4 is the trivial group.

On the other hand, since ρ1 and ρ2 are not projective, we see from Proposition 2.6.5 that neither P1 nor

P2 can have the trivial group as its defect group. Since the defect group is always a 3-group, and since

3 is the largest power of 3 dividing 24 “ #S4, it follows that a defect group of the block containing P1

(and therefore also P2) is given by any copy of A3 inside S4.


